用户名: 密码: 验证码:
大渡河流域重大地震滑坡发育特征与成因机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自2008年汶川地震来,地震滑坡已成为地质工程界最为热门的研究课题之一。调查发现,在我国西部的大渡河干流发育有一系列成群分布的大型~巨型的地震滑坡,在得妥~黄金坪元古代花岗岩及闪长岩组成的河段,有16个大规模滑坡堆积体密集分布,线密度达到0.25个/km。而汶川地震触发的大型~巨型滑坡主要集中在层状变质岩及沉积岩区域,震源上盘的元古代花岗岩及闪长岩分布区仅有崩塌发育,这种巨大差异受何种因素控制?地震滑坡对大渡河工程地质环境有何直接或间接影响?备受工程地质领域关注。通过对流域重大地震滑坡发育特征的系统调查与分析,揭示其成因机理,具有理论与现实意义。作者在中国地调局和国家基金委的资助下,利用高精度遥感解译,现场调查大渡河干流重大地震滑坡,通过取芯钻探、物探及大比例尺工程地质测绘等手段对典型地震滑坡进行深入解剖,采用统计分析、定性分析、数值模拟等方法,对大渡河流域的河谷演化、地应力集中特征、重大地震滑坡的发育特征、分布规律和成因机理进行了深入研究,较为系统全面的研究了流域内重大地震滑坡的相关工程地质特征。主要研究成果和结论如下:
     (1)首次全面揭示了大渡河河谷演化特征。在大渡河流域不同河段的阶地和剥夷面进行地貌分析和取样测年,结合前人对流域内部分河段的河谷发育演化等相关成果,对大渡河双江口~乐山干流上、中、下游全河段的河谷演化特征进行补充完善,得出大渡河干流河段主要发育有三级夷平面和4~6级阶地,河谷上、下游宽缓,中游段狭窄,河流走向主要受区域断裂构造控制的结论。
     (2)总结出大渡河流域6种高地应力集中模式。借助流域内相关工程的地应力测试资料以及对相关断裂构造活动性的理解,对流域内高地应力的分布特征进行了研究,分析了流域内小金、丹巴、金汤、泸定、大岗山、瀑布沟以及金口河等多个高地应力集中区的特征和分布规律,首次提出斜列或交汇应力集中、梯形断块端部高地应力集中、弧形构造近顶部应力集中、三组断裂交汇部位应力集中、断裂紧缩部位压应力集中、北东向与北西向构造交汇转弯部位压应力集中等6种高地应力集中模式。
     (3)全面揭示了大渡河重大地震滑坡的发育规律。确定了大渡河流域重大地震滑坡的判别标准。在对大渡河干流22处地震滑坡进行工程地质调查(其中大多数的地震滑坡前人无相关研究)和分析后,得出这些滑坡多有规模大、滑源高、滑距远、有河流堰塞历史等特征。在调查分析的基础上,对流域内重大地震滑坡的平面、剖面和时间的分布规律进行研究,揭示它们具有沿河流、断裂带呈线状分布以及沿应力集中区呈片状分布的平面分布规律;剖面上具有多形成于河谷谷肩,失稳后堆积于现今河床的规律,形成滑坡的微地貌多为地形坡度由缓变陡的坡折部位、单薄山脊、孤立山头或多面临空的山体以及河流凹岸等对地震波有明显放大作用的部位;从形成时间上看流域内重大地震滑坡可分为近代滑坡、老滑坡和古滑坡三类,其中0~1万年前和1.5~2.5万年前这两个时间段为地震滑坡的高发时段。
     (4)基于对摩岗岭典型地震滑坡的深入剖析,揭示了其成因机理及运动过程。借助高精度遥感解译、大比例尺工程地质测绘、取芯钻探、物探、ESR测年等手段,从其形成的地质环境条件入手,研究了滑坡体的边界特征、物质组成以及形成机制,认为该滑坡具有抛射并堰塞河流的特点,高烈度环境、单薄山脊以及穿过坡体下方的得妥断裂都为滑坡的形成提供了有利的地质条件,而1786年磨西7.75级地震直接触发了滑坡的形成。揭示摩岗岭滑坡的成因机理为河谷卸荷-震动拉裂-断层压缩-剪断抛射堆积的模式。
     (5)按照地震滑坡发育的构造背景、地貌和坡体结构特征,总结出震动拉裂-顺层滑移、震动拉裂-剪断滑移、震动拉裂-剪断抛射、震动拉裂-断层压缩-剪断抛射以及震动拉裂-台阶式滑移等五种大渡河流域地震滑坡成因模式。
Since the2008Wenchuan Earthquake, researches on the seismic landslidebecome one of the most popular research topics in the geological engineering field,According to field investigation, there are lots of large-scale seismic landslidesdistributed in groups along the Daduhe River in western China. And16large-scalelandslide accumulations were distributed between Detuo and Huangjinping reach,with the line density of0.25per kilometer, as the reach slope consisted of Proterozoicgranite and diorite. But seismic landslides triggered by Wenchuan Earthquake werealmost developed in layered sedimentary rocks or metamorphic rocks area, and onlysome collapses were developed in the Proterozoic granite and diorite area near theepicenter. What factors determined this huge difference? Dose the seismic landslidehave a direct or indirect impact on the geological environment of the Daduhe River?Many geologists were concerned about these questions. Systematic investigation andanalysis on the characteristics of seismic landslide developed in Daduhe River as wellas revealing its genetic mechanism have theoretical and practical significance. Fundedby the Geological Survey and the National Science Foundation of China, the authoruses the methods such as: high-precision remote sensing interpretation, fieldinvestigation, core-drilling, geophysical, large-scale geological survey, statisticalanalysis, qualitative analysis and numerical simulation, to do research on theevolution of the Daduhe valley, the stress concentration characteristics in this area, thedevelopment characteristics, the distribution feature and the genetic mechanism theseismic landslide. The achievements and conclusions are given as follow.
     (1) This paper reveals the evolution characteristics of the Daduhe valley for thefirst time. The author did geomorphologic analysis and ESR dating at terraces orplanation surfaces in different reaches of the Daduhe River. Combined with theprevious achievements related to the river’s evolution, the author complemented theevolution research of the whole river. Conclusions are obtained that the Daduhe River is mainly developed with3planation surfaces and4-6terraces, that both the upstreamand the downstream of this river are wide, that the middle stream is narrow and theriver strike is controlled by regional fault structures.
     (2) This paper summed up six high ground-stress concentration modes in theDaduhe River. The author analyzed the distribution characteristics of highground-stress with support of ground-stress testing data from related projects, andcomprehension of fault activity characteristics. This paper also reveals characteristicsand distribution of the high ground-stress concentration area, which is near XiaojinCounty, Danba County, Jintang District, Luding County, Dagangshan District,Pubugou District and Jinkouhe County. This paper firstly proposed six modes abouthigh ground-stress concentration including Echelon or intersection high ground-stressconcentration mode, ends of trapezoidal fault block high ground-stress concentrationmode, top of arc structure high ground-stress concentration mode, three groupsfracture intersections high ground-stress concentration mode, fracture tightening partshigh ground-stress concentration mode, intersection turning parts of NE-strikefracture and NW-strike fracture high ground-stress concentration mode.
     (3) The developing regularity of the Daduhe seismic landslides is also revealedin this paper.22landslides on the Daduhe geological zone (most of landslides arestudied in first time) were researched. Through statistical analysis of landslide, it wasconcluded that the landslides are large-scale, high source of slip, long distancemovement and caused river barrage. On the basis of investigation, researching theplan and cross section of serious seismic landslides, and the time of landslidesformation, this paper analyzed three-dimensional relationship and revealed two lawsin plan section (along the river, the fault zone plane distribution law was linear andalong the stress concentration zone was patchy); in cross section, landslides formationin Daduhe valley shoulder, accumulated in river bed and the Micro-topographicalwere special places (such as slope-break thin ridges, isolated hills, cliff and riverconcave bank) where the slope was steep slowly varying and could have the effect ofamplification of seismic waves apparently; on the time scale, the serious landslidescan be divided into two types-old landslides and ancient landslides. Specially, from0to1million and1.5to2.5million years ago, earthquake landslides occur frequently inresearch zone.
     (4) Deep analysis of Mogangling typical seismic landslide was also made in thispaper. By way of high-precision remote sensing interpretation, core-drilling,geophysical, large-scale geological survey, and ESR dating methods, starting from the geological environmental conditions, this paper analyzed the landslide boundary,composition, and mechanism, reaching the conclusion that the landslide have ejectionand damming characteristics. The high intensity environment, thin ridge topographyand the Detuo fault which pass through the accumulation are beneficial for theformation of landslide. The Mogangling landslide was direct triggered by Moxi7.75earthquake in1786. The genetic mechanism of this landslide is slopeunloading-vibration crack-fault affecting-projectile slip mode.
     (5) This paper summed up five landslide formation modes triggered byearthquake In Daduhe valley such as the vibration crack planar block slip; vibrationcrack cut slip; vibration crack projectile slip; vibration crack fault affecting projectileslip; vibration crack stage slip etc.
引文
[1]崔鹏,庄建琦,陈兴长,张建强,周小军.汶川地震区震后泥石流活动特征与防治对策[J].四川大学学报(工程科学版),2010,42(5):10-19.
    [2]黄润秋,裴向军,李天斌.汶川地震触发大光包巨型滑坡基本特征及形成机理分析[J].工程地质学报,2008,16(6):730-741.
    [3]黄润秋,裴向军,张伟锋,李世贵,李必良.再论大光包滑坡特征与形成机制[J].工程地质学报,2009,17(6):725-736.
    [4]许强,陈建君,冯文凯,肖锐铧,左雅娅.斜坡地震响应的物理模拟试验研究[J].四川大学学报(工程科学版),2009,41(3):266-272.
    [5]许强,汤明高,徐开祥,黄学斌.滑坡时空演化规律及预警预报研究[J].岩石力学与工程学报,2008,27(06):1104-1112.
    [6]吴珍汉,张作辰.汶川8级地震地质灾害的类型及实例[J].地质学报,2008,82(12):1747-1757.
    [7]殷跃平.汶川八级地震地质灾害研究[J].工程地质学报,2008,16(4):433-444.
    [8]苏生瑞,李松,郝莉莉,梅海.汶川地震中小鱼洞大桥的变形破坏特征与机理[J].灾害学,2011,26(4):19-23.
    [9]殷跃平.危机与重塑:论工程地质学的发展--“生态环境脆弱区工程地质”论坛学术总结[J].工程地质学报,2007,15(5):718-720.
    [10]唐荣昌,张耀国,黄祖智,雷建成.四川石棉一西昌地区地震区划研究[J].地震研究,1993,16(3):306-315.
    [11]F.C. Dai,C.F. Lee,J.H. Deng,et al.The1786earthquake-triggered landslide damand subsequent dam-break flood on the Dadu River, southwestern China[J].Geomorphology,2005,65:205-221.
    [12]江在雄.1786年大渡河地震、水患及救灾[J].四川地震,2006,3:4-9.
    [13]张倬元,王士天,王兰生.工程地质分析原理[M].北京:地质出版社,1993.
    [14]胡广韬.陕西省滑坡工作办公室滑坡动力学[M].北京:地质出版社,1995.
    [15]Kramer S.L. Geotechnical Earthquake Engineering[M]. New Jersey: Prentice-HallInc.,U.S.A,1996.
    [16]毛彦龙,胡广韬,赵法锁等.地震动触发滑坡体滑动的机理[J].西安工程学院学报,1998,20(4):45-52.
    [17]程谦恭,彭建斌,胡广韬,等.高速岩质滑坡动力学[M].成都:西南交通大学出版社,1999.
    [18]祁生文,伍法权,刘春玲,等.地震边坡稳定性的工程地质分析[J].岩石力学与工程学报,2004,23(16):2792-2797.
    [19]周本刚,张裕明.中国西南地区地震滑坡的基本特征[J].西北地震学报,1994,16(1):95-103.
    [20]邹谨敞,邵顺妹,蒋荣发.古浪地震滑坡的分布规律和构造意义[J].中国地震,1994,10(2):168-174.
    [21]邹谨敞,邵顺妹.海原地震滑坡及其分布特征探讨[J].内陆地震,1996,10(1):1-6.
    [22] Randall W. Jibson, Edwin L. Harp, John A. Michael. A method for producing digitalprobabilistic seismic landslide hazard maps [J]. Engineering Geology,2000,58:271-289.
    [23] Keefer, D.K. Landslides caused by earthquakes [J]. Geol. Soc. Am. Bull.1984,95:406-421.
    [24] Gerassimos A. Papadopoulos, Areti Plessa. Magnitude-distance relations forearthquake-induced landslides in Greece [J]. Engineering Geology,2000,58:377-386.
    [25]辛鸿博,王余庆.岩土边坡地震崩滑及其初判准测[J].岩土工程学报,1999,21(5).
    [26] Keefer D.V., and Wilson R.C. Predicting earthquake-induced landslides, withemphasis on arid semi-arid environments [A]. In sadler P.M., and Morton D.M.(ed.).Landslides in a semi-arid environment with emphasis on the inland Valleys of SouthernCalifornia [C]. California: publications of the Inland Geological Society,1989.
    [27]孙崇绍,蔡红卫.我国历史地震时滑坡崩塌的发育及分布特征[J].自然灾害学报,1997,6(1):25-30.
    [28] Romeo R. Seismically induced landslide displacements: apredictive model [J].Engineering Geology, Special Issue,2000,58(3-4):337-351.
    [29]陈晓利.人工智能在地震滑坡危险性评价中的应用[D].北京:中国地震局地质研究所,2007.
    [30] John E.Costa, Robert L.Schuster. The formation and failure of natural dams [J].Geological Society of America.1988,100(7):1054-1068.
    [31] Clague J.J., Evans S.G., Formation and failure of natural dams in the CanadianCordillera [R]. Geological Survey of Canada.1994,464:1-35.
    [32] Casagli N., Ermini L.and Rosati G.Determining grain size distribution of thematerial composing landslide dams in the Northern Apennine: sampling and processingmethods [J]. Engineering Geology,2003,69:83-97.
    [33] Hewitt K.. Catastrophic landslides and their effects on the Upper Indus streams,Karakoram Himalaya, northern Pakistan [J]. Geomorphology,1998,26:47-80.
    [34]柴贺军,刘汉超,张倬元.中国滑坡堵江事件目录[J].地质灾害与环境保护,1995,6(4):1-9.
    [35] Peng Cui, Yingyan Zhu, Yongshun Han, et al. The12May Wenchuanearthquake-induced landslide lakes: distribution and preliminary risk evaluation[J]. Landslides,2009,6(3):209-223.
    [36] Guangqian Wang, Fan Liu, Xudong Fu, et al. Simulation of dam breach developmentfor emergency treatment of the Tangjiashan Quake Lake in China [J]. Science in Chinaseries E: Technological science,2008,51(2):82-94.
    [37]王思敬.岩石边坡动态稳定性的初步探讨[J].地质科学,1977,(4):372-376.
    [38]钱胜国,陆秋蓉.长江三峡船闸高边坡地震稳定性分析[R].武汉:长江科学院科研报告,1991.
    [39]林成功.台湾921集集大地震滑坡动力分析研究[D].重庆:重庆大学,2003.
    [40]陈玲玲,陈敏中,钱胜国.岩质陡高边坡地震动力稳定分析[J].长江科学院院报,2004,21(1):33-35.
    [41]王环玲,徐卫亚.高烈度区水电工程岩石高边坡三维地震动力响应分析[J].岩土力学与工程学报,2005,24(增2):5890-5895.
    [42]吴兆营,薄景山,刘红帅等.岩体边坡地震稳定性动安全系数分析方法[J].防灾减灾工程学报,2004,24(3):237-241.
    [43]刘红帅,薄景山,刘德东.岩土边坡地震稳定性分析研究评述[J].地震工程与工程震动,2005,25(1):164-171.
    [44]刘红帅.岩质边坡地震稳定性分析方法研究[D].哈尔滨:中国地震局工程力学研究所,2006.
    [45]刘红帅,薄景山,刘德东.岩土边坡地震稳定性评价方法研究进展[J].防灾科技学院学报,2007,9(3):20-27.
    [46]刘红帅,王根龙,薄景山等.背后山古滑坡对汉源老县城震害的影响[J].地震研究,2011,34(4):511-517.
    [47]祁生文.考虑结构面退化的岩质边坡地震永久位移研究[J].岩土工程学报,2007,29(3):452-457.
    [48]卢坤林,朱大勇,朱亚林,等.三维边坡地震永久位移初探[J].岩土力学,2011,32(5):1425-1429.
    [49]吴火珍.地震滑坡频谱分析方法研究[D].武汉:中国科学院武汉岩土力学研究所,2010.
    [50]乔建平,蒲晓虹.川滇地震滑坡分布规律探讨[J].地震研究,1992,15(4):411-417.
    [51]鄢毅,岳昌桐.四川地质灾害分布特征及防治对策探讨[J].中国地质灾害与防治学报,2004,15(增):123-127.
    [52]丁俊,鄢毅,岳昌桐等.四川省大渡河流域地质灾害分布及其发展趋势浅析[J].中国地质灾害与防治学报,2007,18:22-25.
    [53]巴仁基,王丽,郑万模等.大渡河流域地质灾害特征与分布规律[J].成都理工大学学报(自然科学版),2011,38(5):529-537.
    [54]Wang Yunsheng et al.Seismic landslides and the environmental impact in themiddle reach of Daduhe River, Advanced Materials Research[J].Vols.368-373(2011)pp1965-1970.
    [55]Wu Junfeng et al.The Characteristics and Mechanism of Large Scale LandslidesBetween Huangjinping and Detuo in Daduhe River, Advanced Materials Research[J].Vols.243-249(2011) pp3211-3216.
    [56]吉锋,石豫川,刘汉超等.大渡河新华古滑坡体成因机制及稳定性研究[J].水文地质工程地质,2005,04:25-27.
    [57]刘晶晶,赵其华,张文居等.大渡河三交坪滑坡形成演化机制分析及稳定性评价[J].中国地质灾害与防治学报,2005,16(3):21-23.
    [58]晏长根,祁生文,伍法权等.大渡河猴子岩水电站库尾段藏碉群斜坡巨型堆积体的成因分析[J].工程地质学报,2006,14(2):159-164.
    [59]晏长根,祁生文,伍法权等.莫洛村滑坡稳定性的历史地质分析[J].煤田地质与勘探,2007,35(5):46-49.
    [60]邓建辉,陈菲,尹虎等.泸定县四湾村滑坡的地质成因与稳定评价[J].岩石力学与工程学报,2007,26(10):1945-1950.
    [61]黄润秋,王运生,董秀军.2009年8.6四川汉源猴子岩崩滑的现场应急调查及危岩处理[J].工程地质学报,2009,17(4):445-448.
    [62]何军.大渡河干海子堰塞堆积体成因机制及稳定性研究[D].成都:成都理工大学,2009.
    [63]葛永刚,陈兴长,方华等.汉源县大渡河“8.6”崩塌堵河灾害研究[J].山地学报,2010,28(1):123-128.
    [64]吴亚子,傅荣华,王健,等.大渡河松坪滑坡形成机制及稳定性分析[J].水土保持研究,2011,18(2):62-65.
    [65]吴俊峰,王运生,张桥,等.大渡河加郡-得妥河段大型滑坡地质灾害遥感调查[J].水土保持通报,2011,31(3):113-116.
    [66]吴俊峰,王运生,董思萌,等.摩岗岭滑坡成因机理研究[J].湖南科技大学学报(自然科学版),2012,27(3):52-56.
    [67]王运生,徐鸿彪,罗永红,等.地震高位滑坡形成条件及抛射运动程序研究[J].岩土力学与工程学报,2009,28(11):2360-2368.
    [68]郑颖人,叶海林,黄润秋.地震边坡破坏机制及破裂面的分析探讨[J].岩土力学与工程学报,2009,28(8):1714-1723.
    [69]尤琳,沈军辉,彭昌翠,等.四川省青川县银溪窝滑坡复活机制研究及稳定性评价[J].水土保持研究,2011,18(2):44-52.
    [70]赵建军,巨能攀,李果,等.汶川地震诱发灌滩滑坡形成机制初步分析[J].地质灾害与环境保护,2010,21(2):92-96.
    [71]鲁功达,晏鄂川,赵建军,等.优势结构面控制的岩质边坡强震破坏机制研究[J].工程地质学报,2012,20(3):305-310.
    [72]夏敏,任光明,郭亚莎,等.地震诱发滑坡复活机制的FLAC3D数值模拟分析[J].工程地质学报,2010,18(3):305-311.
    [73]甘建军,孙海燕,黄润秋,等.汶川县映秀镇红椿沟特大型泥石流形成机制及堵江机理研究[J].灾害学,2012,27(1):5-16.
    [74]苟富刚,王运生,吴俊峰,等.都江堰庙坝地震高位滑坡特征与成因机理研究[J].工程地质学报,2012,20(1):21-29.
    [75]裴向军,郝永峰,张军新,等.老鹰岩滑坡成因机制与运动特征研究[J].地质灾害与环境保护,2010,21(4):28-32.
    [76]魏鹏,王运生,王福海,等.龙池乡高位滑坡抛射机理分析[J].地质灾害与环境保护,2010,21(1):83-91.
    [77]裴钻,黄润秋,许强,等.强震触发横向坡失稳的力学模式研究[J].水土保持通报,2011,31(6):117-120.
    [78]肖锐铧,许强,冯文凯,等.强震条件下双面坡变形破坏机理的振动台物理模拟实验研究[J].工程地质学报,2010,18(6):837-843.
    [79]邹威,许强,刘汉香,等.强震作用下层状岩质斜坡破坏的大型振动台实验研究[J].地震工程与工程振动,2011,31(4):143-149.
    [80]王福海,王运生,魏鹏,等.四川茂县维城乡后山古滑坡形成机制及稳定性评价[J].南水北调与水利科技,2010,8(1):39-43.
    [81]陈光平,赵其华,黄河清.文家沟巨型岩质滑坡告诉远程运移特征分析[J].工程地质学报,2011,19(3):404-408.
    [82]郑勇,韩刚,赵其华,等.汶川八级地震触发何家沟碎屑流滑坡基本特征及形成机理[J].地质灾害与环境保护,2009,20(4):86-90.
    [83]袁进科,黄润秋,裴向军,等.汶川地震触发平溪村滑坡特征及成因分析[J].水文地质与工程地质,2011,38(3):110-119.
    [84]汤明高,许强,张伟,等.汶川地震触发窝前滑坡特征及失稳机制探讨[J].岩石力学与工程学报,2011,30(2):3491-3502.
    [85]许强,董秀军.汶川地震大型滑坡成因模式[J].地球科学——中国地质大学学报,2011,36(6):1134-1142.
    [86]李果,黄润秋,巨能攀,等.汶川地震诱发干河口巨型反倾滑坡成因机制研究[J].水电能源科学,2011,29(4):118-121.
    [87]黄河清,赵其华.汶川地震诱发文家沟巨型滑坡—碎屑流基本特征及成因机制初步分析[J].工程地质学报,2010,18(2):168-177.
    [88]刘维国,沈军辉,贾留杰,等.5.12汶川地震诱发青川县田家坝滑坡调查[J].水土保持通报,2008,28(6):102-104.
    [89]冯文凯,黄润秋,许强.斜坡震裂变形发育分布规律及危险性分析[J].成都理工大学学报(自然科学版),2010,37(6):679-684.
    [90]黄润秋,李为乐.“5.12”汶川大地震触发地质灾害的发育分布规律研究[J].岩石力学与工程学报,2008,27(12):2585-2592.
    [91]黄润秋,李为乐.汶川地震触发崩塌滑坡数量及其密度特征分析[J].地质灾害与环境保护,2009,20(3):1-7.
    [92]许强,李为乐.汶川地震诱发大型滑坡分布规律研究[J].工程地质学报,2010,18(6):818-826.
    [93]邓茜,王运生,魏鹏,等.四川石亭江流域汶川地震滑坡崩塌分布及控制因素分析[J].防灾减灾工程学报,2011,31(2):218-224.
    [94]祁生文,许强,刘春玲,等.汶川地震极重灾害地质背景及次生斜坡灾害空间发育规律[J].工程地质学报,2009,17(1):39-49.
    [95]黄润秋,李为乐.汶川大地震触发地质灾害的断层效应分析[J].工程地质学报,2009,17(1):19-28.
    [96]许强,李为乐.汶川地震诱发滑坡方向效应研究[J].四川大学学报(工程科学版),2010,42(1):7-14.
    [97]刘惠军,沈军辉,聂德新,等.5.12汶川地震青川县木鱼镇滑坡坝稳定性分析[J].山地学报,2008,26(3):263-266.
    [98]张雪峰,何政伟,薛东剑,等.文家坝大型单体滑坡地质特征遥感调查与稳定性分析[J].物探化探计算技术,2010,32(6):674-676.
    [99]杜杰,冯文凯,石豫川,等.汶川地震对望月寨滑坡稳定性影响研究[J].岩土力学,2010,31(3):856-862.
    [100]邓韧,郑光,许强,等.地震灾区青川县骑马乡明家不稳定斜坡工程治理分析[J].工程建设与设计,2011,26(2):89-92.
    [101]吴丽,吴飞,陈礼仪.震后边坡治理工程风险评价体系[J].科技进步与对策,2009,26(21):160-162.
    [102]黄润秋.汶川地震地质灾害后效应分析[J].工程地质学报,2011,19(2):145-151.
    [103]唐川.汶川地震区暴雨滑坡泥石流活动趋势预测[J].山地学报,2010,28(3):341-349.
    [104]谢洪斌,杨雪,谭德军,等.模糊证据权法在地震滑坡危险度区划中的应用[J].中国安全科学学报,2011,21(8):164-170.
    [105]武斌,曹蜀湘,张淳,等.高密度电阻率法在四川青川张家沟滑坡勘察中的应用[J].地质学报,2010,30(2):229-231.
    [106]张玮,魏正宇,张双狮,等.高密度电阻率法探测汶川地震造成的不稳定斜坡[J].工程勘察,2011,26(11):90-94.
    [107]四川省地质局第一区域地质测量队五分队.区域地质测量报告,1:20万[R],马边幅,1971.
    [108]四川省地质局第二区域地质测量队革命委员会.区域地质测量报告,1:20万[R],峨眉幅,1971.
    [109]四川省地质局.区域地质调查报告,1:20万[R].石棉幅,1974.
    [110]四川省地质局.区域地质调查报告,1:20万[R].荥经幅,1974.
    [111]四川省地质局.区域地质调查报告,1:20万[R].宝兴幅,1976.
    [112]四川省地质局.区域地质调查报告,1:20万[R].马尔康幅,1979.
    [113]四川省地质局.区域地质调查报告,1:20万[R].丹巴幅,1980.
    [114]四川省地质矿产局.区域地质调查报告,1:20万[R].小金幅,1984.
    [115]四川省地质矿产局.区域地质调查报告,1:20万[R].色达幅,1984.
    [116]四川省地质矿产局.区域地质调查报告,1:20万[R].南木达幅,1986.
    [117]四川省地质矿产局.区域地质调查报告,1:20万[R].观音桥幅,1986.
    [118]黄润秋,王运生,傅荣华等.大渡河沿岸大渡河公司水电开发河段汶川地震震后地质灾害复核调查研究[R].成都理工大学地质灾害防治与地质环境保护国家重点实验室,2010.
    [119]曾融生,孙为国.青藏高原及其邻区的地震活动性和震源机制以及高原物质东流的讨论[J].地震学报,1992,41(增刊):531-563.
    [120]肖序常,王军.青藏高原构造演化及隆升的简要评述[J].地质评论,1998,44(4):372-381.
    [121]郑度,姚檀栋.青藏高原隆升及其环境效应[J].地球科学进展,2006,21(5):451-458.
    [122]石金良.大渡河流域的新构造活动与活断层研究[J].水电站设计,1985,(1):15-24.
    [123]刘宇平,陈智梁,唐文清等.青藏高原东部及周边现时地壳运动[J].沉积与特提斯地质,2003,23(4):1-8.
    [124]王运生,黄润秋,段海澎等.中国西部末次冰期一次强烈的侵蚀事件[J].成都理工大学学报(自然科学版),2006,33(1):73-76.
    [125]李炳元,潘保田.青藏高原古地理环境研究[J].地理研究,2002,21(1):61-70.
    [126]张大泉.鲜水河断裂带附近地区的区域地貌特征[J].西南师范大学学报(自然科学版),1990,15(3):413-420.
    [127]蒋复初,吴锡浩.青藏高原东南部地貌边界带晚新生代构造运动[J].成都理工学院学报,1998,25(2):162-168.
    [128]刘淑珍.山区城镇建设中的地貌问题[J].西南师范大学学报(自然科学版),1990,15(4):478-483.
    [129]吴德超,邓江红,王道永等.四川省大渡河大岗山水电站可行性研究报告坝区及外围地质构造特征研究[R].中国水电顾问集团成都勘测设计研究院,2004.
    [130]刘严松,何政伟,吴德超等.大渡河金川-巴底河段河流地貌特征研究[J].四川地质学报,2007,27(3):162-165.
    [131]熊发挥,肖渊甫,张林.大渡河中游泸定-石棉段阶地特征及河谷发育史探讨[J].四川地质学报,2009,29(4):397-383.
    [132]马宏生.川滇地区强震孕育的深部动力环境研究[D].北京:中国地震局地球物理研究所,2007.
    [133]朱爱斓.川西地区主干活动断裂间震期滑动习性与运动状态的地震学初步研究[D].北京:中国地震局地质研究所,2006.
    [134]周荣军,何玉林,杨涛等.鲜水河―安宁河断裂带磨西―冕宁段的滑动速率与强震位错[J].中国地震,2001,17(3):253-262.
    [135]任雪梅,高孟潭,杨勇等.大渡河流域地震活动特征[J].震灾防御技术,2008,3(2):182-188.
    [136]陈鲲,高孟潭,雷建成.大渡河流域地震发生概率研究[J].中国地震,2008,24(1):48-54.
    [137]张倬元,王士天,曾勇.川西地区地震幕的数值模拟研究[J].地质灾害与环境保护,1990,1(2):43-53.
    [138]王新民,裴锡瑜.对1786年康定-泸定磨西间73/4级地震的新认识[J].中国地震,1988,4(1):108-115.
    [139]龙德雄,邓天岗.1786年康定地震形变特征的初步研究[J].地震研究,1990,13(1):51-60.
    [140]龙德雄,邓天岗.1725年康定71/2地震发展构造问题的讨论[J].地震研究,1991,25(1):37-44.
    [141]许冲.汶川地震滑坡分布规律与危险性评价[J].岩石力学与工程学报,2012,(2):432-433.
    [142]许强,裴向军,黄润秋,等.汶川地震大型滑坡研究[M].北京:科学出版社,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700