用户名: 密码: 验证码:
大兴安岭南段拜仁达坝—维拉斯托银多金属矿床成矿作用及动力学背景
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大兴安岭南段位于中亚造山带的东段,是古亚洲洋、蒙古-鄂霍茨克洋和古太平洋构造-成矿域的叠加部位,这种特殊的构造位置及其富含丰富的有色金属矿产资源,格外引起中外地质学家的关注。自新中国成立以来,对大兴安岭南段成矿带的研究已积累了丰硕的成果。尽管如此,随着研究的不断深入,一系列问题日显突出,而深入解剖其中的大型-超大型矿床,并在此基础上与区域内的其余矿床相结合是研究的关键。在上述背景下,本文选取大兴安岭南段拜仁达坝-维拉斯托Ag-Pb-Zn-Cu多金属矿床为研究对象,开展典型矿床解剖,结合区域成矿特征对比,获得的认识主要有以下几点:
     1)尽管在流体包裹体类型及矿质沉淀机制上略显差异,但在矿区地质、矿石结构构造、矿化分带、成矿流体特征、成矿年代和矿床地球化学特征等方面,拜仁达坝和维拉斯托两矿床均表现出相似的特征。上述特征表明,拜仁达坝和维拉斯托矿床为与早白垩世岩浆活动有关的岩浆热液脉型矿床,是同一岩浆热液活动在不同空间位置运移、沉淀和富集的产物。
     2)大兴安岭南段的矿床可大致归类成五个矿床成矿系列,即二叠纪与喷流沉积有关的铅锌矿床成矿系列、三叠纪与岩浆活动有关的Mo-Cu-Pb-Zn-Ag成矿系列、早侏罗世与岩浆活动有关的Ag-Pb-Zn成矿系列、晚侏罗世与岩浆活动有关的Cu-Mo-Pb-Zn-Ag成矿系列、早白垩世与岩浆活动有关的Sn-Fe-Cu-Mo-W-Ag-Pb-Zn-稀有稀土成矿系列。其中,早白垩世与岩浆活动有关的成矿系列可进一步划分为四个亚成矿系列,即与花岗闪长斑岩有关的Cu-Mo-Ag-Pb-Zn成矿系列、与深成侵入体有关的Ag-Pb-Zn-Cu成矿系列、与酸性岩浆活动有关的Sn-Fe-W-Cu-Ag-Pb-Zn成矿系列、与碱性花岗岩有关的稀有稀土矿床成矿系列。地质构造背景的差异及由此引起的岩浆岩的分带性是区域矿化分带的主要控制因素。
     3)中国东北及其邻区中生代成矿作用可分为五个期次:三叠纪(240-205Ma)、早-中侏罗世(190-165Ma)、晚侏罗世(155-145Ma)、早白垩世早期(140-120Ma)及早白垩世晚期(115-100Ma),是古亚洲洋闭合、蒙古-鄂霍茨克洋闭合及古太平洋俯冲共同作用的结果。尽管如此,各地质事件在中生代成岩成矿作用中的某一时期所起的作用差别较大。其中,240-205Ma对应于古亚洲洋闭合后的后造山伸展环境;190-165Ma的额尔古纳地区为蒙古-鄂霍茨克洋的俯冲环境,而兴蒙造山带的东部为古亚洲洋的俯冲环境;155-145Ma为蒙古-鄂霍茨克洋闭合后的后造山伸展环境;140-120Ma为蒙古-鄂霍茨克洋的闭合及古太平洋板块俯冲共同作用下的伸展环境;115-100Ma为由软流圈物质上涌引起的岩石圈伸展环境转换至由古亚洲洋俯冲引起的挤压环境。
Sitting in the eastern segment of the Central Asian Orogenic Belt, the southernGreat Xing’an Range (SGXR) is a tectonic superposition positon of Paleo-AsianOcean, Mongol-Okhotsk Ocean, and Paleo-Pacific Ocean. Because of this and its richin non-ferrous mineral resources, this region in particularly caught the attention ofChinese and foreign geologists. Fruitful results has been accumulated, since thefounding of New China, in the geological science of the southern Great Xing’anRange metallogenic belt. With the deepening of the studies, however, a range ofissues increasing prominent. Previous studies focused on single deposit, single type ofdeposit, and single metallogenic rich region have not solve the deeper thinking.Anatomy of the large and super-large deposits and combine with the remainingdeposits, however, is the study of the key in the area. In this context, theBairendaba-Weilasituo ore field in the SGXR is selectd for study with the aim atsummarizing the regional metallogenic regularity. This study obtained the follwingpoints of understanding:
     1) There are slightly differences on fluid inclusion type and mechanism ofmineralization between the Bairendaba and Weilasituo deposits, however, similarchatacteristics were exhibited on deposit geology, ore texture, mineralization zoning,ore-forming fluid characteristics, metallogenic chronology, and ore depositgeochemistry. The above phenomenons show that both of the Bairendba andWeilasituo deposits are magmatic–hydrothermal vein type, and they forming arerelated to the Early Crataceous magmatism. They are the products of the samemagmatic–hydrothermal fluid migrating, depositing, and enriching in differentspatial position.
     2) Five metallogenic series were identified in the SGXR, including Permianexhalative lead-zinc deposit series, Triassic magmatism related Mo-Cu-Pb-Zn-Agseries, Early Jurassic magmatism related Ag-Pb-Zn series, Late Jurassic magmatismrelated Cu-Mo-Pb-Zn-Ag series, and Early Cretaceous magmatism relatedSn-Fe-Cu-Mo-W-Ag-Pb-Zn-rare metals and rare earth metals series. For the last, itcan be subdived into four series further. There are the granodiorite porphyry relatedCu-Mo-Ag-Pb-Zn series, the plutonic intrusion related Ag-Pb-Zn-Cu series, the acidic magmatism related Sn-Fe-W-Cu-Ag-Pb-Zn series, and the alkaline granite related raremetals and rare earth metals series. The tectonic background differences and theresulting magma activity differences are the main controlling factors for the regionalmineralization zoning.
     3) Mesozoic mineralization in northeast China and its adjacent areas can bedivided into five pluses: Triassic (240-205Ma), Early-Middle Jurassic (190-165Ma),Late Jurassic Jurassic (155-145Ma), early stage of Early Cretaceous (140-120Ma),and late stage of Early Cretaceous (115-100Ma). They were formed under the jointactions of the closure of Paleo-Asian Ocean and Mongol-Okhotsk Ocean, and thesubduction of Paleo-Pacific Ocean. However, in a certain mineralization pluse, therole of these three events are varied. The Triassic (240-205Ma) magmatism andassociated mineralisation occurred during in a post-collisional tectonic settinginvolving the closure of the Paleo-Asian Ocean. The Early-Mid Jurassic (190-165Ma) events are related to the subduction of the Paleo-Pacific plate in the eastern Asiancontinental margin, whereas in the Erguna block, these are associated with the closureof the Mongol-Okhotsk Ocean. From155to120Ma, large-scale continentalextension is developed in NE China and surrounding regions. However, the LateJurassic magmatism and mineralization events in these areas are evolved in apost-orogenic extensional environment of the Mongol–Okhotsk Ocean subductionsystem. Whereas, the early stage of the Early Cretaceous events are the compositionaleffects of the closure of the Mongol-Okhotsk Ocean and the subduction of thePaleo-Pacific Ocean. The widespread extension ceased during the late phase of EarlyCretaceous (115-100Ma), following the rapid tectonic changes resulting from thePaleo-Pacific Oceanic plate reconfiguration.
引文
[1] Anders E., Grevesse N.,1989. Abundances of the elements: Meteoritic and solar. Geochimicaet Cosmochimica Acta.53(1):197-214.
    [2] Andersen T.,2002. Correction of common lead in U–Pb analyses that do not report204Pb.Chemical Geology.192(1):59-79.
    [3] Barnes H.L. Solubilities of ore minerals. In: Barnes HL, editor. Geochemistry ofhydrothermal ore deposits: Wiley;1979. p.404-460.
    [4] Barton P.B., Bethke P.M., Roedder E.,1977. Environment of ore deposition in the Creedemining district, San Juan Mountains, Colorado: Part III, Progress toward interpretation of thechemistry of the ore-forming fluid for the OH Vein. Economic Geology.72(1):1-24.
    [5] Bierlein F.P., Groves D.I., Cawood P.A.,2009. Metallogeny of accretionary orogens-Theconnection between lithospheric processes and metal endowment. Ore Geology Reviews.36(4):282-292.
    [6] Bodnar R.J.,1993. Revised equation and table for determining the freezing point depressionof H2O-NaCl solutions. Geochimica et Cosmochimica Acta;(United States).57(3):683-684.
    [7] Chen W.J., Liu J.M., Liu H.T., Sun X.G., Zhang R.B., Zhang Z.L., Tan F.,2011a.Geochronology and fliud inclusion study of the Jiguanshan porphyry Mo deposit, InnerMongolia. Acta Petrologica Sinica.26(5):1423-1436.
    [8] Chen W.T., Zhou M.F.,2012. Paragenesis, stable isotopes, and molybdenite Re-Os isotopeage of the Lala Iron-Copper Deposit, Southwest China. Econ Geol.107(3):459-480.
    [9] Chen Z.G., Zhang L.C., Wan B., Wu H.Y., Cleven N.,2011b. Geochronology andgeochemistry of the Wunugetushan porphyry Cu-Mo deposit in NE china, and theirgeological significance. Ore Geology Reviews.43:92-105.
    [10] Chu S.X., Liu J.M., Xu J.H., Wei H.,2012. Zircon U-Pb dating, petrogenesis and tectonicsignificance of the granodiorite in the Sankuanggou skarn Fe-Cu deposit, HeilongjiangProvince. Acta Petrologica Sinica.28(2):433-450.
    [11] Chu X.L., Huo W.G., Zhang X.,2001. Sulfur, Carbon and Lead Isotope Studies of the DajingPolymetallic Deposit in Linxi County, Inner Mongolia, China–Implication for MetallogenicElements from Hypomagmatic Source. Resource geology.51(4):333-344.
    [12] Clayton R.N., O'Neil J.R., Mayeda T.K.,1972. Oxygen isotope exchange between quartz andwater. Journal of geophysical research.77(17):3057-3067.
    [13] Cogné J.P., Kravchinsky V.A., Halim N., Hankard F.,2005. Late Jurassic-Early Cretaceousclosure of the Mongol-Okhotsk Ocean demonstrated by new Mesozoic palaeomagneticresults from the Trans-Ba kal area (SE Siberia). Geophysical Journal International.163(2):813-832.
    [14] Collins P.L.F.,1979. Gas hydrates in CO2-bearing fluid inclusions and the use of freezingdata for estimation of salinity. Economic Geology.74(6):1435-1444.
    [15] Cox D.P., Singer D.A. Mineral deposit models. Washington: US Government Printing Office;1986.
    [16] Craig H.,1961. Isotopic variations in meteoric waters. Science.133(3465):1702-1703.
    [17] Dai J.Z., Mao J.W., Zhao C.S., Xie G.Q., Yang F.Q., Wang Y.T.,2009. New U–Pb and Re–Osage data and the geodynamic setting of the Xiaojiayingzi Mo (Fe) deposit, western Liaoningprovince, Northeastern China. Ore Geology Reviews.35(2):235-244.
    [18] Davis D.W., Lowenstein T.K., Spencer R.J.,1990. Melting behavior of fluid inclusions inlaboratory-grown halite crystals in the systems NaCl-H2O, NaCl-KCl-H2O,NaCl-MgCl2-H2O, and NaCl-CaCl2-H2O. Geochimica et Cosmochimica Acta.54(3):591-601.
    [19] Deng J.F., Mo X.X., Zhao H.L., Wu Z.X., Luo Z.H., Su S.G.,2004. A new model for thedynamic evolution of Chinese lithosphere: continental roots-plume tectonics. Earth-ScienceReviews.65(3-4):223-275.
    [20] Diamond L.W.,1994. Salinity of multivolatile fluid inclusions determined from clathratehydrate stability. Geochimica et Cosmochimica Acta.58(1):19-41.
    [21] Dmitry V.M., Valery A.V., Alexey Y.K., Michael T.D.W.,2010. Late Mesozoic tectonics ofCentral Asia based on paleomagnetic evidence. Gondwana Research.18:400-419.
    [22] Doe B.R., Stacey J.S.,1974. The application of lead isotopes to the problems of ore genesisand ore prospect evaluation: a review. Economic Geology.69(6):757-776.
    [23] Fan W.M., Guo F., Wang Y.J., Lin G.,2003. Late Mesozoic calc-alkaline volcanism ofpost-orogenic extension in the northern Da Hinggan Mountains, northeastern China. Journalof volcanology and geothermal research.121(1-2):115-135.
    [24] Faure G.,潘曙兰,乔广生.同位素地质学原理.北京:科学出版社;1983.
    [25] Faure M., Natal'in B.,1992. The geodynamic evolution of the eastern Eurasian margin inMesozoic times. Tectonophysics.208(4):397-411.
    [26] Fouquet Y., Marcoux E.,1995. Lead isotope systematics in Pacific hydrothermal sulfidedeposits. Journal of geophysical research.100(B4):6025-6025.
    [27] Gao F.H., Xu W.L., Yang D.B., Pei F.P., Liu X.M., Hu Z.C.,2007. LA-ICP-MS zircon U-Pbdating from granitoids in southern basement of Songliao basin. Science in China Series D:Earth Sciences50(6):995-1004.
    [28] Gao S., Rudnick R.L., Carlson R.W., McDonough W.F., Liu Y.S.,2002. Re–Os evidence forreplacement of ancient mantle lithosphere beneath the North China craton. Earth andPlanetary Science Letters.198(3):307-322.
    [29] Ge W.C., Wu F.Y., Zhou C.Y., Zhang J.H.,2005. Zircon U-Pb ages and its significance of theMesozoic granites in the Wulanhaote region, central Da Hinggan Mountain. Acta PetrologicaSinica.21(3):749-762.
    [30] Ge W.C., Wu F.Y., Zhou C.Y., Zhang J.H.,2007. Porphyry Cu-Mo deposits in the easternXing’an-Mongolian Orogenic Belt: Mineralization ages and their geodynamic implications.Chinese Science Bulletin.52(24):3416-3427.
    [31] Goldfarb R.J., Groves D.I., Gardoll S.,2001. Orogenic gold and geologic time: a globalsynthesis. Ore Geology Reviews.18(1):1-75.
    [32] Graves M., MacInnis I.N., Zentilli M.,1988. The role of organic carbon in formation ofcarbonate carbon in the Meguma Group, southern Nova Scotia. Atlantic Geology.24:197.
    [33] Groves D.I., Bierlein F.P.,2007. Geodynamic settings of mineral deposit systems. Journal ofthe Geological Society.164(1):19-30.
    [34] Guo F., Fan W.M., Gao X.F., Li C.W., Miao L.C., Zhao L.A., Li H.X.,2010. Sr-Nd-Pbisotope mapping of Mesozoic igneous rocks in NE China Constraints on tectonic frameworkand Phanerozoic crustal growth. Lithos.120(3-4):563-578.
    [35] Guo F., Fan W.M., Li C.W., Gao X.F., Miao L.C.,2009. Early Cretaceous highly positive εNdfelsic volcanic rocks from the Hinggan Mountains, NE China: origin and implications forPhanerozoic crustal growth. International Journal of Earth Sciences.98(6):1395-1411.
    [36] Haest M., Schneider J., Cloquet C., Latruwe K., Vanhaecke F., Muchez P.,2010. Pb isotopicconstraints on the formation of the Dikulushi Cu–Pb–Zn–Ag mineralisation, KundelunguPlateau (Democratic Republic of Congo). Mineralium Deposita.45(4):393-410.
    [37] Han S.J., Sun J.G., Bai L.A., Xing S.W., Chai P., Zhang Y., Yang F., Men L.J., Li Y.X.,2012.Geology and ages of porphyry and medium-to high-sulphidation epithermal gold deposits ofthe continental margin of Northeast China. International GeologyReview.DOI:10.1080/00206814.00202012.00695472.
    [38] Harkins S.A., Appold M.S., Nelson B.K., Brewer A.M., Groves I.M.,2008. Lead isotopeconstraints on the origin of nonsulfide zinc and sulfide zinc-lead deposits in the flindersranges, South Australia. Economic Geology.103(2):353-364.
    [39] Hart C.J., Goldfarb R.J., Qiu Y., Snee L., Miller L.D., Miller M.L.,2002. Gold deposits of thenorthern margin of the North China craton: Multiple late Paleozoic-Mesozoic mineralizingevents. Mineralium Deposita.37(3):326-351.
    [40] Hart S.R.,1988. Heterogeneous mantle domains: signatures, genesis and mixingchronologies. Earth and Planetary Science Letters.90(3):273-296.
    [41] Hedenquist J.W., Arribas A.R., Gonzalez-Urien E.,2000. Exploration for epithermal golddeposits. Reviews in Economic Geology.13:245-277.
    [42] Hong D.W., Wang S.G., Xie X.L., Zhang J.S., Wang T.,2003. Metallogenic province derivedfrom mantle sources: Nd, Sr, S and Pb isotope evidence from the Central Asian Orogenic BeltGondwana Research.6(4):711-728.
    [43] Hu R.Z., Zhou M.F.,2012. Multiple Mesozoic mineralization events in South China-anintroduction to the thematic issue. Mineralium Deposita.47:579-588.
    [44] Huang J.L., Zhao D.P.,2006. High-resolution mantle tomography of China and surroundingregions. Journal of geophysical research.111(B9):B09305.
    [45] Ishihara D., Mizuta T., Ishikawa Y., Wang J.B., Wang Y.W., Wang L.J.,2001. Geochemicalcharacteristics of igneous rocks and tin-copper mineralization. Project Final Repost ofChinese Research Center for Mineral Resources Exploration.4-138.
    [46] Ishiyama D., Sato R., Mizuta T., Ishikawa Y., Wang J.B.,2001. Characteristic features oftin–iron–copper mineralization in the Anle-Huanggangliang mining area, Inner Mongolia,China. Resource geology.51(4):377-392.
    [47] Jahn B.M., Litvinovsky B.A., Zanvilevich A.N., Reichow M.,2009. Peralkaline granitoidmagmatism in the Mongolian–Transbaikalian Belt: Evolution, petrogenesis and tectonicsignificance. Lithos.113(3):521-539.
    [48] Jia Y., Li X., Kerrich R.,2001. Stable isotope (O, H, S, C, and N) systematics of quartz veinsystems in the turbidite-hosted Central and North Deborah gold deposits of the Bendigo goldfield, central Victoria, Australia: Constraints on the origin of ore-forming fluids. EconomicGeology.96(4):705-721.
    [49] Jiang G.Y., Quan H.,1988. Mesozoic volcanic rocks of Genhe and Hailar basins in DaHinggan Mountains. Journal of Shenyang Institute of Geology and Mineral source, ChineseAcademy of Geological Sciences.3:23-100.
    [50] Kesler S.E.,1997. Metallogenic evolution of convergent margins: selected ore depositmodels. Ore Geology Reviews.12(3):153-171.
    [51] Koděra P., Lexa J., Rankin A.H., Fallick A.E.,2005. Epithermal gold veins in a calderasetting: Banská Hodru a, Slovakia. Mineralium Deposita.39(8):921-943.
    [52] Kontak D.J., Kerrich R.,1997. An Isotopic (C, O, Sr) Study of Vein Gold Deposits in theMeguma Terran, Nova Scotia: Implication for source reserviors. Economic Geology.97(4):161-180.
    [53] Kr ner A., Cui W.Y., Wang S.Q., Wang C.Q., Nemchin A.A.,1998. Single zircon ages fromhigh-grade rocks of the Jianping Complex, Liaoning Province, NE China. Journal of AsianEarth Sciences.16(5-6):519-532.
    [54] Lü L.S., Mao J.W., Li H.B., Pirajno F., Zhang Z.H., Zhou Z.H.,2011. Pyrrhotite Re-Os andSHRIMP zircon U-Pb dating of the Hongqiling Ni-Cu sulfide deposits in Northeast China.Ore Geology Reviews.43(1):106-119.
    [55] Laznicka P. Giant metallic deposits: Future sources of industrial metals. Heidelberg: Springer;2010.
    [56] Leach D.L., Sangster D.F.,1993. Mississippi Valley-type lead-zinc deposits. Mineral DepositModeling: Geological Association of Canada, Special Paper.40:289-314.
    [57] Li J.W., Bi S.Y., Selby D., Chen L., Vasconcelos P., Thiede D., Zhou M.F., Zhao X.F., Li Z.K.,Qiu H.N.,2012. Giant Mesozoic gold provinces related to the destruction of the North Chinacraton. Earth and Planetary Science Letters.349-350:26-37.
    [58] Li S.Q., Chen F., Siebel W., Wu J.D., Zhu X.Y., Shan X.L., Sun X.M.,2012c. Late Mesozoictectonic evolution of the Songliao basin, NE China: Evidence from detrital zircon ages andSr-Nd isotopes. Gondwana Research.doi:10.1016/j.gr.2012.1004.1002.
    [59] Li X.H., Liu Y., Li Q.L., Guo C.H., Chamberlain K.R.,2009. Precise determination ofPhanerozoic zircon Pb/Pb age by multicollector SIMS without external standardization.Geochemistry Geophysics Geosystems.doi:10.1029/2009GC002400.
    [60] Liu C., Deng J.F., Kong W.Q., Xu L.Q., Zhao G.C., Luo Z.H., Li N.,2011a. LA-ICP-MSZircon U-Pb Geochronology of the Fine-grained Granite and Molybdenite Re-Os Dating inthe Wurinitu Molybdenum Deposit, Inner Mongolia, China. Acta Geologica Sinica-EnglishEdition.85(5):1057-1066.
    [61] Liu J.L., Bai X.D., Zhao S.J., Tran M.D., Zhang Z.C., Zhao Z.D., Zhao H.B., Lu J.,2011b.Geology of the Sandaowanzi telluride gold deposit of the northern Great Xing’an Range, NEChina: Geochronology and tectonic controls. Journal of Asian Earth Sciences.41(2):107-118.
    [62] Liu W., Li X.J., Tan J.,2002. Fluid mixing in the Dajing Cu-Sn-Ag-Pb-Zn deposits, IInnerMongolia: Evidences from fluid inclusions and stable isotopes. Science in China (Series D).32(5):405-414(in Chinese with English abstract).
    [63] Liu W., Siebel W., Li X.J., Pan X.F.,2005. Petrogenesis of the Linxi granitoids, northernInner Mongolia of China: constraints on basaltic underplating. Chemical Geology.219(1):5-35.
    [64] Liu Y.F. Metallogenic study of Bairendaba Ag polymetallci deposit in Hexigten banner, InnerMongolia. Beijing: Chinese academy of geological sciences;2009.
    [65] Lu F.X., Zhu Q.W., Li S., Xie Y., Zheng J.,1997. Mesozoic volcanism surrounding SongliaoBasin, China: implication for the relationship with evolution of basin. Journal of ChinaUniversity of Geosciences.8(1):72-77.
    [66] Ludwig K.R.,2003. User's Manual for Isoplot/Ex. Version3.00: A geochronological toolkitfor Microsoft Excel. erkeley Geochronology Center Special Publication.4:1-70.
    [67] Mao J.W., Chen Y.B., Chen M.H., Franco P.,2013. Major types and time-space distributionof Mesozoic ore deposits in South China and their geodynamic settings. Mineralium Deposita.48(3):267-294.
    [68] Mao J.W., Li Y.Q., Goldfarb R., He Y., Zaw K.,2003. Fluid inclusion and noble gas studiesof the Dongping gold deposit, Hebei Province, China: A mantle connection for mineralization?Economic geology.98(3):517-534.
    [69] Mao J.W., Pirajno F., Cook N.,2011a. Mesozoic metallogeny in East China andcorresponding geodynamic settings-An introduction to the special issue. Ore GeologyReviews.43(1):1-7.
    [70] Mao J.W., Xie G.Q., Duan C., Pirajno F., Ishiyama D., Chen Y.C.,2011b. A tectono-geneticmodel for porphyry–skarn–stratabound Cu–Au–Mo–Fe and magnetite–apatite deposits alongthe Middle–Lower Yangtze River Valley, Eastern China. Ore Geology Reviews.43(1):294-314.
    [71] Mao J.W., Zhang J.D., Pirajno F., Ishiyama D., Su H.M., Guo C.L., Chen Y.C.,2011c.Porphyry Cu–Au–Mo–epithermal Ag–Pb–Zn–distal hydrothermal Au deposits in the Dexingarea, Jiangxi province, East China—A linked ore system. Ore Geology Reviews.43(1):203-216.
    [72] Marcoux E.,1997. Lead isotope systematics of the giant massive sulphide deposits in theIberian Pyrite Belt. Mineralium Deposita.33(1):45-58.
    [73] Marcoux E., Grancea L., Lupulescu M., Milési J.P.,2002. Lead isotope signatures ofepithermal and porphyry-type ore deposits from the Romanian Carpathian Mountains.Mineralium Deposita.37(2):173-184.
    [74] Meinert L.D.,1992. Skarns and skarn deposits. Geoscience Canada.19(4).
    [75] Meng Q.R.,2003. What drove late Mesozoic extension of the northern China-Mongolia tract?Tectonophysics.369(3-4):155-174.
    [76] Miao L.C., Qiu Y.M., Fan W.M., Zhang F.Q., Zhai M.G.,2005. Geology, geochronology, andtectonic setting of the Jiapigou gold deposits, southern Jilin Province, China. Ore GeologyReviews.26(1):137-165.
    [77] Meng E., Xu, W.L., Pei, F.P., Yang, D.B., Wang, F., Zhang, X.Z.,2011a. Permian bimodalvolcanism in the Zhangguangcai Range of eastern Heilongjiang Province, NE China: zirconU-Pb-Hf isotopes and geochemical evidence. Journal of Asian Earth Sciences41,119-132.
    [78] Meng, E., Xu, W.L., Yang, D.B., Qiu, K.F., Li, C.H., Zhu, H.T.,2011b. Zircon U-Pbchronology, geochemistry of Mesozoic volcanic rocks from the Lingquan basin in Manzhouliarea, and its tectonic implications. Acta Petrologica Sinica27(4),1209-1226.
    [79] Nakamura N.,1974. Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous andordinary chondrites. Geochimica et Cosmochimica Acta.38(5):757-775.
    [80] Naldrett A.J.,1992. A model for the Ni-Cu-PGE ores of the Noril'sk region and itsapplication to other areas of flood basalt. Economic Geology.87(8):1945-1962.
    [81] Nie F.J., Jiang S.H.,2011. Geological Setting and Origin of Mo–W–Cu Deposits in theHonggor–Shamai District, Inner Mongolia, North China. Resource Geology.61(4):344-355.
    [82] O'Neil J.R., Clayton R.N., Mayeda T.K.,1969. Oxygen isotope fractionation in divalentmetal carbonates. The Journal of Chemical Physics.51(12):5547.
    [83] Ohmoto H.,1972. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits.Economic Geology.67(5):551-578.
    [84] Ohmoto H., Rye R.O. Isotopes of sulfur and carbon. New York: John Wiley and Sons;1979.
    [85] Ouyang H.G., Mao J.W., Santosh M.,2012. Anatomy of a large Ag-Pb-Zn deposit in theGreat Xing'an Range, northeast China: metallogeny associated with Early Cretaceousmagmatism. International Geology Review.DOI:10.1080/00206814.00202012.00719690.
    [86] Pei F.P., Xu W.L., Yang D.B., Yu Y., Meng E., Zhao Q.G.,2011a. Petrogenesis of lateMesozoic granitoids in southern Jilin province, northeastern China: Peochronological,geochemical, and Sr-Nd-Pb isotopic evidence. Lithos.125:27-39.
    [87] Pei J.L., Sun Z.M., Liu J., Liu J., Wang X.S., Yang Z.Y., Zhao Y., Li H.B.,2011b. Apaleomagnetic study from the Late Jurassic volcanics (155Ma), North China: Implicationsfor the width of Mongol-Okhotsk Ocean. Tectonophysics.510:370-380.
    [88] Pirajno F. Hydrothermal Processes and mineral systems: Springer;2008.
    [89] Pirajno F., Ernst R.E., Borisenko A.S., Fedoseev G., Naumov E.A.,2009. Intraplatemagmatism in Central Asia and China and associated metallogeny. Ore Geology Reviews.35(2):114-136.
    [90] Pei, F., Xu, W., Yang, D., Zhao, Q., Liu, X., Hu, Z.,2007. Zircon U-Pb geochronology ofbasement metamorphic rocks in the Songliao Basin. Chinese Science Bulletin52(7),942-948.
    [91] Qin G.J., Kawachi Y., Zhao L.Q., Wang Y.Z., Ou Q.,2001. The upper permian sedimentaryfacies and its role in the Dajing Cu-Sn deposit, Linxi county, Inner Mongolia, China.Resource Geology.51(4):293-305.
    [92] Reed M.H., Palandri J.,2006. Sulfide mineral precipitation from hydrothermal fluids.Reviews in Mineralogy and Geochemistry.61:609-631.
    [93] Robb L. Introduction to ore-forming processes. Malden: Wiley-Blackwell;2004b.
    [94] Robinson P.T., Zhou M.F., Hu X.F., Reynolds P., Bai W.J., Yang J.S.,1999. Geochemicalconstraints on the origin of the Hegenshan Ophiolite, Inner Mongolia, China. Journal ofAsian Earth Sciences.17(4):423-442.
    [95] Rye R.O.,1993. The evolution of magmatic fluids in the epithermal environment; the stableisotope perspective. Economic Geology.88(3):733-752.
    [96] Rye R.O., Ohmoto H.,1974. Sulfur and carbon isotopes and ore genesis: A review. EconomicGeology.69(6):826-842.
    [97] Sasaki A., Sato K., Cumming G.L.,1982. Isotopic composition of ore lead from the Japaneseislands. Mining Geology.32(6):457-474.
    [98] Sato K., Delevaux M.H., Doe B.R.,1981. Lead isotope measurements on ores, igneous andsedimentary rocks from the kuroko mineralization area. Geochemical Journal.15:135-140.
    [99] Scott S.D.,1985. Seafloor polymetallic sulfide deposits: modern and ancient. Marine Mining.5(2):191-212.
    [100] Seng r A.M.C., Natal'in B.A., Burtman V.S.,1993. Evolution of the Altaid tectonic collageand Palaeozoic crustal growth in Eurasia. Nature.364:299-307.
    [101] Shelton K.L., So C.S., Chang J.S.,1988. Gold-rich mesothermal vein deposits of theRepublic of Korea; geochemical studies of the Jungwon gold area. Economic Geology.83(6):1221-1237.
    [102] Shelton K.L., So C.S., Haeussler G.T., Chi S.J., Lee K.Y.,1990. Geochemical studies of theTongyoung gold-silver deposits, Republic of Korea: evidence of meteoric water dominancein a Te-bearing epithermal system. Economic Geology.85(6):1114-1132.
    [103] Sheppard S.M.F.,1986. Characterization and isotopic variations in natural waters. Reviews inMineralogy and Geochemistry.16(1):165-183.
    [104] Shi G.H., Liu D.Y., Zhang F.Q., Jian P., Miao L.C., Shi Y.R., Tao H.,2003. SHRIMP U-Pbzircon geochronology and its implications on the Xilin Gol Complex, Inner Mongolia, China.Chinese Science Bulletin.48(24):2742-2748.
    [105] Shi Y.R., Liu D.Y., Zhang Q., Jian P., Zhang F.Q., Miao L.C.,2004. SHRIMP geochronologyof dioritic-granitic intrusions in Sunidzuoqi area, inner Mongolia. Acta Geologica Sinica.79:789-799.
    [106] Sillitoe R.H.,1972. A plate tectonic model for the origin of porphyry copper deposits.Economic Geology.67(2):184-197.
    [107] Sláma J., Ko ler J., Condon D.J., Crowley J.L., Gerdes A., Hanchar J.M., Horstwood M.S.A.,Morris G.A., Nasdala L., Norberg N., Schaltegger U., Schoene B., Tubrett M.N., WhitehouseM.J.,2008. Plesovice zircon-a new natural reference material for U-Pb and Hf isotopicmicroanalysis. Chemical Geology.249:1-35.
    [108] Stacey J.S., Hedlund D.C.,1983. Lead-isotopic compositions of diverse igneous rocks andore deposits from southwestern New Mexico and their implications for early Proterozoiccrustal evolution in the western United States. Geological Society of America Bulletin.94(1):43-57.
    [109] Stacey J.S., Kramers J.D.,1975. Approximation of terrestrial lead isotope evolution by atwo-stage model. Earth and Planetary Science Letters.26(2):207-221.
    [110] Stanton R.L., Russell R.D.,1959. Anomalous leads and the emplacement of lead sulfide ores.Economic Geology.54(4):588-607.
    [111] Strong D.F.,1988. A review and model for granite-related mineral deposits. Recent Advancesin the Geology of Graniterelated Mineral Deposits Canadian Institute of Mining, Metallurgy,Special.39:424-445.
    [112] She, H.Q., Li, J.W., Xiang, A.P., Guan, J.D., Yang, X.C., Zhang, D.Q., Tan, G., Zhang, B.,2012. U-Pb ages of the zircons from primary rocks in middle-northern Daxinganling and itsimplications to geotectonic evolution. Acta Petrologica Sinica,28(2):571-594.
    [113] Sun J.G., Han S.J., Zhang Y., Xing S.W., Bai L.A.,2012. Diagenesis and metallogeneticmechanisms of the Tuanjiegou gold deposit from the Lesser Xing’an Range, NE China:zircon U–Pb geochronology and Lu–Hf isotopic constraints. Journal of Asian EarthSciences.http://dx.doi.org/10.1016/j.jseaes.2012.1010.1021.
    [114] Sun X., Deng J., Zhao Z.Y., Wang Q.F., Yang L.Q., Gong Q.J., Wang C.M.,2010.Geochronology, petrogenesis and tectonic implications of granites from the Fuxin area,Western Liaoning, NE China. Gondwana Research.17(4):642-652.
    [115] Taylor H.P.,1974. The application of oxygen and hydrogen isotope studies to problems ofhydrothermal alteration and ore deposition. Economic Geology.69(6):843-883.
    [116] Tomurtogoo O., Windley B.F., Kr ner A., Badarch G., Liu D.Y.,2005. Zircon age andoccurrence of the Adaatsag ophiolite and Muron shear zone, central Mongolia: constraints onthe evolution of the Mongol–Okhotsk ocean, suture and orogen. Journal of the GeologicalSociety.162(1):125-134.
    [117] Tang, J., Xu, W.L., Wang, F., Wang, W., Xu, M.J., Zhang, Y.H.,2012. Geochronology andgeochemistry of Neoproterozoic magmatism in the Erguna Massif, NE China: petrogenesisand implications for the breakup of the Rodinia supercontinent. Precambrian Research224,597–611.
    [118] Wan B., Xiao W., Zhang L., Windley B.F., Han C., Quinn C.D.,2011. Contrasting styles ofmineralization in the Chinese Altai and East Junggar, NW China: implications for theaccretionary history of the southern Altaids. Journal of the Geological Society.168(6):1311-1321.
    [119] Wang F., Zhou X.H., Zhang L.C., Ying J.F., Zhang Y.T., Wu F.Y., Zhu R.X.,2006. LateMesozoic volcanism in the Great Xing'an Range (NE China): Timing and implications for thedynamic setting of NE Asia. Earth and Planetary Science Letters.251(1):179-198.
    [120] Wang J.B., Wang Y.W., Wang L.J., Uemoto T.,2001. Tin-polymetallic mineralization in thesouthern part of the Da Hinggan Mountains, China. Resour Geol.51(4):283-291.
    [121] Wang L.J., ShimazakiI H., Shiga Y.,2001c. Skarns and Genesis of the Huanggang Fe-SnDeposit, Inner Mongolia, China. Resource Geology.51(4):359-376.
    [122] Wang P.J., Liu W.Z., Wang S.X., Song W.H.,2002.40Ar/39Ar and K/Ar dating on the volcanicrocks in the Songliao basin, NE China: constraints on stratigraphy and basin dynamics.International Journal of Earth Sciences.91(2):331-340.
    [123] Wang T., Guo L., Zheng Y.D., Donskaya T., Gladkochub D., Zeng L.S., Li J.B., Wang Y.B.,Mazukabzov A.,2012. Timing and processes of late Mesozoic mid-lower-crustal extension incontinental NE Asia and implications for the tectonic setting of the destruction of the NorthChina Craton: Mainly constrained by zircon U-Pb ages from metamorphic core complexes.Lithos.154:315-345.
    [124] Wang Y.W., Wang J.B., Uemoto T., Wang L.J.,2001d. Geology and Mineralization at theDajing Tin-polymetallic Ore Deposit, Inner Mongolia, China. Resource Geology.51(4):307-320.
    [125] Wei J.H., Tan W.J., Guo D.Z., Tan J., Li Y.H., Yan Y.F.,2007. Isotope systematics andmetallogenetic age of Zhuanghe gold deposit, Liaoning province, China. Journal of CentralSouth University of Technology.14(1):104-110.
    [126] Wei, C.S., Zheng, Y.F., Zhao, Z.F., Valley, J.W.,2002. Oxygen and neodymium isotopeevidence for recycling of juvenile crust in northeast China. Geology30(4),375-378.
    [127] Wilkinson J.J.,2001. Fluid inclusions in hydrothermal ore deposits. Lithos.55(1-4):229-272.
    [128] Wu F.Y., Jahn B.M., Wilde S.A., Lo C.H., Yui T.F., Lin Q., Ge W.C., Sun D.Y.,2003. Highlyfractionated I-type granites in NE China (I): geochronology and petrogenesis. Lithos.66(3):241-273.
    [129] Wu F.Y., Li X.H., Yang J.H., Zheng Y.F.,2007a. Discussions on the petrogenesis of granites.Acta Petrologica Sinica.23(6):1217-1238(in Chinese with English abstract).
    [130] Wu F.Y., Lin J.Q., Wilde S.A., Zhang X.O., Yang J.H.,2005a. Nature and significance of theEarly Cretaceous giant igneous event in eastern China. Earth and Planetary Science Letters.233(1):103-119.
    [131] Wu F.Y., Sun D.Y., Ge W.C., Zhang Y.B., Grant M.L., Wilde S.A., Jahn B.M.,2011.Geochronology of the Phanerozoic granitoids in northeastern China. Journal of Asian EarthSciences.41(1):1-30.
    [132] Wu F.Y., Sun D.Y., Li H.M., Jahn B.M., Wilde S.,2002. A-type granites in northeasternChina: age and geochemical constraints on their petrogenesis. Chemical Geology.187(1-2):143-173.
    [133] Wu F.Y., Wilde S.A., Zhang G.L., Sun D.Y.,2004. Geochronology and petrogenesis of thepost-orogenic Cu-Ni sulfide-bearing mafic-ultramafic complexes in Jilin Province, NE China.Journal of Asian Earth Sciences.23(5):781-797.
    [134] Wu F.Y., Yang J.H., Wilde S.A., Zhang X.O.,2005b. Geochronology, petrogenesis andtectonic implications of Jurassic granites in the Liaodong Peninsula, NE China. ChemicalGeology.221(1):127-156.
    [135] Wu F.Y., Zhao G.C., Sun D.Y., Wilde S.A., Yang J.H.,2007b. The Hulan Group: its role in theevolution of the Central Asian Orogenic Belt of NE China. Journal of Asian Earth Sciences.30(3-4):542-556.
    [136] Xiao W.J., Windley B.F., Hao J., Zhai M.G.,2003. Accretion leading to collision and thePermian Solonker suture, Inner Mongolia, China: Termination of the central Asian orogenicbelt. Tectonics.22(6):1069.
    [137] Xu W.L., Pei F.P., Gao F.H., Yang D.B., Bu Y.J.,2008. Zircon U-Pb age from basementgranites in Yishu granben and its tectonic implications. Earth Sciences.33(2):145-150.
    [138] Xu, W.L., Ji, W.Q., Pei, F.P., Meng, E., Yu, Y., Yang, D.B., Zhang, X.,2009. Triassicvolcanism in eastern Heilongjiang and Jilin provinces, NE China: Chronology, geochemistry,and tectonic implications. Journal of Asian Earth Sciences34(3),392-402.
    [139] Xu, W.L., Wang, F., Pei, F.P., Meng, E., Tang, J., Xu, M.J., Wang, W.,2013. Mesozoictectonic regimes and regional ore-forming background in NE China: Constraints from spatialand temporal variations of Mesozoic volcanic rock associations. Acta Petrologia Sinica29(2),339-353.
    [140] Yang J.H., Wu F.Y., Wilde S.A.,2003. A review of the geodynamic setting of large-scale LateMesozoic gold mineralization in the North China Craton: an association with lithosphericthinning. Ore Geology Reviews.23(3-4):125-152.
    [141] Ying J.F., Zhou X.H., Zhang L.C., Wang F.,2010. Geochronological framework of Mesozoicvolcanic rocks in the Great Xing'an Range, NE China, and their geodynamic implications.Journal of Asian Earth Sciences.39(6):786-793.
    [142] Yoo B.C., Lee H.K., White N.C.,2010. Mineralogical, fluid inclusion, and stable isotopeconstraints on mechanisms of ore deposition at the Samgwang mine (Republic of Korea)—amesothermal, vein-hosted gold–silver deposit. Mineralium Deposita.45(2):161-187.
    [143] Yu G., Chen J.F., Xue C.J., Chen Y.C., Chen F.K., Du X.Y.,2009. Geochronologicalframework and Pb, Sr isotope geochemistry of the Qingchengzi Pb-Zn-Ag-Au orefield,Northeastern China. Ore Geology Reviews.35(3-4):367-382.
    [144] Yu J.J., Wang F., Xu W.L., Gao F.H., Pei F.P.,2012. Early Jurassic mafic magmatism in theLesser Xing'an–Zhangguangcai Range, NE China, and its tectonic implications: Constraintsfrom zircon U-Pb chronology and geochemistry. Lithos.142-143:256-266.
    [145] Zartman R.E., Doe B.R.,1981. Plumbotectonics—the model. Tectonophysics.75(1):135-162.
    [146] Zeng Q.D., Liu J.M., Chu S.X., Wang Y.B., Sun Y., Duan X.X., Zhou L.L.,2012. Mesozoicmolybdenum deposits in the East Xingmeng orogenic belt, northeast China: characteristicsand tectonic setting. International GeologyReview.doi:10.1080/00206814.00202012.00677498.
    [147] Zeng Q.D., Liu J.M., Qin F., Zhang Z.L., Chen W.J.,2008. Preliminary research on Mesozoicfour-stage Mo mineralization in Da Hinggan mountains of China. Gondwana13th programand abstracts, Yunnan.251-252.
    [148] Zeng Q.D., Liu J.M., Yu C.M., Ye J., Liu H.T.,2011a. Metal deposits in the Da HingganMountains, NE China: styles, characteristics, and exploration potential. InternationalGeology Review.53(7):846-878.
    [149] Zeng Q.D., Liu J.M., Zhang Z.L.,2010. Re-Os geochronology of porphyry molybdenumdeposit in south segment of Da Hinggan Mountains, Northeast China. Journal of EarthScience.21(4):392-401.
    [150] Zeng Q.D., Liu J.M., Zhang Z.L., Jia C.S., Yu C.M., Ye J., Liu H.T.,2009. Geology andlead-isotope study of the Baiyinnuoer Zn-Pb-Ag deposit, south segment of the Da HingganMountains, Northeastern China. Resource Geology.59(2):170-180.
    [151] Zeng T., Wang T., Guo L., Tong Y., Zhang J.J., Shi X.J., Zhang L., Li Y.F.,2011b. Ages,origin and geological implications of Late Mesozoic granitoids in Xinkailing region, NEChina. Joural of Jilin University (Earth Science Edition).41(6):1881-1900(in Chinese withEnglish abstract).
    [152] Zhai M.G., Santosh M.,2013. Metallogeny of the North China Craton: Link with secularchanges in the evolving Earth. GondwanaResearch.http://dx.doi.org/10.1016/j.gr.2013.1002.1007.
    [153] Zhang F.Q., Chen H.L., Yu X., Dong C.W., Yang S.F., Pang Y.M., Batt G.E.,2011. EarlyCretaceous volcanism in the northern Songliao Basin, NE China, and its geodynamicimplication. Gondwana Research.19(1):163-176.
    [154] Zhang J.H., Gao S., Ge W.C., Wu F.Y., Yang J.H., Wilde S.A., Li M.,2010. Geochronologyof the Mesozoic volcanic rocks in the Great Xing'an Range, northeastern China: Implicationsfor subduction-induced delamination. Chemical Geology.276(3):144-165.
    [155] Zhang J.H., Ge W.C., Wu F.Y., Wilde S.A., Yang J.H., Liu X.M.,2008a. Large-scale earlycretaceous volcanic events in the northern Great Xing'an Range, northeastern China. Lithos.102(1-2):138-157.
    [156] Zhang L., Zhou X., Ying J., Wang F., Guo F., Wan B., Chen Z.,2008b. Geochemistry andSr-Nd-Pb-Hf isotopes of Early Cretaceous basalts from the Great Xinggan Range, NE China:Implications for their origin and mantle source characteristics. Chemical Geology.256(1-2):12-23.
    [157] Zhang S.H., Zhao Y., Liu X.C., Liu D.Y., Chen F., Xie L.W., Chen H.H.,2009a. LatePaleozoic to Early Mesozoic mafic–ultramafic complexes from the northern North ChinaBlock: Constraints on the composition and evolution of the lithospheric mantle. Lithos.110(1):229-246.
    [158] Zhang S.H., Zhao Y., Song B., Hu J.M., Liu S.W., Yang Y.H., Chen F.K., Liu X.M., Liu J.,2009b. Contrasting Late Carboniferous and Late Permian–Middle Triassic intrusive suitesfrom the northern margin of the North China craton: Geochronology, petrogenesis, andtectonic implications. Geological Society of America Bulletin.121(1-2):181-200.
    [159] Zhang X.H., Zhang H.F., Tang Y.J., Wilde S.A., Hu Z.C.,2008c. Geochemistry of Permianbimodal volcanic rocks from central inner Mongolia, North China: Implication for tectonicsetting and Phanerozoic continental growth in Central Asian Orogenic Belt. Chem Geol.249(3-4):262-281.
    [160] Zhang Z.D., Wu C.Z., Gu L.X., Feng H., Zheng Y.C., Huang J.H., Li J., Sun Y.L.,2009c.Molybdenite Re-Os dating of Xintaimen molybdenum deposit in Yanshan-Liaoningmetallogenic belt, North China. Mineral Deposits.28(3):313-320(in Chinese with Englishabstract).
    [161] Zheng J.P., O'reilly S.Y., Griffin W.L., Lu F.X., Zhang M.,1998. Nature and evolution ofCenozoic lithospheric mantle beneath Shandong peninsula, Sino-Korean craton, easternChina. International Geology Review.40(6):471-499.
    [162] Zheng Y.F.,1990. Carbon-oxygen isotopic covariation in hydrothermal calcite duringdegassing of CO2. Mineralium Deposita.25(4):246-250.
    [163] Zhou Z.H. Geology and geochemistry of Huanggang Sn-Fe deposits, Inner Mongolia. Beijing:Chinese Academy of Geological Sciences;2011.
    [164] Zhu B.Q., Chen Y.W.,1984. Features of Pb isotoic composition of ores and evolution ofcontinental-crust of China. Scientia Sinica (Series B). XXVII(6):635-646.
    [165] Zhu R.X., Chen L., Wu F.Y., Liu J.L.,2011. Timing, scale and mechanism of the destructionof the North China Craton. Science China Earth Sciences.54(6):789-797.
    [166] Zhu X.Q., Zhang Q., He Y.L., Zhu C.H., Huang Y.,2006. Hydrothermal source rocks of theMeng'entalegai Ag-Pb-Zn deposit in the granite batholith, Inner Mongolia, China.Geochemical Journal.40(3):265-275.
    [167]艾霞,冯建忠,1992.内蒙大井银锡多金属矿床成矿地质特征及成因探讨.有色金属矿产与勘查.1(2):82-92.
    [168]白令安,孙景贵,张勇,韩世炯,杨凤超,门兰静,古阿雷,赵克强,2012.大兴安岭地区内生铜矿床的成因类型,成矿时代与成矿动力学背景.岩石学报.28(2):468-482.
    [169]鲍庆中,张长捷,吴之理,王宏,李伟,桑家和,刘永生,2007.内蒙古白音高勒地区石炭纪石英闪长岩SHRIMP锆石U-Pb年代学及其意义.吉林大学学报(地球科学版).37(1):15-23.
    [170]蔡剑辉,阎国翰,肖成东,王关玉,牟保磊,张任祜,2004.太行山-大兴安岭构造岩浆带中生代侵入岩Nd、Sr、Pb同位素特征及物质来源探讨.岩石学报.20(5):1225-1242.
    [171]常勇,赖勇,2010.内蒙古银都银铅锌多金属矿床成矿流体特征及成矿年代学研究.北京大学学报(自然科学版).46(4):581-593.
    [172]陈好寿,1985.我国层控(沉积-改造)矿床中铅同位素演化的一个典型模式.中国地质科学院宜昌地质矿产研究所文集.9:107-116.
    [173]陈伟军,刘建明,刘红涛,孙兴国,张瑞斌,张作伦,覃锋,2010.内蒙古鸡冠山斑岩钼矿床成矿时代和成矿流体研究.岩石学报.26(5):1423-1436.
    [174]陈衍景,张成,李诺,杨永飞,邓轲,2012.中国东北钼矿床地质.吉林大学学报(地球科学版).42(5):1223-1268.
    [175]陈义贤.辽西及邻区中生代火山岩:年代学,地球化学和构造背景.北京:地震出版社;1997.
    [176]陈永清,韩学林,赵红娟,程志中,唐宇,陈武,2011.内蒙花敖包特Pb-Zn-Ag多金属矿床原生晕分带特征与深部矿体预测模型.地球科学:中国地质大学学报.36(2):236-246.
    [177]陈毓川,朱裕生.中国矿床成矿模式.北京:地质出版社;1993.
    [178]程裕淇,陈毓川,赵一鸣,1979.初论矿床的成矿系列问题.中国地质科学院院报.1(1):32-58.
    [179]程裕淇,陈毓川,赵一鸣,宋天锐,1983.再论矿床的成矿系列问题.中国地质科学院院报.1(6):1-66.
    [180]储雪蕾,霍卫国,张巽,2002.内蒙古林西县大井铜多金属矿床的硫、碳和铅同位素及成矿物质来源.岩石学报.18(4):66-74.
    [181]范书义,毛华人,张晓东,孙秀丽,李颖,1997.大兴安岭中段二叠系地球化学特征及其成矿意义.中国区域地质.16(001):89-97.
    [182]方俊钦,聂凤军,张可,刘勇,徐备,2012.辽宁姚家沟钼矿床辉钼矿Re-Os同位素年龄测定及其地质意义.岩石学报.28(2):372-378.
    [183]冯祥发.内蒙古兴安盟布敦化铜矿地质与地球化学特征研究:中国地质科学院;2010.
    [184]高晓峰,郭锋,范蔚茗,李超文,李晓勇,2005.南兴安岭晚中生代中酸性火山岩的岩石成因.岩石学报.21(3):737-748.
    [185]葛文春,吴福元,周长勇,张吉衡,2005.大兴安岭中部乌兰浩特地区中生代花岗岩的锆石U-Pb年龄及地质意义.岩石学报.21(3):749-762.
    [186]郭利军,谢玉玲,侯增谦,王硕,陈伟,李政,李应栩,薛怀民,童英,潘小菲,周喜文,2009.内蒙古拜仁达坝银多金属矿矿床地质及成矿流体特征.岩石矿物学杂志.28(1):26-36.
    [187]郭令芬.内蒙古花敖包特银铅锌多金属矿床地球化学及成因研究.北京:中国地质大学(北京);2010.
    [188]韩振哲,赵海玲,李娟娟,冷昌恩,吕军,李文龙,2010.小兴安岭东南伊春一带早中生代花岗岩与多金属成矿作用.中国地质.37(1):74-87.
    [189]郝旭,徐备,1997.内蒙古锡林浩特锡林郭勒杂岩的原岩年代和变质年代.地质论评.43(1):101-105.
    [190]黑龙江省地质局.大兴安岭及其邻区区域地质与成矿研究.北京:地质出版社;1959.
    [191]胡瑞忠,毛景文,范蔚茗,华仁民,毕献武,钟宏,宋谢炎,陶琰,2010.华南陆块陆内成矿作用的一些科学问题.地学前缘.(2):13-26.
    [192]胡瑞忠,陶琰,钟宏,黄智龙,张正伟,2005.地幔柱成矿系统:以峨眉山地幔柱为例.地学前缘.12(1):42-54.
    [193]华仁民,陈培荣,张文兰,陆建军,2005.论华南地区中生代3次大规模成矿作用.矿床地质.24(2):99-107.
    [194]黄本宏.大兴安岭地区石炭、二叠系及植物群.北京:地质出版社;1993.
    [195]黄典豪,杜安道,吴澄宇,刘兰笙,孙亚莉,邹晓秋,1996.华北地台钼(铜)矿床成矿年代学研究.矿床地质.15(4):365-373.
    [196]黄永卫.黑龙江省东南部完达山-太平岭一带浅成低温热液矿床区域成矿规律及找矿前景研究.北京:中国地质大学;2010.
    [197]江思宏,聂凤军,白大明,刘翼飞,刘妍,2011b.内蒙古白音诺尔铅锌矿床印支期成矿的年代学证据.矿床地质.30(5):787-798.
    [198]江思宏,聂凤军,白大明,牛树银,王宝德,刘翼飞,刘妍,2011a.内蒙古白音诺尔铅锌矿铅同位素研究.地球科学与环境学报.33(3):230-236.
    [199]江思宏,聂凤军,刘翼飞,云飞,2010.内蒙古拜仁达坝及维拉斯托银多金属矿床的硫和铅同位素研究.矿床地质.2010(2):101-112.
    [200]李德亭,曾庆栋,刘建明,刘红涛,2008.大兴安岭南东段银铅锌多金属矿床地质特征与找矿模型-以喇嘛罕矿床为例.金属矿山.(7):70-73.
    [201]李锦轶,高立明,孙桂华,李亚萍,王彦斌,2007.内蒙古东部双井子中三叠世同碰撞壳源花岗岩的确定及其对西伯利亚与中朝古板块碰撞时限的约束.岩石学报.23(3):565-582.
    [202]李立兴,松权衡,王登红,王成辉,屈文俊,汪志刚,毕守业,于城,2009.吉林福安堡钼矿中辉钼矿铼-锇同位素定年及成矿作用探讨.岩矿测试.28(3):283-287.
    [203]李蒙文.天山—兴蒙造山带中段内生金属矿床成矿系列及成矿预测[博士]:中国地质科学院;2006.
    [204]李绪俊,范文亮,汪建宇,范文嵩,梁本胜,范振华,杨晓明,任德奎,2012.吉林省海沟金矿脉岩锆石U-Pb年龄及其成矿意义.吉林大学学报(地球科学版).42(5):1365-1377.
    [205]李怡欣,聂喜涛,张朋,扬帆,柴鹏,崔培龙,孙景贵,2011.老柞山金矿床的成矿时代与成矿背景.矿物学报.1(612).
    [206]李永刚,翟明国,杨进辉,苗来成,关鸿,2003.内蒙古赤峰安家营子金矿成矿时代以及对华北中生代爆发成矿的意义.中国科学: D辑.33(10):960-966.
    [207]李真真,李胜荣,张华锋,2009.黑龙江东宁县金厂金矿围岩蚀变和成矿年代学特征.矿床地质.1(28):83-92.
    [208]李政,谢玉玲,王硕,潘小菲,薛怀民,童英,周喜文,2007.内蒙古花敖包特铅锌银矿矿物组成及成因矿物学初步研究.矿物岩石地球化学通报.1:301-302.
    [209]李志昌,路远发,黄圭成.放射性同位素地质学方法与进展:中国地质大学出版社;2003.
    [210]林强,元钟宽,1998.中国东北地区中生代火山岩的大地构造意义.地质科学.33(2):129-139.
    [211]刘城先,2001.内蒙布敦化铜矿成矿系列和成矿模式.长春工程学院学报(自然科学版).2(4):30-32.
    [212]刘翠,邓晋福,许立权,张昱,赵寒冬,孔维琼,李宁,罗照华,白立兵,赵国春,2011.大兴安岭—小兴安岭地区中生代岩浆-构造-钼成矿地质事件序列的初步框架.地学前缘.18(3):166-178.
    [213]刘家军,邢永亮,王建平,翟德高,要梅娟,吴胜华,付超,2010.内蒙拜仁达坝超大型Ag-Pb-Zn多金属矿床中针硫锑铅矿的发现与成因意义.吉林大学学报(地球科学版).40(3):565-572.
    [214]刘建峰,迟效国,张兴洲,马志红,赵芝,王铁夫,胡兆初,赵秀羽,2009.内蒙古西乌旗南部石炭纪石英闪长岩地球化学特征及其构造意义.地质学报.83(3):356-376.
    [215]刘建峰.内蒙古林西-东乌旗地区晚古生代岩浆作用及其对区域构造演化的制约.长春:吉林大学;2009.
    [216]刘建明,张锐,张庆洲,2004.大兴安岭地区的区域成矿特征.地学前缘.11(1):269-277.
    [217]刘莉,杨言辰,杨兆武,韩世炯,2010.黑龙江穆棱砍椽沟钼铜矿床地质与地球化学特征.世界地质.29(3):413-418.
    [218]刘利,曾庆栋,刘建明,段晓侠,孙守恪,张连昌,2012.内蒙古西拉木伦成矿带劳家沟斑岩型钼矿流体包裹体特征及地质意义.地质与勘探.48(4):663-676.
    [219]刘伟,李新俊,谭骏,2002.内蒙古大井铜-锡-银-铅-锌矿床的流体混合作用—流体包裹体和稳定同位素证据.中国科学D辑.32(5):405-414.
    [220]刘伟,潘小菲,谢烈文,李禾,2007.大兴安岭南段林西地区花岗岩类的源岩:地壳生长的时代和方式.岩石学报.23(2):441-460.
    [221]刘兴桥,彭玉鲸,殷长建,齐成栋,周晓东,2010.吉林省晚三叠世-早白垩世花岗岩类三大成因构造类型及其地质找矿意义.吉林地质.29(1):1-4.
    [222]刘翼飞,江思宏,张义,2010.内蒙古锡林浩特地区拜仁达坝矿区闪长岩体锆石SHRIMP U-Pb定年及其地质意义.地质通报.29(5):687-696.
    [223]刘翼飞.内蒙古克什克腾旗拜仁达坝银多金属矿床成因研究.北京:中国地质科学院矿产资源研究所;2009.
    [224]刘玉强,1996.内蒙古毛登锡铜矿床地质及成因.矿床地质.15(2):133-143.
    [225]刘志宏.黑龙江省翠宏山钨钼锌多金属矿床地质特征及成因.长春:吉林大学;2009.
    [226]吕志成,段国正,刘丛强,郝立波,李殿超,魏存第,2000.大兴安岭地区银矿床类型、成矿系列及成矿地球化学特征.矿物岩石地球化学通报.19(4):305-309.
    [227]罗镇宽,苗来成,关康,裘有守, Qiu Y.M., McNaughton N.J., Groves D.I.,2001.辽宁阜新排山楼金矿区岩浆岩锆石SHRIMP定年及其意义.地球化学.30(5).
    [228]马星华,陈斌,2011.大兴安岭南段敖仑花斑岩钼(铜)矿床成矿流体来源与成矿作用:稳定同位素C, H, O, S和放射性Pb同位素约束.吉林大学学报:地球科学版.41(6):1770-1783.
    [229]马星华,陈斌,赖勇,2009.内蒙古敖仑花斑岩钼矿成岩成矿年代学及地质意义.岩石学报.25(11):2939-2950.
    [230]马星华,陈斌,赖勇,窦金龙,邹滔,2010.斑岩铜钼矿床成矿流体的出溶,演化与成矿:以大兴安岭南段敖仑花矿床为例.岩石学报.26(5):1397-1410.
    [231]毛景文,华仁民,1999.浅议大规模成矿作用与大型矿集区.矿床地质.18(4):291-299.
    [232]毛景文,谢桂青,郭春丽,陈毓川,2008.南岭地区大规模钨锡多金属成矿作用:成矿时限及地球动力学背景.岩石学报.(10):2329-2338.
    [233]毛景文,谢桂青,李晓峰,张长青,梅燕雄,2004.华南地区中生代大规模成矿作用与岩石圈多阶段伸展.地学前缘.11(1):45-55.
    [234]毛景文,谢桂青,张作衡,李晓峰,王义天,张长青,李永峰,2005.中国北方中生代大规模成矿作用的期次及其地球动力学背景.岩石学报.21(1):169-188.
    [235]门兰静.延边-东宁地区晚中生代浅成热液金铜矿床的成矿流体与成矿机理研究.吉林:吉林大学;2011.
    [236]苗来成,2003.金厂沟梁-二道沟金矿床内花岗岩类侵入体锆石的离子探针U-Pb年代及意义.岩石学报.19(1):71-80.
    [237]内蒙古地质勘查有限责任公司,2007a.内蒙古自治区克什克腾旗拜仁达坝矿区银铅锌多金属矿详查报告.
    [238]内蒙古地质勘查有限责任公司.内蒙古自治区克什克腾旗维拉斯托矿区锌铜多金属矿详查报告.2007b.
    [239]聂凤军,胡朋,江思宏,刘翼飞,2010.中蒙边境沙麦-玉古兹尔地区钨和钨(钼)矿床地质特征,形成时代和成因机理.地球学报.31(3):383-394.
    [240]聂凤军,江思宏,张义,白大明,胡朋,赵元艺,张万益,刘妍.中蒙边境中东段金属矿床成矿规律和找矿方向.北京:中国地质出版社;2007a.
    [241]聂凤军,孙振江,李超,刘翼飞,吕克鹏,张可,刘勇,2011.黑龙江岔路口钼多金属矿床辉钼矿铼-锇同位素年龄及地质意义.矿床地质.30(5):828-836.
    [242]聂凤军,张万益,杜安道,江思宏,刘妍,2007b.内蒙古小东沟斑岩型钼矿床辉钼矿铼-锇同位素年龄及地质意义.地质学报.81(7):898-905.
    [243]聂凤军,张万益,杜安道,江思宏,刘妍,2007c.内蒙古朝不楞夕卡岩型铁多金属矿床辉钼矿铼-锇同位素年龄及地质意义.地球学报.28(4):315-323.
    [244]牛贺才,单强,罗勇,杨武斌,于学元,2008.巴尔哲超大型稀有稀土矿床富晶体的流体包裹体初步研究.岩石学报.24(9):2149-2154.
    [245]牛树银,聂凤军,孙爱群,江思宏,王宝德,张建珍,马宝军,白大明,陈超,2011.大兴安岭幔枝构造与银多金属成矿作用.吉林大学学报:地球科学版.41(6):1944-1958.
    [246]牛树银,孙爱群,郭利军,王宝德,胡华斌,刘建明,2008b.大兴安岭白音诺尔铅锌矿控矿构造研究与找矿预测.大地构造与成矿学.32(1):72-80.
    [247]牛树银,孙爱群,王宝德,刘建明,郭利军,胡华斌,许传诗,2008a.内蒙古大井铜锡多金属矿成矿物质来源及成矿作用探讨.中国地质.35(4):714-724.
    [248]潘小菲,郭利军,王硕,薛怀民,侯增谦,童英,李志明,2009.内蒙古维拉斯托铜锌矿床的白云母39Ar/40Ar年龄探讨.岩石矿物学杂志.28(5):473-479.
    [249]潘小菲,侯增谦,童英,薛怀民,周喜文,谢玉玲.内蒙古维拉斯托银铅锌矿床成矿流体特征研究.地质流体和流体包裹体研究国际学术会议暨第十五届全国流体包裹体会议2007. p.140.
    [250]祁进平,陈衍景,2005.东北地区浅成低温热液矿床的地质特征和构造背景.矿物岩石.25(2):47-59.
    [251]权恒,1983.内蒙古东部黄岗地区花岗岩类型及锡矿.中国地质科学院沈阳地质矿产研究所所刊.6:95-114.
    [252]尚浚,卢静文,彭晓蕾,张渊,等.矿相学.北京:地质出版社;2007.
    [253]邵济安,牟保磊,朱慧忠,张履桥,2010.大兴安岭中南段中生代成矿物质的深部来源与背景.岩石学报.26(3):649-656.
    [254]邵济安,张履桥,牟保磊,1998.大兴安岭中南段中生代的构造热演化.中国科学(D辑).28(3):193-200.
    [255]邵济安,张履桥,牟保磊,1999.大兴安岭中生代伸展造山过程中的岩浆作用.地学前缘.6(4):339-346.
    [256]邵济安,张履桥,肖庆辉,李晓波,2005.中生代大兴安岭的隆起—一种可能的陆内造山机制.岩石学报.(03):789-794.
    [257]邵济安.大兴安岭的隆起与地球动力学背景.北京:地质出版社;2007.
    [258]佘宏全,李红红,李进文,赵士宝,谭刚,张德全,金俊,董英君,丰成友,2009.内蒙古大兴安岭中北段铜铅锌金银多金属矿床成矿规律与找矿方向.地质学报.83(10):1456-1472.
    [259]沈存利,张梅,于玺卿,程文国,高维裕,周文川,2010.内蒙古钼矿找矿新进展及成矿远景分析.地质与勘探.46(4):561-575.
    [260]盛继福,付先政,李鹤年.大兴安岭中段成矿环境与铜多金属矿床地质特征.北京:地震出版社;1999.
    [261]盛继福,张德全,李岩,1995.大兴安岭中南段金属矿床流体包裹体研究.地质学报.69(1):56-66.
    [262]盛继福.大兴安岭中段成矿环境与铜多金属矿床地质特征.北京:地震出版社;1999.
    [263]施光海,苗来成,张福勤,简平,范蔚茗,刘敦一,2004.内蒙古锡林浩特A型花岗岩的时代及区域构造意义.科学通报.49(4):384-389.
    [264]舒启海,蒋林,赖勇,鲁颖淮,2009.内蒙古阿鲁科尔沁旗敖仑花斑岩铜钼矿床成矿时代和流体包裹体研究.岩石学报.25(10):2601-2614.
    [265]孙爱群,牛树银,马宝军,聂凤军,江思宏,张建珍,王宝德,陈超,2012.内蒙古拜仁达坝与维拉斯托银多金属矿床成矿构造对比.吉林大学学报:地球科学版.41(6):1784-1793.
    [266]孙景贵,张勇,邢树文,赵克强,张增杰,白令安,马玉波,刘勇胜,2012.兴蒙造山带东缘内生钼矿床的成因类型,成矿年代及成矿动力学背景.岩石学报.28(4):1317-1332.
    [267]孙兴国.内蒙古龙头山Ag-Pb-Zn多金属矿床成矿模式及找矿模型.北京:中国科学院研究生院;2008.
    [268]孙珍军.小兴安岭石林公园钼、钨成矿作用及地球化学特征.吉林:吉林大学;2010.
    [269]滕吉文,2003.地球深部物质和能量交换的动力过程与矿产资源的形成.大地构造与成矿学.27(1):3-21.
    [270]滕吉文,杨立强,姚敬全,刘宏臣,刘财,韩立国,张雪梅,2007.金属矿产资源的深部找矿,勘探与成矿的深层动力过程.地球物理学进展.22(2):317-334.
    [271]王长明,张寿庭,邓军,2006.大兴安岭南段铜多金属矿成矿时空结构.成都理工大学学报(自然科学版).33(5):478-484.
    [272]王长明.大兴安岭中南段喷流-沉积成矿特征与成矿预测.北京:中国地质大学(北京);2008.
    [273]王成辉,松权衡,王登红,李立兴,于城,汪志刚,屈文俊,杜安道,应立娟,2009.吉林大黑山超大型钼矿辉钼矿铼-锇同位素定年及其地质意义.岩矿测试.28(3):269-273.
    [274]王登红,2001.地幔柱的概念,分类,演化与大规模成矿—对中国西南部的探讨.地学前缘.8(3):67-72.
    [275]王国政,1997.内蒙古安乐锡铜矿床地质特征及成因.矿床地质.16(3):260-271.
    [276]王辉,任云生,侯鹤楠,2011a.延边大石河钼矿床成因及成矿时代.矿物学报.增刊:96-97.
    [277]王辉,任云生,赵华雷,鞠楠,屈文俊,2011b.吉林安图刘生店钼矿床辉钼矿Re-Os同位素定年及其地质意义.地球学报.32(6):707-715.
    [278]王瑾,侯青叶,陈岳龙,刘金宝,王忠,冷福荣,2010.内蒙古维拉斯托铜多金属矿床流体包裹体研究.现代地质.24(5):847-856.
    [279]王瑾.内蒙古维拉斯托铜多金属矿床矿区花岗岩类年代学与地球化学.北京:中国地质大学(北京);2009.
    [280]王京彬,王玉往,王莉娟,2005.大兴安岭南段锡多金属成矿系列.地质与勘探.(5):15-20.
    [281]王可勇,卿敏,孙丰月,万多,王力,李向文,2010.吉林小西南岔金-铜矿床成矿流体地球化学特征及矿床成因研究.岩石学报.26(12):3727-3734.
    [282]王淼,范继璋,王忠文,马艳英,2009.内蒙古黄岗—甘珠尔庙成矿带铅锌矿综合信息找矿模型.地学前缘.(06):318-324.
    [283]王一先,赵振华,1997.巴尔哲超大型稀土铌铍锆矿床地球化学和成因.地球化学.26(1):24-35.
    [284]王之田,张树文,孙树人,李忠军,1997.大兴安岭东南缘成矿集中区成矿演化特征与找矿潜力.有色金属矿产与勘查.6:4-12.
    [285]王忠朱.,1999.大兴安岭中南段中生代火山岩特征及演化.中国区域地质.(04).
    [286]吴福元,葛文春,孙德有,郭春丽,2003.中国东部岩石圈减薄研究中的几个问题.地学前缘.10(3):51-60.
    [287]吴开兴,胡瑞忠,2002.矿石铅同位素示踪成矿物质来源综述.地质地球化学.30(3):73-81.
    [288]武新丽,毛景文,周振华,欧阳荷根,2012.大兴安岭中南段布敦化铜矿床H-O-S-Pb同位素特征及成矿意义.中国地质.39(6):1812-1829.
    [289]夏学惠,王玍,袁家忠,闫飞,姚超美,赵玉海,2007.华北地台北缘三个硫-多金属成矿带中几个远景区的资源预测.化工矿产地质.29(2):65-87.
    [290]肖成东,魏永富,2004.内蒙古东南部地区矽卡岩及其成矿分带.地质调查与评论.27:9-15.
    [291]肖成东,杨志达,1997.内蒙赤峰北部两个重要的成矿带及其成矿特征.有色金属矿产与勘查.6(4):197-201.
    [292]肖成东,张忠良,赵利青,2004.东蒙地区燕山期花岗岩Nd, Sr, Pb同位素及其岩石成因.中国地质.31(1):57-63.
    [293]徐备,陈斌,1996.内蒙古锡林郭勒杂岩Sm-Nd, Rb-Sr同位素年代研究.科学通报.41(2):153-155.
    [294]徐佳佳,赖勇,崔栋,常勇,蒋林,舒启海,李文博,2009.内蒙古道伦达坝铜多金属矿床成矿流体特征及其演化.岩石学报.25(11):2957-2972.
    [295]徐毅.黄岗—甘珠尔庙成矿带多金属矿构造控矿特征分析[硕士]:中国地质大学(北京);2005.
    [296]薛怀民,郭立军,侯增谦,2009.中亚-蒙古造山带东段的锡林郭勒杂岩:早华力西期造山作用的产物而非古老陆块?----锆石SHRIMP U-Pb年代学证据.岩石学报.25(8):2001-2010.
    [297]薛怀民,郭利军,侯增谦,童英,潘晓菲,周喜文,2010.大兴安岭西南坡成矿带晚古生代中期未变质岩浆岩的SHRIMP锆石U-Pb年代学.岩石矿物学杂志.29(6):811-823.
    [298]杨武斌,牛祝牛,单强,罗勇,于学元,裘愉卓,2009.巴尔哲超大型稀有稀土矿床成矿机制研究.岩石学报.25(11):24-32.
    [299]叶杰,刘建明,张安立,张瑞斌,2002.沉积喷流型矿化的岩石学证据—以大兴安岭南段黄岗和大井矿床为例.岩石学报.18(4):585-592.
    [300]于学峰,李洪奎,单伟,2012.山东胶东矿集区燕山期构造热事件与金矿成矿耦合探讨.地质学报.86(12):1946-1956.
    [301]袁继明,林龙军,炜蒋.,李望成,万奇,吴德文.内蒙古自治区林西县大井矿区铜多金属矿生产详查报告.北京:北京矿产地质研究院;2008. p.64.
    [302]曾庆栋,刘建明,贾长顺,万志民,于昌明,叶杰,刘红涛,2007.内蒙古赤峰市白音诺尔铅锌矿沉积喷流成因:地质和硫同位素证据.吉林大学学报:地球科学版.37(4):659-667.
    [303]翟德高,刘家军,王建平,彭润民,王守光,李玉玺,常忠耀,2009.内蒙古太平沟斑岩型钼矿床Re-Os等时线年龄及其地质意义.现代地质.23(2):262-268.
    [304]翟德高,刘家军,王建平,杨永强,刘星旺,王功文,柳振江,王喜龙,张琪彬,2012.内蒙古哈什吐钼矿床熔融-流体包裹体特征及硫同位素组成.地球科学-中国地质大学学报.37(6):1279-1290.
    [305]翟明国,2010.华北克拉通的形成演化与成矿作用.矿床地质.(001):24-36.
    [306]翟明国,范宏瑞,杨进辉,苗来成,2004.非造山带型金矿—胶东型金矿的陆内成矿作用.地学前缘.11(1):85-98.
    [307]翟明国,杨进辉,刘文军,2001.胶东大型黄金矿集区及大规模成矿作用.中国科学D辑.31(7):545-552.
    [308]翟裕生,1999.论成矿系统.地学前缘.6(1):13-27.
    [309]张长青,李厚民,代军治,杨兴朝,李莉,毛景文,余金杰,娄德波,2006.铅锌矿床中矿石铅同位素研究.矿床地质.25(增刊):213-216.
    [310]张德全,1989.内蒙东部黄岗-甘珠尔庙锡银多金属成矿带地质背景及矿床类型.中国地质科学院矿床地质研究所文集22(1):42-54.
    [311]张德全,鲍修坡,1990.内蒙古白音诺中酸性火山-深成杂岩体的岩石学、地球化学与成员研究.地质评论.36(4):289-297.
    [312]张德全,雷蕴芬,1992.大兴安岭南段主要金属矿物的成分标型特征.岩石矿物学杂志.(02):166-177.
    [313]张德全,雷蕴芬,罗太阳,鲍修坡,王胜利,1991.内蒙古白音诺铅锌矿床地质特征及成矿作用.矿床地质.10(3):204-216.
    [314]张德全,刘勇,李大新,1993.大兴安岭地区与铜多金属成矿有关的侵入岩.大兴安岭及邻区铜多金属矿床论文集.50-64.
    [315]张炯飞,庞庆邦,朱群,金成洙,2003.内蒙古孟恩陶勒盖银铅锌矿床白云母Ar-Ar年龄及其意义.矿床地质.22(3):253-256.
    [316]张可,聂凤军,侯万荣,李超,刘勇,2012.内蒙古林西县哈什吐钼矿床辉钼矿铼-锇年龄及其地质意义.矿床地质.31(1):129-138.
    [317]张理刚,1992.铅同位素地质研究现状及展望.地质与勘探.28(4):21-29.
    [318]张连昌,英基丰,陈志广,吴华英,王非,周新华,2008.大兴安岭南段三叠纪基性火山岩时代与构造环境.岩石学报.24(4):911-920.
    [319]张乾,1994.辽宁桓仁多金属矿床的铅同位素组成—显生宙单阶段幔源铅的证据.地球化学.23(增刊):32-38.
    [320]张乾,战新志,裘愉卓,邵树勋,刘志浩,2002.内蒙古孟恩陶勒盖银铅锌铟矿床的铅同位素组成及矿石铅的来源探讨.地球化学.31(3):253-258.
    [321]张晓晖,张宏福,汤艳杰,刘建明,2006.内蒙古中部锡林浩特-西乌旗早三叠世A型酸性火山岩的地球化学特征及其地质意义.Acta Petrologica Sinica.22(11):2769-2780.
    [322]张晓静,张连昌,靳新娣,吴华英,相鹏,陈志广,2010.内蒙古半砬山钼矿含矿斑岩U-Pb年龄和地球化学及其地质意义.岩石学报.26(5):1411-1422.
    [323]张勇,孙景贵,松权衡,赵志,陈冬,门兰静,白令安,韩世炯,2011.延边天宝山多金属矿床的矿物流体包裹体激光探针40Ar/39Ar测年及其地质意义.矿物岩石.31(2):42-47.
    [324]张遵忠,吴昌志,顾连兴,冯慧,郑远川,黄建华,李晶,孙亚莉,2009.燕辽成矿带东段新台门钼矿床的Re-Os同位素年龄及其地质意义.矿床地质.28(3):313-320.
    [325]赵一鸣,盛继福,王关玉,毕承思.成矿作用地球化学.北京:地震出版社;1997.
    [326]赵一鸣,王大畏,张德全.内蒙古东南部铜多金属成矿地质条件及找矿模式.北京:地震出版社;1994.
    [327]赵一鸣,张德全.大兴安岭及其邻区铜多金属矿床成矿规律与远景评价.北京:地震出版社;1997.
    [328]郑翻身,蔡红军,张振法,2005.内蒙古拜仁达坝、维拉斯托超大型银铅锌矿勘查过程及远景规模评述.西部资源.8(5):7-10.
    [329]郑翻身,蔡红军,张振法,2006.内蒙古拜仁达坝维拉斯托超大型银铅锌矿的发现及找矿意义.物探与化探.30(1):13-25.
    [330]郑永飞,陈江峰.稳定同位素地球化学.北京:科学出版社;2000.
    [331]周振华,吕林素,冯佳睿,李超,李涛,2010a.内蒙古黄岗夕卡岩型锡铁矿床辉钼矿Re-Os年龄及其地质意义.岩石学报.26(3):67-79.
    [332]周振华,吕林素,杨永军,李涛,2010b.内蒙古黄岗锡铁矿区早白垩世A型花岗岩成因:锆石U-Pb年代学和岩石地球化学制约.岩石学报.26(12):21-37.
    [333]朱炳泉.地球科学中同位素体系理论与应用:兼论中国大陆壳幔演化.北京:科学出版社;1998.
    [334]朱裕生.中国主要成矿区带成矿地质特征及矿床成矿谱系.北京:地质出版社;2007.
    [335]邹滔,王京彬,王玉往,袁继明,林龙军,窦金龙,2011.内蒙古敖仑花斑岩型铜钼矿床花岗岩类地质地球化学特征.地质学报.85(2):213-223.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700