用户名: 密码: 验证码:
子空间分析方法在地震勘探等信号处理中的初步应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
计算机技术的发展使得现代信号处理技术同样得到了快速的发展;由于信号的特点和采集仪器的限制,采集得到的信号几乎都是时空域的数据,尽管在时空域对信号有非常直观的解释,但其处理手段有限;鉴于此,现代信号处理技术往往是将信号作某种形式的变换,以便于将信号从时空域变换到其他特定的子空间域内。在所有的信号变换中,傅立叶变换几乎可以说是现代信号处理的基础,其他的变换技术方法要么来源于傅立叶变换的扩展形式,要么或多或少有些联系。
     从数学的角度来看,信号变换可以统一的视为信号(函数)与变换函数(我们统一称为基函数)之间的内积运算,这种内积运算等价于将信号从原始的样本空间投影(变换)到另一个特征子空间中,例如频域子空间或者核函数子空间,以便在这个特征子空间中能检测到信号在原样本空间中无法体现的模式,可以简言之―换一个角度看问题,可以更容易发现事物的本质‖;这就是本文选题的根本目的,子空间方法可以分为线性子空间方法和非线性子空间方法,线性子空间方法以某种正交变换为基础,其变换函数通常是某种正交基函数,鉴于此原因,线性子空间具有等维变换或降维变换的效果;而非线性子空间方法则是主要以核函数为主的与线性子空间方法对应的技术方法,这些非线性变换通常具有升维的效果,将数据从低维的样本空间经过非线性投影到一个更高维的核子空间,使数据变稀疏或者体现线性模式,以便在核子空间中使用业已成熟的线性技术对数据进行处理。
     总体来说,本论文以子空间相关方法为主导,探索多种子空间方法在地球物理信号处理中的应用,分别从主成分分析,三维主成分分析,核主成分分析,独立成分分析,支持向量机等方面将这些子空间技术应用到地球物理信号的处理、解释等方面,本文的主要创新点和成果体现在以下几个方面:
     (1)提出了一种将2D-PCA用于提高地球物理信号剖面的信噪比的方法。在2D-PCA中,地震剖面矩阵经特征分解之后得到特征值和特征图像,将特征值从大到小排序并对特征图像做同样的操作,这些特征图像被称为主成分,它们具有相互正交且方差依次减小的性质,分别代表地震剖面中的某些能量成分。通过选择不同的主成分组合来重构数据,对随机噪声、相干噪声和工业单频噪声的祛除分别进行实验,均获得了较好的效果。
     (2)提出了一种基于3D-PCA融合RGB技术识别浊积扇的方法。用于处理地震切片,对特定层位上多个频率的地震切片,在保证结构信息不损失的情况下,将其从三维数据排列成二维并用PCA方法进行变换分解,得到特征切片,再将特定的特征切片映射到RGB颜色子空间。该方法用于对古河道的识别和预测,查明河道砂体的展布规律,得到了比较满意的结果,为后期的布井钻探提供相应的依据。
     (3)提出了一种基于KPCA处理地震剖面非线性同向轴的方法。由于PCA技术实质上是一种线性变换,对于数据中的非线性特征提取效果较差;而地震剖面数据中往往存在非线性的同相轴,因此使用这种基于核函数的KPCA非线性的技术,将数据变换到核子空间中再利用PCA进行分解重构。仿真实验表明,KPCA在重构非线性同向轴的地震数据上,效果较好,可适用于地质目标提取和波场分离等问题。
     (4)将独立成分分析技术用于子波提取,仿真实验结果表明该方法可行,为数据精细解释提出一个新的思路。
     (5)将非线性支持向量机用于油气预测,通过对某工区碳酸盐岩储层数据进行模型训练和检验,实验结果令人满意,与其他预测技术比较,可作为油气预测技术的重要补充。
One has observed the rapid development of modern signal processing withprogress of computer technology. Signals are with the distribution in time-spacedomain thanks to limitation of instrument. There is an intuitive interpretation of signalin time-space domain, but its processing methods are limited. So, we often transformthe signal from time-space domain to the specific sub-space domain using somemethods from modern signal processing field. Fourier transform may be said as thebasis of modern signal processing because other transform methods are either linkedwith or derived from the Fourier transform.
     From a mathematical point of view, the signal transform may be unified as theinner product between a signal (function) and the transformation function (referred toas the base function). In fact, for obtaining the detection of signal pattern in featuresubspace other than original space, this inner product is to transform the signal fromthe original space to feature subspace such as frequency subspace, kernel functionsubspace, etc. In short, it is easier to find the intrinsic feature of things from anotherangle of view. It is also the reason selecting the transform subspace as the topic of thisthesis. Subspace method may be general classified as linear subspace and nonlinearsubspace, which linear subspace uses the orthogonal basis as the transform function toachieve the destination of dimension reduction when kernel function of nonlinearsubspace is applied to arrive at the object of dimension increase. Specifically, data aretransformed from sample space with low dimensions to kernel subspace with higherdimensions by a nonlinear function to obtain sparse or linear separation.
     On the whole, this paper presents the study of many kinds of subspace methodsin the application of geophysical signal processing or geophysical interpretation, forexample, principal component analysis (PCA), three-dimensional principalcomponent analysis (3D-PCA), independent component analysis (ICA), supportvector machine(SVM), and so on. In detail, the main research contents are concluded as follows.
     (1) To improve the signal-to-noise ratio of the geophysical signal, this thesispresents a two-dimensional principal component analysis method (2D-PCA) whichcan obtain features of seismic section matrix with corresponding feature vectors bysingular value decomposition (SVD), then these feature vectors with higher featurevalues are reconstructed for decreasing the effect of noise. The experiments oneliminating rand noise, random noise, coherent noise and industrial noise withsingle-frequency show that the2D-PCA method is a good denoising tool.
     (2) This thesis proposes a feature extraction method based on3D-PCA andcombines it with RGB to identify turbidite fan from seismic sections. Moreover, themethod proposed may be applied to the recognition or the prediction of the ancientriver and the distribution of sand body. Firstly, seismic slices with multiple frequencyin the specific layer are transformed to feature space on the condition of without lossof structure information; then, these feature slices are mapped to RGB color subspace;finally, the recognition information of seismic section may be obtained by combining3D-PCA and RGB subspace. The experiments in seismic section provide thecorresponding foundation for process seismic sections for the well drilling.
     (3) The thesis shows a recognition method of event based on kernel PCA(KCPA). The linear PCA only can utilize first-order and second-order information ofdata. However, as a kind of high-order statistical tool, the KPCA can obtain nonlinearinformation. In general, there exist the nonlinear events in seismic section, so theKPCA method proposed may be applied to the geological targets extraction andseparation of wave field. The experiments show that the PCA method is with theexcellent performance.
     (4) A wavelet extraction method based on ICA is presented. Simulation results show thatthe proposed method in the thesis is feasible. It is a novel way to the fine interpretation of data.
     (5) A hydrocarbon prediction method based on nonlinear SVM is also shown inthis thesis. The experimental results are satisfactory when the proposed method isapplied to the carbonate reservoir data in the special exploration area. So, theprediction method proposed may be said as an alternative of the oil and gasforecasting.
引文
[1] A Hyvarinen. Survey on independent component analysis[J]. Neunral ComputingSurveys,1999,2:94—128.
    [2] A Hyvarlnen,E Oja.Independent component analysis:Algorithm and application[J].NeunralNetwork,2OOO,13:41l一430.
    [3] Amari S.Cichocki A Adaptive blind signal processing-neural network appoaches1998(10)
    [4] Amari S.Cichocki A.Yang H H A new learning algorithm for blind signal separation1996
    [5] Bell A J.sejnowski T J an Information-maximization approach to blind separation and blinddeconvolution1995(6)
    [6] Boser B E,Guyon I M,Vapnik V N.A training algorithm for optimal margin classifiers.InHaussler D,editor.Proceedings of the5th Annual ACM Workshop on ComputationalLearning Theory[C]. Pittsburgh: ACM Press,1992.144-152.
    [7] Boyer C,Merzbach U.A History of Mathematics.2nd ed.New York: John Wiley&Sons;1989.
    [8] Cao X R.Liu R General approach to blind source separation1996(3)
    [9] Cardoso J F Informax and maximum likehood for blind source separation1997(4)
    [10] Cardoso J F.Labeld B H Equivariant adaptive source separation1996(12)
    [11] Cichocki A.Amari S Adaptive Blind Signal and Image Processing: Learning Algorithms andApplications2002
    [12] Common P. Independent component analysis,a new concept1994
    [13] Common P.Jutten C.Herault J Blind separation of sources,Part Ⅱ:Problems statement1991(1)
    [14] Cortes C, Vapnik V N.Support vector networks.Machine Learning [J].1995,20:273-297.
    [15] De Lauro E, De Martino S, Falanga M, and Palo M. Decomposition of high-frequencyseismic wavefield of the Strombolian-like explosions at Erebus volcano by indepdentcomponent analysis [J]. Geophys. J. Int.,2009,177(3):1399-1406.
    [16] Laust B.Pedersen.Determination of the regularization level of truncated singular-valuedecomposition inversion: The case of1D inversion of MT data.Geophysical Prospecting,2004,52,261–270
    [17] Dragoset W H, and Jericevic Z. Surface multiple attenuation via eigenvalue decomposition.United States Patent5587965,1996.
    [18] E. Beltrami.Sulle Funzioni Bilineari.Giornale di Matematiche uduso Degli Studenti DelleUniversita,11,98-106.1873
    [19] FISHER R A.The use of multiple measurements in taxonomic problems.AnnalsEugen,1936,7179-188.
    [20] Freire S L M, and Ulrych T J. Application of singular value decomposition to vertical seismicprofiling [J]. Geophysics,1988,53(6):591~600.
    [21] G.H.Golub and W.Kahan.Calculating the Singular Values and Pseudoinverse of a Matrix,SIAM J.Numer.Anal., Ser.B2:205-224,1965.
    [22] G.W.Stewart.Perturbation Theory for the Singular Value Decomposition.1990, Sept.UMIACS-TR-90-124, CS-TR2539
    [23] Guo H, Marfurt K J,and Liu J L.Principal component spectral analysis[J].Geophysics,2009,74(4):P35-P43.
    [24] GUO Ke,GUO Si,HE Gno-zhu.A method of multiple blind separation based onICA.PROGRESS IN GEOPHYSICS[J],2010,25(3):1075~1080
    [25] Haykin S Unsupervised Adaptive Filtering:Volume Ⅰ,Blind Source Separation First Edition2000
    [26] Haykin S Unsupervised Adaptive Filtering:Volume Ⅱ,Blind Deconvolution First Edition2000
    [27] Hemon M and Mace D. The use of Karhunen-Loeve transform in seismic data processing [J].Geophysical prospecting,1978,26:600~626.
    [28] HIGHLEYMAN W H.Linear decision functions, with application to pattern recognition.Proceedings of the IRE,1962,50(6):1501-1514.
    [29] HOTELLING, H.,1933. Analysis of a Complex of Statistical Variables into PrincipalComponents, Journal of Educational Psychology, volume24, pages417-441and498-520
    [30] Hyvarinen A, Karhunen J, Oja E.Independent Component Analysis[M].John Wiley&SonsInc..2001.
    [31] Hyvarinen A.Oja E A Fast Fixed-point Algorithm for Independent Component Analysis1997(7)
    [32] J.W.Demmel and W.Kahan.Accurate singular values of bidiagonal matrices, SIAMJ.Stat.Comp.:873-912,1990.
    [33] John Shawe-Taylor,Nello Cristianini.Kernel Method for Pattern Analysis[M].机械工业出版社.2005.1
    [34] Jolliffe I T.Principal component analysis (2nd edition)[M]. New York: Springer,2002
    [35] Jolliffe, I. T.Principal Component Analysis, Springer-Verlag. New York, USA,1986
    [36] Jordan C. Mémoire sur les formes bilinéires.J Math Pure Appl1874,19:35-54.
    [37] JUTTEN C, HERAULT J.Blind separation of source, parts I: An adaptive algorithm based onneuromimetic architecture. Signal Processing,1991,24(1):1-10.
    [38] Jutten C.Herault J Blind separation of sources, Part I: An adaptive algorithm based onneuromimet architecture1991(1)
    [39] Jutten C.Herault J Space or time adaptive signal processing by neural network models1986
    [40] Kaplan, S.T. and T.J.Ulrych.From eigenfaces to eigensections.Journal of Seismic Exploration10,353-366.2001-2002
    [41] Kaplan, S.T.Principal and independent component analysis for seismic data.Master’s thesis,University of British Columbia.2002
    [42] Karhunen J.Joutsensalo J Representation and separation of signals using nonlinear PCA typeleaning1994
    [43] Karhunen, Kari (1947)."über lineare Methoden in der Wahrscheinlichkeitsrechnung". Ann.Acad. Sci. Fennicae. Ser. A. I. Math.-Phys.37:1–79.
    [44] Kernschen G, and Golinval J-C.Non-linear generalization of principal component analysis:From a global to a local approach [J]. Journal of sound and vibration,2002,254(5):867-876.
    [45] L.Sirovich and M.Kirby.Low-dimensional procedure for the characterization of human faces.Journal of the Optical Society of America A.1987,4(3):519–524.
    [46] Lee T.Girolami M.sejnowski T Independent Component Analysis Using an ExtendedInformation Algorithm for Mixed SubGaussian and Super-Gaussian Sources1999(7)
    [47] Li Y; Yang B J; Bada J Chaotic system detection of weak seismic signals2009
    [48] Liu C Y, Xu S F. Research on the three-component noise attenuation through polarizationfiltering[J].Progress in Geophys.(in Chinese),2009,24(5):1814~1823.
    [49] Liu Y, Fomel Sergey, Liu C, et al. High-order seislet transform and its application of randomnoise attenuation. Chinese J. Geophys.(in Chinese),2009,52(8):2142~2151.
    [50] Lu W K, Luo Y, Zhao B. Adaptive multiple wave subtraction using indepdent componentanalysis [J]. Chinese J.Geophys.(in Chinese),2004,47(5):886~891.
    [51] Lu W.Adaptive noise attenuation of seismic image using singular value decomposition andtexture direction detection. ICIP2002,2002
    [52] M.Loeve.Probability Theory.Springer.1963
    [53] M.Turk and A.Pentland.Eigenfaces for recognition.Journal of Cognitive Neuroscience.1991,3(1):71–86.
    [54] Moghaddam, B., Pentland, A.irolami.A subspace method for maximum likelihood targetdetection.IEEE International Conference on Image Processing.1995(3):512~515
    [55] Müller K-R;Mika S;Ratsch G;Tsuda K Scholkopf B An introduction to kernel-based learningalgorithms2001
    [56] Nello Cristianini,John Shawe-Taylor.An Introduction to Support Vector Machines and otherkernel-based learning methods[M].机械工业出版社.2005.7
    [57] Oja E.Karhunen J.Wang L Principle and independent components in nernal netwoeks-Recentdevelopments1995
    [58] P.A.Businger and G.H.Golub.Algorithm358: singular value decomposition of acomplexmatrix, Comm.Assoc.Comp.Mach.12:564-565,1969.
    [59] Pearson K.On lines and planes of closest fit to systems of points in space.Philos Mag A1901,6:559–572.
    [60] Pearson,K.On Lines and Planes of Closest Fit to Systems of Points in Space.PhilosophicalMagazine.(1901)2(6):559–572.
    [61] Ready P J, and Wintz P A. Information extraction, SNR improvment, and data compressionin multispectral imagery[J].IEEE Trans. Communication,1973,10(21):1123~1130.
    [62] Richards, J.A.Remote Sensing Digital Image Analysis.Springer-Verlag.1993
    [63] Ristau J P; Wooil M Moon Adaptive filtering of random noise in2D geophysical data2001
    [64] Sadasivan P K; Dutt D N SVD based technique for noise reduction in electroencephalographic signals1996
    [65] Scholkopf B, Smola A and Muller K R. Nonlinear component analysis as a kernel eigenvalueproblem [J]. Neural computation,1998,10(5):1299~1319.
    [66] Scholkopf B, Mika S, Burges C J C, ET al.Input space versus feature space in kernel basedmethods.IEEE Trans.Neural Network.1999,10(5):1000-1016
    [67] Scholkopf B,Smola A,Muller K R. Kernel principal component analysis.Advances in KernelMethods,Support Vector Learning,1999,327-352.
    [68] Scholkopf B, Smola A, Muller K. Nonlinear component analysis as a kernel eigenvalueproblem.Neural Networks,1998,10(5):1299-1319.
    [69] Scholkopf B; Smola A J; Müiler K-R Nonlinear component analysis as a kernel eigenvalueproblem [J]1998
    [70] Sorouchyari E Blind separation of sources,Part Ⅲ:Stability analysis1991
    [71] Stewart GW.On the early history of the singular value decomposition.SIAM Rev1993,35:551-566.
    [72] Stewart R.Trickett.F-x-y eigenimage noise suppression.Geophysics,2003,68(2):751~759
    [73] Stordrange L;Libnau F O;Malthe-Sorenssen D;Kvalheim O M Feasibility study of NIR forsurveillanceof a pharmaceutical process,including a study of different preprocessingtechniques2002
    [74] Tong L.Liu R.Soon V Indeterminacy and identifiability of blind identification1991(5)
    [75] Trickett S R. F-xy eigenimage noise suppression [J]. Geophysics,2003,68(2):751~759.
    [76] V.Fernando and B.N.Parlett.Accurate singular values and differential qd algorithms, Numer.Math.,67:191-229,1994.
    [77] Wang J F, Li Y, Wang J B,et al.Stochastic noise suppression method based on hiddenMarkov model smoothing estimate[J].Progress in Geophys.(in Chinese),2009,24(5):1861~1867.
    [78] Wang Y Quantifying the effectiveness of stabilized inverse Q filtering [J]2003(1)
    [79] Wu X P, Li X H, Feng H Q. Removel of power line interference based on blind sourceseparation [J]. Signal processing,2003,19(1):81~84.
    [80] Xu Q S; Liang Y Z Monte Carlo cross validation2001
    [81] Xuewei Liu. Ground roll supression using the Karhunen-Loeve transform [J]. Geophysics,1999,64(2):564~566.
    [82] Yang M Q,Ahuja N,Kriegman D.Face recognition using kernel eigenfaces,Proc.ICIP,2001,1:37-40
    [83] Zhang Z J; Lin Y H; Liu E R Large static correction using a hybrid optimization method incomplex terrain: some experience learnt from China2005(04)
    [84] ZHANG Zhi, LI Fei, HUANG Zhi-fang, ZHANG Fu-ming.Study on character of geophonearray in seismic exploration. Progress in Geophysi [J],2009,24(6):2117~2121
    [85] Zhu W X, Zhang C X, Qiu T C, et al. The seismic signal technology with variable velocityFK filtering-the auto-adapted polarization filtering [J].Progress in Geophys.(in Chinese),2009,24(5):1776~1786.
    [86] Cichoeki S A.吴正国自适应盲信号与图象处理2005
    [87] Hyvarinen A;Karhunen J;Oja E著;周宗潭,董国华,徐昕独立成分分析2007
    [88] Vladimir N Vapnik著.张学工译.统计学习理论的本质[M].北京:清华大学出版社,2000
    [89]丛瑜;肖怀铁;付强基于核主分量分析的高分辨雷达目标特征提取与识别[J]-电光与控制2008(02)
    [90]崔若飞;王辉多项式拟合技术在煤田地震勘探中的应用[J]-地球物理学进展2000(02)
    [91]崔晓杰.维纳滤波的应用研究2006
    [92]丁晓琪,张哨楠.层序地层学在河流相地层研究中的应用[J].西安石油大学学报:自然科学版,2010,25(4):1-5
    [93]董恩清;刘贵忠;张宗平自适应Kalman滤波反褶积的快速实现方法[J]-地球物理学报2001(02)
    [94]董立生.深层浊积砂砾岩体地球物理预测技术研究[J].西南石油大学学报:自然科学版,2010,32(1):52-56.
    [95]范羚.独立分量分析及其在图像特征提取和消噪中的应用2003
    [96]郭科,郭思,何国柱等.基于独立分量分析的多次波盲分离方法研究.地球物理学进展[J],2010,25(3):1075~1080
    [97]韩喜,高兴友,车廷信等.利用地震属性沿层分析方法研究河流相沉积环境[J].石油地球物理勘探,2007,42(1):120-124.
    [98]何国辉,甘俊英.基于核主元分析和支持向量机的人脸识别.计算机工程与设计,2005,26(5):1190一1193.
    [99]胡天跃地震资料叠前去噪技术的现状与未来[J]-地球物理学进展2002(02)
    [100]胡作维,黄思静等.储层砂岩波阻抗及拉梅常数实验研究[J].地球科学与环境学报,2006,28(4):54-57.
    [101]黄国宏,邵惠鹤.核主元分析及其在人脸识别中的应用.计算机工程.2004,30(13):13-14
    [102]姜晓东.主成分分析法在纳米KF/Al2O3催化剂制备中的应用2007
    [103]乐友喜,袁全社.支持向量机方法在储层预测中的应用[J].石油物探.2005,44(4):388~392
    [104]李鲲鹏,刘业新,李衍达等.小波变换的过零点特性与地震勘探信号的信噪比和分辨率.地球物理学报,1997,40(4):561~569
    [105]李庆忠.走向精确勘探的道路[M].北京:石油工业出版社,1994
    [106]刘春园,徐胜峰.极化滤波在三分量噪声衰减中的应用研究[J].地球物理学进展.2009,24(5):1814~1823.
    [107]刘沈衡维纳滤波法在重力资料解释中的应用.1995(01)
    [108]刘伟,贺振华,陈学华.地震多属性在浊积扇河道砂体识别中的应用[J].西安石油大学学报(自然科学版).2011.9
    [109]刘喜武,刘洪,郑天愉.用独立分量分析方法实现地震转换波与多次反射波分离.防灾减灾工程学报,2003,23(1):11--19
    [110]刘洋, Fomel Sergey,刘财等.高阶seislet变换及其在随机噪声消除中的应用.地球物理学报,2009,52(8):2142~2151.
    [111]陆基孟.地震勘探原理[M].石油大学出版社.1993.
    [112]陆文凯,李衍达.SVD分解提高地震资料的分辨率.石油地球物理勘探,1998,33(增刊):145~149
    [113]陆文凯,李衍达.SVD任意道间距内插.石油地球物理勘探,1997,32(4):582~588
    [114]陆文凯,骆毅,赵波,钱忠平.基于独立分量分析的多次波自适应相减技术.地球物理学报[J].2004,47(5):886-891
    [115]陆文凯,牟永光.一种改进的SVD滤波器.石油地球物理勘探,1996,31(5):736~741
    [116]马建仓.牛奕龙.陈海洋盲信号处理2006
    [117]史习智.盲信号处理--理论与实践2008
    [118]王金芳,李月,王金宝等.基于隐马尔可夫模型平滑估计的随机噪声压制方法[J].地球物理学进展.2009,24(5):1861~1867.
    [119]王世瑞,王树平等.基于地震属性特征的河道砂体预测方法[J].石油地球物理勘探,2009,44(3):304-313.
    [120]吴小培,李晓辉,马焕清等.基于盲源分离方法的工频干扰消除[J].信号处理,2003,19(1):81~84.
    [121]肖辞源等.综合多种地震信息预测油气富集区的模糊数学方法[J].石油地球物理勘探.1990.2
    [122]许建华,张学工,李衍达.应用核Fisher判别技术预测油气储集层[J].石油地球物理勘探.2002,37(2):170~174
    [123]杨福生.洪波独立分量分析的原理与应用2006
    [124]俞寿朋.高分辨率地震勘探[M].石油工业出版社.1994.
    [125]俞寿朋等.频率加强滤波.石油地球物理勘探,l984,l9(3):200~2O9
    [126]张贤达.矩阵分析与应用[M].清华大学出版社.2004.
    [127]张学工.关于统计学习理论与支持向量机.[J]自动化学报.2000,26(1):32~44
    [128]张智,李飞,黄志芳,张富明.地震勘探中检波器组合特性研究.地球物理学进展[J],2009,24(6):2117~2121
    [129]章珂,李衍达,刘贵忠等.多分辨率地震信号反褶积.地球物理学报,1999,42(4):529~535
    [130]赵澄林,朱筱敏.沉积岩石学[M].北京:石油工业出版社,2001:311-312.
    [132]朱卫星,张春晓,邱铁成等.微地震信号的变速FK滤波-自适应极化滤波方法[J].地球物理学进展,2009,24(5):1776~1786.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700