用户名: 密码: 验证码:
川中龙女寺地区须家河组储层预测及流体检测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
四川盆地中部龙女寺构造经历了50多年的勘探,虽然在须家河组见到好的油气显示但未取得勘探成效,主要原因是由于缺乏高精度的三维地震资料,导致了不能对构造圈闭形态的准确认识,基于地震的储层预测工作无法进行。本论文首先对三维地震资料进行精细解释,准确标定各层地质层位,搞清须二段顶、须四段顶断层位置;查明须家河组各反射层的构造形态细节、规模、高点位置,利用小断层解释技术、相干体技术、最大熵谱分析技术以及曲率属性技术对断裂发育带进行检测,认识断层展布,特别是小断层的分布情况;其次,利用叠后地震反演技术(包括宽带约束反演和地质统计学反演)和叠前地震反演技术(基于Knott-Zoeppritz方程的反演技术)对研究区须二段、须四段进行了储层预测研究,利用子波重构技术对研究区须二段、须四段流体进行检测;最后,在考虑构造、裂缝发育程度、储层预测、流体检测等因素的基础上,对研究区须二段、须四段圈定了有利勘探区域。为研究区须家河组天然气勘探提供了有力的技术依据。本论文取得的主要成果如下:
     1.龙女寺构造整体为一发育于川中古隆起之上受压扭应力控制的宽缓背斜,构造轴向从西往东由北西西转向北东;构造高部位上发育有多个局部圈闭,大多数圈闭受断裂控制明显,具有左旋斜裂展布特征,且从须二段到须六段具有明显的继承性;构造北侧和西侧受断裂影响形成裙边式分异,南侧相对简单;
     2.通过对研究区叠前时间偏移数据体开展精细构造解释,须家河组须二段顶界共发现和落实各类构造圈闭共18个,圈闭总面积约41Km2;须家河组须四段顶界发现和落实各类构造圈闭共17个,圈闭总面积约44Km2;
     3.利用曲率等小断层解释技术落实小断层发育区4个,小断层发育区主要分布在较大断层或两组断层交汇处;研究区须二段小断层较须四段发育;
     4.岩心物性统计分析表明:龙女寺地区须二段、须四段属低孔、低渗储层;须四段以孔隙型为主,须二段则分为孔隙型和裂缝-孔隙型。须四段物性相对好于须二段;
     5.研究区须二段、须四段主要为三角洲相;须二段下亚段沉积时期,研究区中部的主河道发育规模最大,须二段上亚段沉积时期,主河道发育规模明显变小;须四段主河道与须二段具有继承性,也主要在研究区中部发育且发育规模要比须二段大;
     6.须二段孔隙型储层发育区主要位于女88-1井区、女深1井区以及女110井区,预测含气砂岩主要分布于女深1井区、女深002-1井区、女88-1~女深002-4井区以及女110井区;须四段有利储层和含气砂岩主要发育在研究区中部;
     通过解释的构造特征、小断层发育程度、沉积相展布特征、储层反演结果、生储盖层组合、成藏分析以及流体检测等因素综合分析研究,优选出女深002-4至女深002-1井构造带、女深1井至女深2井构造带以及女110井南构造带等为本研究区须二段、须四段三个有利勘探区带。在有利勘探区带划分的基础上,对重点圈闭进行综合研究分析,结合储层发育与成藏分析,提出10个重点勘探目标。
The structure has experienced50years of exploration in the Longnvsi of centralSichuan basin, in the Xujiahe formation we has been found good hydrocarbon show,but has not obtained the exploration results, the main reason is due to a lack of highprecision3D seismic data, which led to us can’t accurate understanding of the form oftectonic traps, so, we can't work for reservoir prediction that base on the seismic.Basing on the3D seismic data, firstly, we interpret the3D seismic data, anddemarcate geologic horizon accurately, find the fault location in the top of the secondand fourth member of Xujiahe formation; we should find out the reflection horizon’sstructural configuration details, size and high position in the Xujiahe formation. Thenwe use small fault interpretation technique, coherence technology, the maximumentropy spectrum analysis technology and curvature attribute technology for detectionof fault distribution in the fracture development zone, especially the distribution ofsmall faults; Secondly, we use the post-stack seismic inversion technique (Includingbroadband constraint inversion and geostatistics inversion) and pre-stack seismicinversion technique (Based on the Knott-Zoeppritz equation inversion technique) forreservoir prediction, and use wavelet reconstruction technology for detection of thefluid in the study area of the second and fourth member of Xujiahe formation; Finally,we have delineated the favorable exploration zones in the studied area of the secondand fourth member of Xujiahe formation on the basis of factors such as: consideringthe structure, degree of fracture development, reservoir prediction and fluid detection,which provided the powerful technical basis for natural gas exploration in the studyarea. This paper's main results are as follows:
     1. The Longnüsi structure as a whole as a development on the upper palaeohighsiltstones compression torsion stress control rolling anticline, and its structure axialfrom west to east and from north west to the east; It has more than one local trap onthe structural high part of the development that most traps controlled by fracturesignificantly, with sinistral oblique crack distribution characteristics, and from thesecond to the sixth member of Xujiahe formation has obvious inheritance; Thestructure of north and west was influenced by fracture formation and then formed skirtdifferentiation, south side is relatively simple;
     2. By the dragon female temple area’s3D pre-stack time migration data to carryout the fine structure interpretation, the top boundary of the second member ofXujiahe formation were found and implemented all kinds of structural trap, a total of18, trap with a total area of about41Km2, and the fourth member were found andimplemented all kinds of structural trap, a total of17, trap with a total area of about44Km2;
     3. We have been implemented4small faults development zone by curvature andsmall fault interpretation technique. The small fault zones is mainly distributed inlarge fault or the interchange of two groups of fault; the second member of Xujiaheformation’s minor fault is more developmental than the fourth;
     4. The core physical statistics analysis shows that the second and fourth memberof Xujiahe formation of Longnvsi district belongs to low porosity and lowpermeability reservoir, and the fourth is given priority to with porosity, while thesecond is porosity and fissure-porosity. So the fourth’s physical properties isrelatively well in the second’s;
     5. The second and fourth member of Xujiahe formation of the study area aremainly delta facies; In the sedimentary period of the second member’s lowersubmember of Xujiahe formation, the middle of study area’s main channel is mostdevelopment. But in the fourth, the scale turn smaller obviously; The main channel ofthe fourth member has been inherited the second member, which developed in thecentral area and the scale was larger than the second member’s;
     6. The second member of Xujiahe formation’s pore type development reservoirwas mainly located in the Nv88-1wellblock, Nvshen1wellblock and Nv110wellblock. We predicted the gas-bearing sandstone is mainly distributed in theNvshen1wellblock, Nvshen002-1wellblock, Nv88-1to Nvshen002-4wellblockand Nv110wellblock; The fourth member of Xujiahe formation’s favorable reservoirand gas-bearing sandstone mainly developed in the central area; By interpreting the tectonic characteristics, the small fault development degree, thedistribution characteristics of sedimentary facies, reservoir inversion, reservoir andcap rock combination, accumulation analysis, fluid prediction, etc, factors tocomprehensive analysis and research, and then we optimized the tectonic belt fromNvshen002-4well to Nvshen002-1well, from Nvshen1well to Nvshen2well andNv110well, etc, as the three favorable exploration zone in the study area of thesecond and fourth member of Xujiahe formation. On the basis of favorable explorationzone division, we make a comprehensive research and analysis about the important trap, and combine with the reservoir development and reservoir analysis. Finally, we puts forward10key exploration targets.
引文
[1]苏宗富.济阳坳陷古近系区域层序地层对比与岩性地层圈闭有利区带预测[D].北京:中国地质大学(北京),2006年05月.
    [2]王焕弟.岩性油气藏地球物理勘探技术与应用[D].北京:中国地质大学(北京),2005年04月.
    [3]倪根生.致密气藏的储层特征与流体识别[D].成都:成都理工大学,2011年06月.
    [4]邹才能,张颖.油气勘探开发实用地震新技术[M].北京:石油工业出版社,2002.
    [5]代双和,陈志刚,于京波,等.多子波分解与重构技术在阿尔及利亚TKT NGS油田储层描述中的应用[J].石油地球物理勘探,2011,46(1):103-109.
    [6]陈海清,范金源,贺保卫,等.地震资料解释新技术在柴达木岩性勘探中的应用[J].石油地球物理勘探,2008,43(S1):78-85.
    [7] Biot M A. Theory of propagation of elastic waves in a fluid-saturated poroussolid:.Low-frequency range[J]. J Acoust Soc Am,1956,28(2):168-178.
    [8] Biot M A. Theory of propagation of elastic waves in a fluid-saturated poroussolid:ò.High-frequency range[J]. J Acoust So Am,1956,28(2):179-191.
    [9] Biot M A. Mechanics of deformations and acoustic propagation in porous media[J]. J Appl Phy,1962,33(4):1482-1498.
    [10] Biot M A.Generalized theory of acoustic propagation in porous dissipative media[J]. J AcoustSoc Am,1962,34(9A):1254-1264.
    [11]程莉莉.蜀南地区HBC区块茅口组缝洞型储层描述技术研究[D].成都:成都理工大学,2009年04月.
    [12]张延庆,魏小东,王亚楠,等.谱分解技术在QL油田小断层识别与解释中的应用[J].石油地球物理勘探,2006,41(5):584-591.
    [13]纪学武,张延庆,臧殿光,等.四川盆地剑阁地区多层系储层叠前描述[J].中国石油勘探,2011,16(Z1):74-78.
    [14]刘永彬.麦盖提斜坡碳酸盐岩储层预测技术应用研究[D].北京:中国石油大学,2010年05月.
    [15]袁海锋,倪根生,邓小江.龙女寺构造须家河组天然气成藏主控因素[J].西南石油大学学报(自然科学版),2012,34(1):6-12.
    [16]翟光明.中国石油地质志:卷十,四川油气区[M].北京:石油工业出版社,1989.
    [17]高瑞祺,赵政璋.中国油气新区勘探:中国陆上天然气勘探新领域[M].北京:石油工业出版社,2001.
    [18]徐国盛,刘树根.四川盆地天然气成藏动力学[M].北京:地质出版社,2005.
    [19]方伍宝,朱海波,潘宏勋,等.基于地表直接偏移技术的山区复杂构造成像[J].勘探地球物理进展,2008,31(5):363-367.
    [20]王世谦,罗启后,伍大茂.四川盆地中西部上三叠统煤系地层烃源岩的有机岩石学特征[J].矿物岩石,1997,17(1):63-70.
    [21]唐大海,刘兴刚,赵正望,等.充西气田须四段气藏成藏条件研究[J].天然气勘探与开发,2006,29(4):9-13.
    [22]田波.长堤地区下第三系高分辨率层序地层学研究与隐蔽油藏预测[D].成都:成都理工大学,2004年04月.
    [23]王雪梅.四川盆地川中~川南过渡带构造沉积特征分析及须家河组成藏评价[D].成都:成都理工大学,2012年05月.
    [24]冉隆辉.论四川盆地天然气勘探前景[J].天然气工业,2006,26(12):42-45.
    [25]车国琼,龚昌明,汪楠,等.广安地区须家河组气藏成藏条件[J].天然气工业,2007,27(6):1-5.
    [26]唐立章,张贵生,张晓鹏,等.川西须家河组致密砂岩成藏主控因素[J].天然气工业,2004,24(9):5-7.
    [27]汪泽成,赵文智,张林,等.四川盆地构造层序与天然气勘探[M].北京:地质出版社,2002.
    [28]刘德良,宋岩,薛爱民,等.四川盆地构造与天然气聚集区带综合研究[M].北京:石油工业出版社,2000.
    [29]朱志军.川东南地区志留系小河坝组沉积体系及物质分布规律研究[D].成都:成都理工大学,2010年04月.
    [30]王涌泉.川东北礁滩气藏中固体沥青的地球化学研究[D].广州:广州地球化学研究所,2007年05月.
    [31]王东燕.地震约束波阻抗反演及应用研究[D].西安:长安大学,2006年06月.
    [32]邓康龄.四川盆地形成演化与油气勘探领域[J].天然气工业,1996,12(5):7-13.
    [33]余鸿年,卢华复.构造地质学原理[M].南京:南京大学出版社,1998.
    [34]刘善华.川中地区乐山~龙女寺古隆起奥陶系沉积、储层特征研究[D].成都:西南石油大学,2006年04月.
    [35]雍自权,刘庆松,李倩.川西前陆盆地的发展演化、地层充填及其对油气成藏的意义[J].天然气工业,2008,28(2):26-29.
    [36]尹宏.乐山~龙女寺古隆起区寒武系沉积相及储层特征研究[D].成都:西南石油大学,2007年04月.
    [37]李乐.川南地区三叠系嘉陵江组构造解析[D].成都:西南石油学院,2004年04月.
    [38]陈辉.川中地区上三叠统须家河组须二、四段砂岩储层研究[D].成都:西南石油大学,2006年04月.
    [39]徐怀大,王世凤,陈开远.地震地层学解释基础[M].武汉:中国地质大学出版社,1990.
    [40]王洪辉,陆正元.四川盆地上三叠统砂岩非构造裂缝储层[J].石油与天然气地质,1998,19(1):35-41.
    [41]王焕弟,李明,赵一民.有监督的人工神经网络油气预测[J].铀矿地质,2001,17(1):48-55,33.
    [42]周新桂,张林炎,范昆.含油气盆地低渗透储层构造裂缝定量预测方法和实例[J].天然气地球科学,2007,18(3):328-333.
    [43]单业华,葛维萍.储层天然裂缝形成机制的初步研究:以静北潜山油藏为例[J].石油实验地质,2001,23(4):457-463
    [44]魏野.碳酸盐岩薄储层气藏地震属性综合预测技术及应用研究[D].成都:成都理工大学,2004年06月.
    [45] Yanfang Zhang, Quanfeng Wang.The Study of micro-fractures identification based onMaximum Entropy Spectrum Decomposition[C]//14th Annual Conference of theInternational Association for Mathematical Geosciences. Budapest: IAMG,2010:356-359.
    [46]张艳芳,王权锋.谱分解技术在阿曼Daleel油田微断裂检测中的应用[C]//第二届中国油气藏开发地质学术研讨会暨博士生论坛论文摘要集.中国石油学会石油地质专业委员会,2010:128.
    [47]周仲礼,张艳芳,王权锋.基于最大熵谱分解的微断裂识别技术[J].天然气工业,2010,30(6):42-44.
    [48]韩翀,纪学武,尹晓贺.曲率体属性在碳酸盐岩生物礁储层解释中的应用[J].石油天然气学报,2010,32(4):243-246,431.
    [49]杨午阳,邓央,徐云泽,等.基于小波变换的曲率属性提取和重构方法[J].天然气工业,2007,27(5):55-57,151.
    [50]周文.裂缝性油气储集层评价方法[M].成都:四川科技出版社,1998.
    [51]程昭斌,李毓琼.豫西登封煤田小紫泥岩的成因及环境意义[J].河南地质,1991,9(2):21-27,81.
    [52]郭海洋,巫芙蓉,刘树根,等.地震沉积学在GA地区的初步应用[J].物探化探计算技术,2008,30(5):399-402.
    [53]翟文亮.川中地区上三叠统须家河组层序格架内储层特征[D].成都:成都理工大学,2009年04月.
    [54]申艳,谢继容,唐大海.四川盆地中西部上三叠统须家河组成岩相划分及展布[J].天然气勘探与开发,2006,29(3):21-25.
    [55]侯方浩,蒋裕强,方少仙,等.四川盆地上三叠统香溪组二段和四段砂岩沉积模式[J].石油学报,2005,26(2):30-37.
    [56]李维峰,彭德堂,高振中,等.塔里木盆地库车坳陷三叠系辫状河三角洲沉积[J].江汉石油学院学报,1995,17(1):25-29.
    [57]蒋裕强,郭贵安,陈辉,等.川中地区上三叠统须家河组二段和四段砂岩优质储层成因探讨[J].油气地质与采收率,2007,14(1):18-22.
    [58]罗启后,王世谦.四川盆地中西部三叠系重点含气层系天然气富集条件研究[J].天然气工业,1996,16(增刊):40-54.
    [59]张志杰,李伟,杨家静,等.川中广安地区上三叠统须家河组岩相组合与沉积特征[J].地学前缘,2009,16(1):296-305.
    [60]吴因业,顾家裕.油气层序地层学[M].北京:石油工业出版社,2002.
    [61]王权锋,张艳芳.川中广安地区须家河组二段储气层预测研究[J].天然气工业,2012,32(10):38-41.
    [62]孙红杰.川中地区上三叠统须家河组二、四段储层特征研究[D].成都:成都理工大学,2007年04月.
    [63]吴胜和,熊琦华.油气储层地质学[M].北京:石油工业出版社,1998.
    [64]万明浩.岩石物理性质及其在石油勘探中的应用[M].北京:地质出版社,1994.
    [65]陈颙,黄庭芳.岩石物理学[M].北京:北京大学出版社,2001.
    [66]李耀华,师晓蓉,杨西南.川中—川西地区上三叠统储集条件研究[J].天然气勘探与开发,2003,26(3):1-6.
    [67]库丽曼·木沙太.川中地区上三叠统须家河组四段气藏成藏机理研究[D].成都:成都理工大学,2007年10月.
    [68]李延丽,苟迎春,张静.测井精细解释在含气储层预测中的应用[J].天然气地球科学,2008,19(6):870-875.
    [69]欧阳健.石油测井解释与储层描述[M].北京:石油工业出版社,1994.
    [70]唐湘蓉.地震测井联合反演方法研究及应用[D].成都:成都理工大学,2005年05月.
    [71]傅长生.储层预测技术研究新进展[M].北京:石油工业出版社,1998.
    [72]赵政璋,何志新,阎世信,等.储层预测技术及应用实例[M].石油工业出版社,2000.
    [73]李正文.沉积盆地有效储集层综合识别技术[M].成都:四川科学技术出版社,2002.
    [74]雍世和,张超谟.测井数据处理与综合解释[M].石油大学出版社,2002.
    [75]牟永光.储层地球物理学[M].北京:石油工业出版社,1996.
    [76]黄德济.地震勘探资料数字处理[M].北京:地质出版社,1990.
    [77]姚姚.地震勘探新技术与新方法[M].武汉:中国地质大学出版社,1991.
    [78]陆基孟.地震勘探原理[M].北京:石油大学出版社,1993.
    [79]李录明,李正文.地震勘探原理、方法和解释[M].北京:地质出版社,2007.
    [80]李庆忠.论地震约束反演的策略[M].石油地球物理勘探,1998,33(4):423-438.
    [81]戈革.地震波动力学基础[M].北京:石油工业出版社,1980.
    [82]冯德益.地震波理论与应用[M].北京:地震出版社,1988.
    [83]何樵登.地震波理论[M].北京:地质出版社,1988.
    [84]贺振华.反射地震资料偏移处理与反演方法[M].重庆:重庆大学出版社,1989.
    [85]贺振华,何樵登.多波资料综合解释方法的若干进展[J].岩石矿物,1997,17(4):76-93.
    [86]李正文,胡光岷.地震数据多参数约束反演及应用[J].石油地球物理勘探,1994,29(5):581-587.
    [87]杨文采.地球物理反演的理论与方法[M].北京:地质出版社,1997.
    [88]王家映.地球物理反演理论[M].武汉:中国地质大学出版社,1998.
    [89]王明艳.查干凹陷火山岩储层特征与分布预测[D].北京:中国地质大学,2006年05月.
    [90]王建,刘玉瑞,朱忠宽.应用正反演组合技术预测碳酸盐岩储层[J].石油地球物理勘探,2002,37(5):506-510.
    [91]刘文岭,牛彦良,李刚,等.多信息储层预测地震属性提取与有效性分析方法[J].石油物探,2002,41(1):100-106.
    [92]王延光.储层地震反演方法及应用的关键问题与对策[J].石油物探,2002,41(3):299-303.
    [93]张永刚.地震波阻抗反演技术的现状和发展[J].石油物探,2002,41(4):386-389.
    [94]黄绪德.油气预测与油气藏描述—地震勘探直接找油气[M].南京:江苏科学技术出版社,2003.
    [95]孟召平.应用地震波速度预测煤、岩体物理力学参数方法[D].北京:中国矿业大学,2008年07月.
    [96]周仲礼,张艳芳,冯赵剑,等.地震反演技术在生物礁(滩)储层预测中的应用[J].天然气工业,2008,28(12):34-36.
    [97]王权锋,周仲礼,张艳芳,等.天然气储层综合预测技术在锦州27区的应用[J].天然气工业,2008,28(8):46-48.
    [98]王权锋,王元君,李晶,等.锦州27区多井约束地震反演及储层预测[J].西南石油大学学报,2008,30(2):23-26.
    [99]王权锋,王元君.宽带约束地震反演在兰尕地区储层预测中的应用[J].成都理工大学学报(自然科学版),2008,35(1):48-51.
    [100]王权锋,王元君,郭科,等.多井约束地震反演技术在储层预测中的应用[J].新疆石油地质,2008,29(3):367-369.
    [101]王权锋,郭科.约束稀疏脉冲反演在储层预测中的应用[J].测井技术,2008,32(1):33-36.
    [102]郭朝斌,杨小波,陈红岳,等.约束稀疏脉冲反演在储层预测中的应用[J].石油物探,2006,45(4):397-400.
    [103]孙思敏,彭仕宓.地质统计学反演及其在吉林扶余油田储层预测中的应用[J].西安石油大学学报,2007,22(1):41-44.
    [104]赵腾飞.徐家围子深层火山岩气藏反演研究[D].大庆:大庆石油学院,2009年03月.
    [105] Gassmann F. Elastic waves through a packing of spheres[J]. Geophysics,1951,16:673-685.
    [106] Kuster,G.T.and Toksoz M.N. Velocity and Attenuation of seismic waves in two-phase media:Part I theoretical formulations[J]. Geophysics,1974,39:587-606.
    [107] Xu S.White RE. A new velocity model for clay-sand mixtures[J]. Geophysical Prospecting,1995.43:91-118.
    [108] Xu S. WhiteRE. A physics model for shear-wave velocity prediction[J]. GeophysicalProspecting,1996,44:687-717.
    [109]杜焰.弹性波阻抗反演方法研究进展[J].内蒙古石油化工,2008年第14期:6-8.
    [110]张艳芳,王权锋.基于Zoeppritz方程的礁-滩相流体检测技术研究[J].石油天然气学报,2008,30(6):261-264.
    [111]张艳芳,王权锋,周仲礼. AVO叠前反演技术在生物礁储层油气检测中的应用[J].天然气工业,2010,30(12):33-36.
    [112]王权锋,贺振华,黄德济,等.多种Zoeppritz方程能量分配的一致性[C]//勘探地球物理学进展文集.北京:石油工业出版社,2008:272-276.
    [113] Li Zishun. Physical mechanism of seismic attenuation in a two-phase medium[J]. AppliedGeophysics,2008,5(1):9-17.
    [114] Bordakov G A, Ilyasov K K, Sekerzh-zenkovitch S Y and Mikolaevski E Y. Wave refractionwith a porous plate in liquid-Comparison of Biots and BISQ theories[C]//ExpandedAbstracts of61st EAGE Internet Mtg, EAGE,1999,2-3.
    [115] Dvorkin J,Nolen-Hoeksema R and Nur A.The squirt-flow mechanicsm:macroscopicdescryiption[J]. Geophysics,1994,59(3):428-438.
    [116] Arntsen B M and Carcione J. Numerical simulation of the Biot slow wave in water-saturatedNivelsteiner sandstone[J]. Geophysics,2001,66(3):890-896.
    [117] Dai N, Vafidis A and Kanasewich E R. Wave propa-gation in heterogeneous, porous media:A velocity-stress, finite-difference method[J]. Geophysics,1995,60(2):327-339.
    [118]李亚林,贺振华.岩石孔隙流体对纵横波速度影响的实验研究及意义[J].矿物岩石,1998,(增刊):188-191.
    [119] Amos Nur.双相介质中波的传播[M].许云,译.北京:石油工业出版社,1986.
    [120] Plona T J. Observation of a second bulk compression-al wave in a porous medium atultrasonic frequencies[J]. Appl Phys Lett,1980,36(4):259-261.
    [121] Nagy P B, Adler L and Bonner B P. Slow wave propa-gation in air-filled porous materialsand natural rocks[J]. Appl Phys Lett,1990,56(25):2504-2506.
    [122] Boyle F A and Chotiros H P. Experimental detection of a slow acoustic wave in sediment atshallow grazing angles[J]. J Acoust Soc Am,1991,89(4B):1982-1982.
    [123] Walsh J B. Seismic waves attenuation in rock due to friction[J]. JGR,1966,71(10):2591-2599.
    [124] Johnston D H and Toksoz M N. Attenuation of seis-mic wave in dry and saturated rocks:ò.Mecha-nisms[J]. Geophysics,1979,44(4):691-711.
    [125]杨占龙,沙雪梅,李在光.含油气检测技术及其在岩性圈闭油气藏勘探中的应用[J].天然气地球科学,2010,21(5):822-827,874.
    [126]李在光,杨占龙,李红哲,等.吐哈盆地胜北地区含油气性检测[J].天然气地球科学,2006,17(4):532-537.
    [127]郭耀华,谢昕.地震油气检测技术在宁东油田的应用[J].石油天然气学报,2008,30(1):66-70.
    [128]王允诚,朱永铭.川西拗陷上三叠统须家河组的天然气成藏模式和盖层封闭机理[J].成都地质学院学报,1991,18(4):92-105.
    [129]姜均伟.川中上三叠统香溪群岩性气藏形成条件与聚集规律研究[D].北京:中国地质大学,2006年05月.
    [130]杨晓萍,邹才能,李伟.四川盆地中部上三叠统香溪群岩性油气藏圈闭类型及其特征[J].中国石油勘探,2006,11(4):33-36.
    [131]裘亦楠,薛叔浩,等.油气储层评价技术[M].北京:石油工业出版社,1997.
    [132]王允诚.油气储层评价[M].北京:石油工业出版社,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700