用户名: 密码: 验证码:
西藏邦铺式钼多金属矿床—兼论冈底斯成矿带东段钼多金属矿床成矿规律
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
邦铺矿床为冈底斯成矿带东段继沙让钼矿发现以来又一达大型规模的斑岩-矽卡岩型钼多金属矿床。矿床由产出于二长花岗斑岩中的钼(铜)矿体、闪长玢岩中的铜(钼)矿体和产出于洛巴堆组矽卡岩和大理岩中的铅锌矿体组成,矿化元素分带特征明显。本文以邦铺矿床为重点解剖对象,深入开展其成矿理论研究的同时,辅以对区域其他几个重要钼矿成矿特征的剖析,梳理和总结了冈底斯东段主要钼多金属矿床的成矿规律,完善了冈底斯东段矿床成矿亚系列,对于区域找矿有重要指导意义。
     通过开展野外地质调查、钻孔岩心和平硐编录、光-薄片鉴定等工作,对矿体产出特征、矿石组构、围岩蚀变、脉体类型及特征等方面进行了系统研究,划分了矿床成矿期次和矿化阶段。利用电子探针分析对蚀变矿物黑云母、石榴子石、辉石、角闪石等的种属及其形成的物理化学条件进行了分析,在矿区首次发现了铁钙蔷薇辉石和锰铝榴石,提出矽卡岩型铅锌矿体中Ag的成矿潜在性。
     系统的成岩年代学研究表明,成矿岩体二长花岗斑岩和闪长玢岩分别形成于16.23Ma和15.16Ma,无矿黑云母二长花岗岩和石英二长斑岩分别形成于(60.6-70)Ma和15.43Ma;成矿年代学研究结果显示,矿床成矿时代为14.09Ma,为中新世中期成矿。岩浆岩地球化学特征研究结果显示成岩物质源区除含大量壳源物质以外,有明显的幔源物质加入特征,矿床形成于印度-亚洲大陆碰撞中应力松弛所形成的伸展环境。
     同位素、包裹体及单矿物稀土-微量元素等矿床地球化学研究结果表明,主成矿阶段流体来源稳定,以壳源岩浆流体为主,少量幔源流体参与成矿,成矿后期有天水混入;成矿过程经历了岩浆出溶挥发分和流体、超临界流体形成、流体减压沸腾和流体混合等过程。斑岩矿体成矿物质源于地幔与上地壳物质的混染,而铅锌矿体成矿物质源区明显以上地壳物质为主,无或极少量幔源物质混染。成矿物质源区的差异系造成铅锌与铜钼元素分带的主要因素,而成矿岩体含矿性差异以及钼、铜成矿阶段流体性质的差异是导致钼和铜分离的重要因素。在上述研究基础上,构建了矿床成矿模型。
     首次在冈底斯弧背断隆带上识别出了早白垩世的成矿作用,并以钼成矿作用为主线,初步总结了冈底斯东段钼多金属矿成因类型,梳理出五期钼成矿事件,构筑了冈底斯东段铝多金属矿床时空展布格架并相应探讨了其成矿动力学背景。利用铝成矿岩体Hf、Sr同位素地球化学,矿石硫化物Pb同位素地球化学方法系统地阐述了冈底斯东段主要钼多金属矿床成岩-成矿物质源区特征与矿化元素组合分带之间的耦合关系,指出冈底斯东段由南冈底斯南缘向北至南冈底斯中北部,再到冈底斯弧背断隆带幔源物质混入程度由弱增强再减弱的过程使得区域铝多金属矿床矿化元素组合发生了特征性变化。
     对冈底斯东段斑岩型及斑岩-矽卡岩型独立钼矿、钼(铜)矿、铜(铝)矿和钼铜多金属矿成矿岩浆岩基本地质特征和岩石地球化学特征进行了对比和梳理,探讨了成矿岩浆岩性质与成矿元素组合之间的相互关系。通过对哈海岗、玛雄朗和列廷冈矿床成矿时代的定位对冈底斯东段矿床成矿亚系列进行了补充和完善。
Bangpu Mo polymetallic ore deposit of porphyry-skarn type is another large ore deposit since the Sharang Mo deposit found in the east section of the Gangdese metallogenic belt. The ore deposit are composed of three ore bodies which are the Mo (Cu) ore body occurred in the monzonitic granite porphyry, Cu (Mo) ore body occurred in the diorite porphyrite and the Pb-Zn ore body occurred in the skarn and marble of the Luobadui Formation, respectively. Zonation of mineralizaion elements is very obvious. In this paper, the author regards the Bangpu ore deposit as the key study object and carries out study on metallogenic theory deeply, meanwhile, the author takes some study on the geological features of the other main Mo ore deposits in the east section of the Gangdese polymetallic belt. Based on researches of the main Mo polymetallic ore deposits, the author have arranged, and summarized the metallogenic regularity of Mo polymetallic ore deposits and perfected the sub-class metallogenic series in the east section of the Gangdese belt. All these studies have an important guiding significance for the regional prospecting.
     Based on the field geological investigation, geological logging of drill core and mine adit, identification of minerals with polarization microscope and so on, the author have made a systematic research on the occurrence feature of ore bodies, ore fabrics, wall rock alteration, features of veins and types of veins and so on.. Then, the metallogenic episodes and metallogenic stages of Bangpu ore deposit are identified. This paper analyzes the mineral species of some altered minerals for example the biotite, garnets, augites and amphiboles and discusses the physicochemical conditions in the process of mineral formation using the electron microprobe analysis. The author recognizes the spessartite and the ferrobustamite and emphasizes the possibility of the existence of Ag in the skarn type Pb-Zn ore deposit.
     The systematically diagenesis geochronology results show that the ore-forming monzonitic granite porphyry and the diorite porphyrite are formed in16.23Ma and15.16Ma, respectively. The forming ages of the biotite adamellite and the quartz monzonite porphyry which are have no relationship to the ore-forming are (60.6~70) Ma and15.43Ma, respectively. Study of metallogenic geochronology has shown that the ore-forming age of Bangpu deposit is14.09Ma, and it's ore-forming event in the mid Miocene. The results of geochemistry of magmatic rocks show that besides lots of crust-derived materials, there is obvious characteristic of injection of mantle-derived materials in the source of diagenesis
     Geochemical results of Bangpu ore deposit, such as isotope, the inclusions and rare earth-trace elements of single mineral, indicate that the fluid resources of the main mineralization stage is stable, which is most of magma fluid of the crust source with a small amount of mantle-derived fluids involved in mineralization and mixed some meteoric water in the late metallogenic stage. The mineralization process experienced magma exsolution of volatile and fluid, formation of supercritical fluid, processes of fluids boiling after decompressed, fluids mixed and so on. Ore-forming minerals of porphyry-type ore bodies are derived from the contamination of mantle and crustal materials, and ore-forming materials of the lead-zinc ore body are significantly from the upper crustal materials, with almost no mantle-derived materials contamination. The differences of sources of ore-forming mineral are the main reasons for the lead-zinc-copper-molybdenum elements zoning, while thedifferences of propertfes of the ore-forming intrusive rocks and the different properties of fluid between the stages of molybdenum mineralization and copper mineralization are another important factors leading to the separation of molybdenum and copper. Based on the above research, a metallogenic model had been built in this paper.
     It's the first time to identify mineralization of Early Cretaceous in the Gangdese Back-Arc Faulted Uplift Zones. The paper preliminary summaries the genetic types of the Mo polymetallic deposits, figures out five Mo mineralization events, and build the space and time framework of Mo polymetallic deposits in the eastern Gangdese belt, and discusses their metallogenic dynamics background respectively by using the Mo mineralization as the main line. Using the Hf and Sr isotope geochemistry of Mo mineralization intrusions and Pb isotope geochemistry of the ore sulfides, the author systematically elaborates the relations between characteristics of diagenesis and mineralization source and mineralization elements distribution zones among main Mo polymetallic deposits in the eastern Gangdese, and points out that in the eastern section of the Gangdese belt, from the south margin of the South Gangdese to the middle-northern part of the South Gangdese, then to the Back-Arc Faulted Uplift Zones, extent of mixture with mantle materials appears to be weak to enhanced and weakened again. The process makes the characteristics of mineralization elements association vary regularly among regional Mo polymentallic deposits.
     Some comparative and arrangement studies on the geological and geochemical characteristics of ore-forming magmatic rocks of porphyry and porphyry-skarn type Mo deposits, Mo (Cu) deposits, Cu (Mo) deposits and Mo polymetallic deposits have been carried out. On this basis, the paper has discussed the relationship between the properties of ore-forming magmatic rocks and the ore-forming elements association. Some supplement and perfection on the sub-class metallogenic series of the east section of the Gangdese belt has been made after the determination of the metallogenic ages of Hahaigan ore deposit, Maxionglang deposit and the Lietinggang deposit.
引文
Allegre C.J., Courtillot V. Tapponnier P. et al.1984. Structure and evolution of the Himalaya-Tibet oregenic belt. Nature,307:17-22.
    Andersen T.2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chem Geol,192: 59-79.
    Andrew A, Godwin C I, Sinclair A J.1984. Mixing Line Isochrons:A New Interpretation of Galena Lead Isotope Data from Southeastern British Columbia. Economic Geology,79:919-932.
    Audetat A, Pettke T, Heinrich CA, Bodnar RJ.2008. The Composition of Magmatic-Hydrothermal Fluids in Barren and Mineralized Intrusions. Economic Geology,103:877-908
    Audetat A.2010. Source and evolution of molybdenum in the porphyry Mo-Nb deposit at Cave peak, Texas. Journal o petrology,51(8):1739-1760.
    Batchelor RA, Bowden P.1985. Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chemical Geology,48(1-4):43-55.
    Bau M, Dulski P.1995. Comparative study of yttrium and rare earth element behaviours in fluorine rich hydrothermal fluids. Contributions to Mineralogy and Petrology,119:213-223.
    Belousova EA, Griffin WL, O'Reilly SY, Fisher NJ.2002. Igneous zircon:trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology,143(5):602-622.
    Berzina AN, Sotnikov VI, Economou-Elipoulos M, Eliopoulos DG.2005. Distribution of thenium in molybdenite from porphyry Cu-Mo and Mo-Cu deposits of Russia (Siberia) and Mongolia. Ore Geology Reviews,26:91-113.
    Bodnar RJ, Vityk MO.1994. Interpretation of microthermometric data for H2O-NaCl fluid inclusions. In: Vivo B D and Frezzotti M L. Fluid Inclusions in Minerals, Methods and Applications. Virginia Tech, Blackburg,117-130.
    Bodnar RJ.1995. Fluid inclusion evidence for a magmatic source for metals in porphyry copper deposits. In:Thompson J F H. Magmas, Fluids, and Ore Deposits. Mineralogical Association of Canada Short Course Series,23. Mineralogical Association of Canada,139-152.
    Bookstorm AA.1981. Tectonic setting and generation of rocky mountain porphyry molybdenum deposits, in Dickinson WD and Payne WD, eds, relations of tectonics to ore deposits in the Southern Cordillera. Arizona Geological Society Digest.
    Brooks CK, Tegner C, Stein H, Thomassen BJ.2004. Re-Os and 40Ar-39Ar ages of porhpyry Molybdenum deposits in the East Greenland volcanic-Orifted margin. Economic Geology,99:1215-1222.
    Burnard PG, Hu RZ, Turner G, Bi XW.1999. Mantle, crustal and atmosphere noble gases in Ailaoshan Gold deposits, Yunnan Province, China. Geochimica et Cosmochimica Acta,63:1595-1604.
    Cao X.1989. Solubility of molybdenite and the transport of molybdenum in hydrothermal solutions. low State University.
    Carten RB, Geraghtyb EN, Wallker R.1988a. Cyclic developmetn of igneous features and their relationship to high-temperature hydrothermal features in the Henderson porphyry molybdenum deposit, Colorado. Economic Geology,83:266-296.
    Carten RB, Wallker BM, Geraghty EP, Gunow AJ.1988b. Comparison of field-based studies of the Henderson porphyry molybdenum deposit, Colorado with experimental and theoretical models of porphyry systems:in Taylor, R.P, Strong, D.F, eds, recent advances in the geology of tranite-related mineral deposits. The Canadian Institute of Mining and Metallurgy,39:351-366.
    Carten RB, White WH, Stein HJ.1993. High-grade granite-related molybdenum systems:Classification and origin. Geological Association of Canada, Specia Paper,40:521-554.
    Chang K.1973. Review of Sino-Tibetan:A Conspectus (Benedict). JAS,32:335-337.
    Chappell BW.1999. Aluminium saturation in I and S-type granites and the characterization of fractionated haplogranites. Lithos,46(3):535-551.
    Chaussidon M, Albarede F, Sheppard SMF.1989. Sulphur isotope variations in the mantle from ion microprobe analyses of micro-sulphide inclusions. Earth and planetary Science Letters,92(1989): 144-156.
    Chen L, Qin KZ, Li JX, Xiao B, Li GM, Zhao JX, Fan X.2012. Fluid Inclusions and Hydrogen, Oxygen, Sulfur Isotopes of Nuri Cu-W-Mo Deposit in the Southern Gangdese, Tibet. Resources Geology,62(1): 42-62.
    Cherniak DJ, Liang Y.2007. Rare earth element diffusion in natural enstatite. Geochim. Comochim. Acta, 71(5):1324-1340.
    Cherniak DJ, Zhang XY, Wayne NK, Watson EB.2001. Sr, Y, and REE diffusion in fluodite. Chemical Geology,181(1):99-111.
    Chu MF, Chung SL, Song B, Liu DY, Suzanne Y, O'Reilly, Norman J., Pearson, Ji JQ, Wen DJ.2006. Zircon U-Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet. Geology,34:745-748.
    Chung SL, Chu MF, Ji JQ, O'Reilly SY, Pearson NJ, Liu DY, Lee TY, Lo CH.2009. The nature and timing of crustal thickening in Southern Tibet:Geochemical and zircon Hf isotopic constraints from postcollisional adakites. Tectonophysics,477:36-48.
    Clark KF.1972. Stockwork Molybdenum Deposits in the Western Cordillera of North America. Economic Geology,67(6):731-758.
    Clayton RN.1963. The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochimica et Cosmochimica Acta,27(1):43-52.
    Cohen RS, O'Nions RK.1982. The Lead Neodymium and Strontium isotopic structure of Ocean Ridge Basalts. J. Petro,23:299-324.
    Cooke DR, Hollings P, Walshe JL.2005. Giant porphyry copper deposits:Characteristics, distribution, and tectonic controls. Economic Geology,100:801-818.
    Ding L, Lai QZ.2003. New geological evidence of crustal thickening in the Gangdese block prior to the Indo-Asian collision, Chinese Science Bulletin,48 (15):1604-1610
    Doe BR Zartman RE.,1979. Plumbotectonics, the Phanerozoic. In:Geochemistry of hydrothermal ore deposits (H.L. Barnes, ed.). Holt, Rinehart and Winston, New York,22-70.
    Du AD, Wu SQ, Sun DZ, Wang SX, Qu WJ, Richard Markey Holly Stein, John Morgan, Dmitry Malinovskiy.2004. Preparation and Certification of Re-Os Dating Reference Materials:Molybdenite HLP and JDC. Geostandard and Geoanalytical Research,28 (1):41-52
    Farges F, Siewert R, Ponader CW, Brown GE, Pichavantm M, Behrens H.2006. Structural environments around molybdenum in silicate glasses and melts. Ⅱ. Effect of temperature, pressure, H2O, halogens and sulfur. Canadian Mineralogist,44:755-773.
    Faure G, Mensing TM.2005. Isotopes:Principles and Applications.3rd ed. New York:John Wiley & Sons., 256-283.
    Feng R, Kerrich R.1992. Geochemical evolution of granitoids from the Archean Abitibi Southern Volcanic Zone and the Pontiac subprovince, Superor Procincc, Canada:implications for tectonic history and source regions. Chemical Geology,98(1-2):23-70.
    Foster MD.1960. Interpretation of the composition of trioctahedral mincal. U. S. Surey, Prof. Paper,354: 11-49.
    Franklin JM, Roscoe SM, Loveridge WD et al.1983. Lead isotope studies in superior and southern provinces, Geological Survey of Canada, Bulletin,351:1-35.
    Friedman I, O'Neil J R.1977. Compilation of stable isotope fractionation factors of geochemical interest. In:Fleischer M, ed. U. S. Geological professional paper. Washington:U. S. Govst. Print. Off. P440.
    Gaetani M, Garzanti E.1991. Multicyclic history of the northern India contuiental margin (northwestern Hinwlaya). Am. Assoc. Per. Geol. Bull.,75:1427-1446.
    Gao S, Liu XM, Yuan HL, Harrttendorf B, Gunther D, Hu SH.2002. Analysis of forty-two major and trace elements of USGS and NIST SRM Glasses by LA-ICPMS. Geostand Newsl.,22:181-195.
    Gariepy C, Allegre C J, Xu RH.1985. The Pb-isotope geochemistry of granitoids from the Himalaya-Tibet collision zone implication for crustal evolution. Earth and Planetary Science Letters,74:220-234.
    Guo ZF, Wilson M, Liu JQ.2007. Psot-collisional adalotes in south Tibet:Products of partial melting of subducion-modified lower crust. Lithos,96:205-224.
    Gustafosn LB, Hunt JP.1975. The porphyry copper deposit at El Salvador, Chile. Economic Geology, 70(5):857-912.
    Hall DL, Sterner SM, Bodnar RJ.1988. Freezing point depression of NaCl-KCl-H2O solutions. Economic Geology,83:197-202.
    Hall WE, Friedman I, Nash JT.1974. Fluid inclusion and light stable isotope study of the Climax molybdenum deposits, Colorado. Economic Geology,69:804-901.
    Harris AC, Golding SD.2002. New evidence of magamatic-fluid related phyllic alteration:Implications for the genesis of porphyry Cu deposits. Geology,30(4):335-338.
    Harris AC, Kamenetsky VS, White NC, Steele DA.2004. Volatile phase separation in silicic magmas at Bajo de la Alumbrera porphyry Cu-Au deposit, NW Argentina. Resource Geology,54(3):341-356.
    Harris NBW, Xu RH, Lewis CL, Hawkesworth CJ, Zhang YQ.1988. Isotope geochemistry of the 1985 Tibet geotraverse, Lhasa to Golmud. Phil. Trans. R. Soc. Lond. A,327:263-285.
    Harrison TM, Yin A, Grove M, Lovera OM, Ryerson FJ, Zhou XH.2000. The Zedong Window:A record of superposed Tertiary convergence in southeastern Tibet. Journal of Geophysical Research, 105(B8):19211-19230.
    Hass JR, Shock EL, Sassani DC.1995. Rare earthe elements in hydrothermal systems:Estimates of standard partial modal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures. Geochimica et Cosmochinica Acta,59:4329-4350.
    Hedenquist JW, Lowenstern JB.1994. The role of magmas in the formation of hydrothermal ore deposits. Nature,370(6490):519-527.
    Hedenquist JW, Richards JP.1998. The influence of geochemical techniques on the development of genetic models for porphyry copper deposits. Reviews in Economic Geology,10:235-256.
    Heinrich CA, Gunther D, Audetat A, Ulrich T, Frischknecht R.1999. Metal fractionation between magmatic brine and vapor, determined by microanalysis of fluid inclusions. Geology,27:755-758.
    Heinrich CA, Ryan CG, Mernagh TP, Eadington PJ.1992. Segregation of ore metals between magmatic brine and vapor:A fluid inclusion study using PIXE microanalysis. Economic Geology,87: 1566-1583.
    Hoefs J.1997. Stable Isotope Geochemistry.4th ed. Berlin:Springer-Verlag,119-120
    Holmes A.1946. An estimate of the age of the Earth. Nature,157:680-684.
    Holmes A.1947. A revised of the age of the Earth. Nature,159:127-128.
    Hoskin PWO, Schaltegger U.2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry,53(1):27-62.
    Hou ZQ, Yang ZM, Qu XM, Meng XJ, Li ZQ, Beaudoin G, Rui ZY, Gao YF, Khin Zaw.2009. The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Tibetan Orogen. Ore Geology Review,36:25-51.
    Hou ZQ, Gao YF, Qu XM, Rui ZY, Mo XX.2004. Origin of adakitic intrusives generated during mid-Miocene east-west extension in southern Tibet. Earth and Planetary Science Letters,220: 139-155.
    Hou ZQ, Ma HW, Zaw K, Zhang YQ, Wang MJ, Wang Z, Pan GT, Tang RL.2003. The Himalyayn Yulong porphyry copper belt:product of large-scale strike-slip faulting in Eastern Tibet. Economic Geology, 98:125-145.
    Ishihara S.1998. Granitoid series and mineralization in the Circum-pacific Phanerozoic granitec belts. Resource Geolgoy,48:219-224.
    Ji WQ, Wu FY, Chung SL, Li JX, Liu CZ.2009. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chemical Geology,262:229-245.
    Kapp, J., Harrison, T. M., Kapp, P., Marty G, Oscar ML, Ding L,2005. Nyainqentanglha Shan:Awindow into the tectonic, thermal, and geochemical evolution of the Lhasa block, southern Tibet. Journal of Geophysical Research,110:B08413(1-23).
    Keith JD, Shanks WC, Archibald D, Farrar E.1986. Volcanic and intrusive history of the pine grove porphyry molybdenum system, Southwestern Utah. Economic Geology,81:553-577.
    Keppler H.1996. Constraints from partitioning experiments on the composition of subduction zone fluids. Nature,380:237-240.
    Klemm LM, Pettke T, Heinrich CA.2008. Fluid and source magma evolution of the Questa porphyry Mo deposit, New Mexico, USA. Mineralium Deposita,43:533-552.
    Kula CM.2000. Understanding mineral deposits. Dordrecht:Kluwer academic publishers,397-413.
    Leake BE, Woolley AR, Arps CES.1997. Nomenclature of amphiboles:Report of the subcommittee on amphiboles of the international mineralogical association, Commission on new mineral and mineral-names. American Mineralogical,82:1019-1037.
    Lee HY, Chung SL, Lo CH, Ji JQ, Lee TY, Qian Q, Zhang Q.2009. Eocene Neotethyan slab breakoff in southern Tibet inferred from the Linzizong volcanic record. Tectonophysics,477:20-35.
    Lee HY.2007. The Linzizong Volcanic Successions, Southern Tibet:Ages, Geochemical Characteristics and Petrogenesis. Ph.D. Thesis, National Taiwan University.
    Leeuwen TM, Taylor R, Coote A, Longstaff FJ.1994. Porphyry molybdenum mineralization in a continental collision setting at Malala, Northwest Sulawesi, Indonesia. Journal of Geochemical Exploration,50:279-315.
    Li GM, Qin KZ, Ding KS, Liu TB, Li JX, Wang SH, Jiang SY, Zhang XC.2006. Geology, Ar-Ar Age and Mineral Assemblage of Eocene Skarn Cu-Au±Mo Deposits in the Southeastern Gangdese Arc, Southern Tibet:Implications for Deep Exploration. Resources Geology,56(3):315-336.
    Linnen RL, William-Jones AE.1990. Evolution of aqueous-carbonic fluids during contact metamorphism, wall-rock alteration, and molybdenite deposition at Trout Lake, British Columbia. Economic Geology, 85:1840-1856.
    Maheo G., Guillot S., Blichert-Tofa J., Rolland Y., Pecher A.2002. A slab breakoff model for the Neogene thermal evolution of South Karakorum and South Tibet. Earth Science Letter,195:45-58.
    Maniar PD, Piccoli PM.1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin,101(5):635-643.
    Mao JW, Xie GQ, Bierlein F, Qu WJ, Du AD, Ye HS, Pirajno F, Li HM, Guo BJ, Li YF, Yang ZQ.2008. Tectonic implications from Re-Os dating of Mesozoic of Mesozoic molybdenum deposits in the East Qinling-Dabie Orogenic belt. Geochim Cosmochim Acta,72(18):4607-4626.
    Mao JW, Zhang ZC, Zhang ZH, Du AD.1999. Re-Os isotopic dating of molybdenites in Xiaolonggou W (Mo) deposit in northern Qinling Mountains and its geological significance. Geochimica et Cosmochimica Acta,63:1815-1818.
    McCandless TE, Ruiz JR, Canpbell AR.1993. Rhenium behavior in molybdenite in hypogene and near-surface environments:Implications for Re-Os geochronometry. Geochimica et Cosmochimica Acta,57:889-905.
    Me Cutcheon SR, Anderson HE, Robinson PT.1997. Stratigraph and eruptive history of the Late Devonian Mount Pleasant caldera complex, Canadian Appllachians. Geological Magazine,134:17-36.
    Michael Bau.1991. REE mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium. Chemical Geology,93:219-230.
    Middlemost EAK.1994. Naming materials in the magma/igneous rock system. Earthe-Sciences Reviews, 37(3-4):215-224.
    Miller C, Schuater R, Klotzli U, Frank N, Purtacher F.1999. Poat-collisional potassic and ultrapotassic magmatiam in SW Tibet:Geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis. Journal of Petrology,40:1399-1424.
    Mitchell AH, Bell JD.1973. Island-arc evolution and related mineral deposit. The Journal of Geology, 81(4):381-385.
    Mo XX, Hou ZQ, Niu YL, Dong GC, Qu XM, Zhao ZD, Yang ZM.2007. Mantle contributions to crustal thickening during continental collision:Evidence from Cenozoic igneous rocks in southern Tibet. Lithos.96:225-242.
    Mo XX, Yao LN, Dong GC, Zhao ZD, Hou ZQ, Zhou S, Ke S.2008. Contribution of syncollisional felsic magmatism to continental crust growth:A case study of the Paleogene Linzizong volcanic Succession in southern Tibet. Chemical Geology,250:49-67.
    Mutschler FE, Wright EG, Ludington S, Abbott JT.1981. Granite molybdenite systems. Economic Geology, 76(4):874-897.
    O'Neil JR, Taylor HP.1969. Oxygen isotope equilibrium between nmuscovite and water. Journal of Geophysical Research,74(25):6012-6022.
    Ohmoto H, Rye RO.1979. Isotopes of sulfur and carbon.//Barnes HL. Geochemistry of Hydrothermal Ore Deposits. New York:John Wiley & Sons,509-567.
    Ohmoto H.1972. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Economic Geology,67:551-578.
    Pearce JA, Mei H.1988. Volcanic rocks for the 1985Tibet Geotraverse Lhasa to Golmud. Phil. Trans. Roy. Soc. Load. A,327:203-213.
    Pearce JA, Harris NBW, Tindle AG.1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology,25(4):956-983.
    Peccerillo R, Taylor SR.1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology,58(1):63-81.
    Pettke T, Oberli F, Heinrich CA.2010. The magma and metal source of giant porphyry type ore deposits, based on lead isotope microanalysis of individual fluid inclusions. Earth and planetary Science Letters, 296(3-4):267-277.
    Pirajno F.1992. Hydrothermal mineral deposits:Principle and fundamental concepts for the exploration geologyist. Berlin:Speringer Verlag.
    Qu XM, Hou ZQ, Khin Z, Li YG 2007. Characteristics and genesis of Gangdese porphyry copper deposits in the southern Tibetan Plateau:Preliminary geochemical and geochronological results. Ore Geology Reviews 31:205-223.
    Quidelleur X, Grove M, Lovera OM, Harrison TM, Yin A, Ryerson FJ.1997. Thermal evolution and slip history of the Renbu Zedong Thrust, southeastern Tibet. Journal of Geophysical Research, 102(2):2659-2679.
    Redmond PB, Einaudi MT.2010. The Binham Canyon porphyry Cu-Mo-Au deposit. Ⅰ. Sequence of Intrusions, vein formation, and sulfide deposition. Economic Geology,105:43-68.
    Richards JP. 2003. Tectono-magmatic precursors for porphyry Cu (Mo-Au) deposit formation. Economic Geology,98:1515-1533.
    Ripley EM.1986. Origin and concentration mechanisms of copper and nickel in Duluth Complex sulfide zones; a dilemma. Economic Geology,81(4):974-978.
    Ross PS, Jebrak M, Walke BM.2002. Discharge of Hydrothermal Fluids from a magma chamber and concomitant formation of a stratified breccia zone at the Questa Porphyry Molybdenum Deposit, New Mexico. Economic Geology,97(8):1679-1979.
    Scharer U, Xu RH, Allegre CJ.1984. U-Pb geochronology of Gangdese (Transhimalaya) plutonism in the Lhasa-Xigaxe region, Tibet. Earth Planet Sci Lett,69:311-320.
    Seedorff E, Dilles JH, Proffett JM, Einaudi MT, Zurcher L, Stavastw JA, Johnson DA, Barton MD.2005. Porphyry detposits characetristics and origin of hypogene features. Economic Geology 100th Anniversary Volume:251-298.
    Seedorff E, Einaudi MT.2004a. Henderson porphyry molybdenum system, Colorado Ⅰ:Sequence and abundance of hydrotermal mineral assemblages flow paths of evolving fluids and evolutionary style. Economic Geology,99(1):30-37.
    Seedorff E, Einaudi MT.2004b. Henderson porphyry molybdenum system, Colorado Ⅱ:Decoupling of introduction and deposition of metals during geochemical evolution of hydrothermal fluids. Economic Geology,99(1):39-72.
    Selby D, Creaster RA.2004. Macroscale NTIMS and microscale LA-ICP-MS Re-Os isotopic analysis of molybdenite:Testing spatial restrictions for reliable Re-Os age determinations, and implications for the decoupleing of Re and Os within molybdenite. Geochimica et Cosmochimica Acta,68(19): 3897-3908.
    Selby D, Nesbitt BE, Muehlenbachs K, Prochaska W.2000. Hydrothermal alteration and fluid chemistyr of the Endako porphyry molybdenum deposit, British Columbia. Economic Geology,95:183-202.
    Shanon RD.1976. Revised effective ionic radii and systematic studies of internatomic distances in halides and chalcogenides. Acta Cyst., A,32(5):751-767.
    Sharp JE.1978. A molybdenum ineralized breccia pipe complex Redwell Basin, Colorado. Economic Geology,73(3):369-382.
    Shinohara H, Kazahaya K, Lowenstern JB.1995. Volatile transport in a convecting magma column: Implicaitons for porphyry Mo mineralization. Geology,23:1091-1094.
    Sillitoe RH.1972. A plate tectonic model for the origin of porphyry copper deposits. Economic Geology, 68:1-10.
    Sillitoe RH.1980. Types of porphyry molybdenum deposits. Mining Magazine,142:550-553.
    Simmons SF, Sawkins FJ, Schlutter DJ.1987. Mantle-derived helium in two Peruvian hydrothermal ore deposits. Nature,329:429-432.
    Smirnov VI, Ginzburg AI, Grigoriev VM, Yakovlev GF.1983. Studies of mineral depostis. Moscow:Mir Publishers.
    Stein HJ, Hannah JL.1985. Movement and origin of ore fluids in Climax-type systems. Geology, 13:469-474.
    Stein HJ, Markey RJ, Morgan JW, Hannah JL and Schersten A.2001. The remarkable Re-Os chronometer in molybdenite:How and why it works. Terra Nova,13:479-486.
    Stein HJ, Markey RJ, Morgan MJ, Du AD, Sun Y.1997. Highly precise and accurate Re-Os ages for molybdenite from the East Qinling-Dabie molybdenum belt, Shanxi province, Chiana. Economic Geology,92:827-835.
    Stuart FM, Burnard PG, Taylor RP, Turner G.1995. Resolving mantle and crustal contributions to ancient hydrothermal fluids:He-Ar isotopes in fluid inclusions from DaeHwa W-Mo mineralization, South Korea. Geochimica et Cosmochimica Acta,59:4663-4673.
    Sun SS, McDonough WF.1989. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes//Saunders A D, Norry M J. Magmatism in the Ocean Basins USA: Geological Society Special Publication,42:313-345.
    Sun SS.1980. Lead isotopic study of young volcanic rocks from mid-ocean ridges, ocean islands and island arcs. Philos. Trans. R. Soc. London. Ser. A.297:409-445.
    Sverjensky DA.1984. Europium redox equilibria in aqueous solution. Earth Planet Sci Letter,67(1):70-78.
    Taner H, William-Jones AE, Wood SA.1998. The nature, origin, and physicochemical controls of hydrothermal Mo-Bi mineralization in the Cadillac deposit, Quebec, Canada. Mineralium Deposits,33: 579-590.
    Taylor H P.1974. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Econ. Geol.,69(6):843-883
    Taylor SR, McLennan SM.1985. The continental crust:its composition and evolution. Oxford:Blackwell Scientific Publication.
    Tosdal RM, Richards JP.2001. Magmatic and structural controls on the development of porphyry Cu±Mo±Au depostis. Society of Economic Geologists Reviews,14:157-181.
    Ulrich T, Mavrogenes J.2008. An experimental study of the solubility of molybdenum in H2O and KCl-H2O solutions from 500℃ to 800℃, and 150 to 300 MPa.Geochimica et Cosmochimica Acta,72: 2316-2330.
    Veizer J, Hoefs J.1976. The nature of 18O/16O and 13C/12C secular trends in sedmentarv carbonate rocks. Geochim. Cosmochim. Acta,40:1387-1395
    Vidal P, Cocherie A, LeFort P.1982. Geochemical investigations of the origin of the Manaslu leucogranite (Himalaya, Nepal). Geochim. Cosmochim. Acta,46:2279-2292.
    Wallace SR, Mackenzie WB, Blair RG, Muncaster NK.1978. Geology of the Urad and Henderson molybdenite deposits, Clear Creek County, Colorado, with a section on a comparison of these deposits with thosed at Climax, Colorado. Economic Geology,73:325-368.
    Wallace SR.1995. The Climax-type molybdenite deposits what they are, where they are, and why they are. Economic Geology,90(5):1359-1380.
    Wang LQ, Chen YC, Tang JX, Lv PR, Luo MC, Wang LQ, Chen W, Leng QF.2012. LA-ICP-MS zircon U-Pb dating of intermediate-acidic intrusive rocks and molybdenite Re-Os dating from the Bangpu Mo(Cu) deposit, Tibet and its geological implication. Acta Geologica Sinica,86(5):1225-1240.
    Wang ZH, Liu YL, Liu HF, Guo LS, Zhang JS, Xu KF.2012. Geochronology and geochemistry of the Bangpu Mo-Cu porphyry ore deposit, Tibet. Ore Geology Reviews,46:95-105.
    Wen DR, Liu DY, Chung SL, Chu MF, Ji JQ, Zhang Q, Song B, Lee TY, Yeh MW, Lo CH.2008. Ziron SHRIMP U-Pb ages of the Gangdese Batholith and implications for Neotethyan subduction in southern Tibet. Chemical Geology,252:191-201.
    Westra G, Keith SB.1981. Classification and genesis of stockwork molybdenum deposits. Economic Geology,76:844-873.
    Whalen JB, Anderson RG, Struik LC, Villeneuve ME.2001. Geochemistry and Nd isotopes of the Francois Lake plutonic suite host and possible progenitor to the Endako molybdenum camp central British Columbia. Canadian Journal of Earth Science,38(4):603-618.
    White WH, Bookstrom AA, Kamilli RJ, Ganster MW, Smith RP, Ranta DE, Steininger RC.1981. Character and origin of Climax-type molybdenum deposits (in Economic Geolgoy 75th Anniversary Volume, 1905-1980) Economic Geology Pbulish Corporation United States.270-316.
    Wones DR, Eugster HP.1965. Stability of biotite experiment theory and application. Am. Mineral,50: 1228-1272.
    Wood SA, Crerar DA, Borcsik MP.1987. Solubility of the assemblage pyrite- pyrrhotite- magnetite-sphalerite -galena- gold -stibnite -bismuthinite- argentite -molybdenite in H2O-NaCl-CO2 solutions from 200℃to 350℃. Economic Geology,82:1864-1887.
    Woodcock JR, Hollister VF.1978. Porphyry molybdenite deposits of the North American Cordillera. Minerals Science Engineering,10:3-18.
    Wright JB.1969. A simple alkalinity ratio and its application to questions of non-orogenic granite genesis. Geological Magazine,106(4):370-384.
    Wu FY, Jahn BM, Wilde SA, Lo CH, Yui TF, Lin Q, Ge WC, Sun DY.2003. Highly fractionated I-type granites in NE China(I):Geochronology and petrogenesis. Lithos,66(3-4):241-273.
    Yang JS, Xu ZQ, Li ZL, Xu XZ, Li TF, Chen SY, Robinson, PT.2009. Discovery of an eclogite belt in the Lhasa block, Tibet:A new border for Paleo-Tethys? Journal of Asian Earth Sciences,34:76-89.
    Yang K, Bodnar R.1994. Magmatic-hydrothermal evolution in the "bottoms" of porphyry copper systems: Evidence from silicate melt and aqueous fluid inclusions in granitoid intrusions in the Gyeongsang Basin, South Korea. International Geological Reviews,36:608-628.
    Yaxley GM, Green DH, Kamenetsky V.1998. Carbonatite metasomatism in the southeastern Auatralia lithosphere. Journal of Petrology,39:1917-1930.
    Ye XR, Tao MX, Yu CA, Zhang MJ.2007. Helium and neon isotopic compositions in the ophiolites from the Yarlung Zangbo River, Southwestern China:The information from deep mantle. Science in China Series D:Earth Sciences,50:801-812.
    Yin A, Harrison TM.2000. Geologic evolution of the Himalayan-Tibetan orogen. Annu. Rev. Earth Planet. Sci.,28:211-263.
    Yokoi K, Matsubayashi N, Miyanaga T, Watanabe I, Ikeda S.1993. Studies on the structure of molybdenum (Ⅵ) in acidic solution by XANES and EXAFS. Polyhedron,12:911-914.
    Zajacz Z, Halter WE.2009. Copper transport by high temperature, sulfur-rich magmatic vapor:Evidence from silicate melt and vapor inclusions in a basaltic andesite from the Villarrica volcano (Chile). Earth and Planetary Science Letters,282:115-121.
    Zartman RE, Doe BR.1981. Plumbotectonics-The model. Tectonophysics,75:135-162.
    Zeng LS, Liu J, Gao LE, Chen FY, Xie KJ. Early Mesozoic high-pressure metamorphism within the Lhasa Block, Tibet and implications for regional tectonics. Earth Science Frontiers,16(2):140-151.
    Zhao JX, Qin KZ, Li GM, Li JX, Xiao B, Chen L.2012. Geochemistry and petrogenesis of granitoids at Sharang Eocene porphyry Mo deposit in the main stage of India-Asia continental collision, Northern Gangdese, Tibet. Resources Geology,62(1):84-98.
    Zhao JX, Qin KZ, Li GM, Li JX, Xiao B, Chen L.2013. Collision-related genesis for the Sharang porphyry molybdenum deposit, Tibet:Evidence from zircon U-Pb ages, Re-Os ages and Lu-Hf isotopes. Ore Geology Reviews, accepted manuscript.
    Zheng YC, Hou ZQ, Li W, Liang W, Huang KX, Li QY, Sun QZ, Fu Q, Zhang S, Pan FC.2012. Petrogenesis and geological implications of the Oligocene CHongmuda-Mingze adakitic intrusions and its mafic enclaves, southern Tibet. The Jourrnal of Geology.
    Zhu DC, Mo XX, Niu YL, Zhao ZD, Wang LQ, Pan GT, W FY.2009a. Zircon U-Pb dating and in-situ Hf isotopic analysis of Permian peraluminous granite in the Lhasa Terrane, southern Tibet:Implications for Permian collisional orogeny and paleogeography. Tectonophysics,469:48-60.
    Zhu DC, Pan GT, Chung SL, Liao ZL, Wang LQ, Li GM.2008. SHRIMP zircon age and geochemical constraints on the origin of Lower Jurassic volcanic rocks from the Yeba Formation, southern Gangdese, south Tibet. International Geology Review,50:442-471.
    Zhu DC, Zhao ZD, Niu Y L, Mo XX, Chung SL, Hou ZQ, Wang LQ, Wu FY.2011. The Lhasa Terrane: Record of a microcontinet and its histories of drift and growth. Earth and Planetary Science Letters, 301:241-255.
    Zhu DC, Zhao ZD, Niu YL, Mo XX, Chung SL, Hou ZQ, Wang LQ, Wu FY.2010. The Lhasa Terrane: Record of a microcontinet and its histories of drift and growth. Earth and Planetary Science Letters 301:241-255.
    Zhu DC, Zhao ZD, Pan GT, Lee HY, Kang ZQ, Liao ZL, Wang LQ, Li GM, Dong GC, Liu B.2009b. Early cretaceous subduction-related adakite-like rocks of the Gangdese Belt, southern Tibet:Products of slab melting and subsequent melt-peridotite interaction?. Journal of Asian Earth Science,34:298-309.
    Zindle A, Hart SR.1986. Chemical geodynamics. Annual, Review, Earth planetary Science Letter, 14:493-573.
    安三元,卢欣祥.1984.东秦岭斑岩组合的地质特征及成矿关系.花岗岩地质和成矿关系(国际学术论文集).南京:江苏科学技术出版社.
    包志伟,赵振华.1998.东坪金矿床成矿过程中稀土元素活动性.地球化学,27(1):81-89.
    包志伟,曾乔松,赵太平,原振雷.2009.东秦岭钼矿带南泥湖-上房沟花岗斑岩成因及其对钼成矿作用的制约.岩石学报,25(10):2523-2536.
    毕献武,胡瑞忠,D.H.Cornell.2001富碱侵入岩与金成矿关系:云南省姚安金矿床成矿流体形成演化的微量元素和同位素证据.地球化学,30(3):264-272.
    曹圣华.2012.西藏尼雄式铁矿及冈底斯中部铁铜矿区域成矿规律研究.中国地质大学(北京)博士论文,12-27.
    曾忠诚,刘德民,泽仁扎西,尼玛次仁.2009.西藏冈底斯东段叶巴组火山岩地球化学特征及其地质构造意义.吉林大学学报(地球科学版),39(3):435-442.
    陈福明.1981.从冈底斯岩浆杂岩带时空分布特征试论雅鲁藏布江深断裂的发生和发展.地球化学,(3):255-260.
    陈雷,秦克章,李光明,肖波,李金祥,江化寨,陈金标,赵俊兴,范新,韩逢杰,黄树峰,琚宜太.2011.西藏山南努日铜钼钨矿床矽卡岩地球化学特征及成因.地质与勘探,47(1):78-88.
    陈雷.2011.冈底斯南缘渐新世努日矽卡岩-斑岩型铜钨钼矿床成矿作用.中国科学院地质与地球物理研究所博士学位论文.
    陈雷,秦克章,李光明,李金祥,肖波,江化寨,赵俊兴,范新,江善元.2012.西藏冈底斯南缘努日铜钨目矿床地质特征与矽卡岩矿物学研究.矿床地质,31(3):417-437.
    陈小丹,叶会寿,毛景文,汪欢,褚松涛,程国祥,刘彦伟.豫西雷门沟斑岩钼矿床成矿流体特征及其地质意义.地质学报,85(10):1629-1641.
    陈衍景,李超,张静,李震,王海华.2000.秦岭铝矿带斑岩体锶氧同位素特征与岩石成因机制和类型.中国科学(D辑),30(S):64-72.
    陈衍景,张成,李诺,杨永飞,邓轲.2012.中国东北钼矿床地质.吉林大学学报(地球科学版),42(5):1223-1254.
    陈玉水,王成东,杜庆安.2011.西藏山南明则矿区斑岩型钼矿地质特征及外围找矿预测.地质与勘探,47(1):31-35.
    陈毓川.1983.华南与燕山期花岗岩有关的稀土、稀有、有色金属矿床成矿系列.矿床地质,(2):15-24.
    陈毓川,黄民智,徐珏,艾永德,李祥明,唐绍华,孟令库.1985.大厂锡石-硫化物多金属矿带地质特征及成矿系列.地质学报,(3):228-240.
    陈毓川,裴荣富,张宏良等.1989.南岭地区与花岗岩有关的有色、稀有金属矿床地质.北京:地质出版社.
    陈毓川,裴荣富,宋天锐等,1993.中国矿床成矿系列.第五届全国矿床会议论文集.北京:地质出版社,89-91.
    陈毓川,毛景文等.1995.桂北地区矿床成矿系列和成矿历史演化轨迹.北京:地质出版社.
    陈毓川.1997.矿床的成矿系列研究现状与趋势.地质与勘探,33(1):21-25.
    陈毓川,裴荣富,王登红.2006.三论矿床的成矿系列问题.地质学报,80(10):1501-1507.
    陈毓川,王登红等.2010.中国西部重要成矿区带矿产资源潜力评估.北京:地质出版社.
    陈志广,张连昌,万博,张玉涛,吴华英.2008.内蒙古乌奴格吐山斑岩铜钼矿床低Sr-Yb型成矿斑岩地球化学特征及地质意义.岩石学报,24(1):115-128.
    程文斌,顾雪祥,唐菊兴,王立强,吕鹏瑞,钟康惠,刘晓吉,高一鸣.2010.西藏冈底斯-念青唐古拉成矿带典型矿床硫化物Pb同位素特征一对成矿元素组合分带性的指示.岩石学报,26(11):3350-3362.
    程文斌.2011.西藏冈底斯-念青唐古拉成矿带典型矽卡岩矿床研究.中国地质大学(北京)博士学位论文,16-22.
    程裕淇,赵一鸣,陆松年.1976.我国几组主要铁矿类型.地质科技,(2):8-29.
    程裕淇,陈毓川,赵一鸣.1979.初论矿床的成矿系列问题.中国地质科学院院报,第1号,32-58.
    程裕淇,陈毓川,赵一鸣,宋天锐.1983.再论矿床的成矿系列问题.中国地质科学院院报,第6号.
    代军治,毛景文,杨富全,叶会寿,赵财胜,谢桂青,张长青.2006.华北地台北缘燕辽钼(铜)成矿带矿床地质特征及动力学背景.矿床地质,25(5):598-612.
    代军治.2008.燕辽成矿带钼(铜)矿床成矿作用及动力学背景.中国地质科学院博士学位论文.
    邓小华,李文博,李诺,糜梅,张颖.2008.河南嵩县纸房钼矿床流体包裹体研究及矿床成因.岩石学报,24(9):2]33-2148.
    丁林,来庆洲.2003.冈底斯地壳碰撞前增厚及隆升的地质证据:岛弧拼贴对青藏高原隆升及扩展历史的制约.科学通报,48(8):836-842
    丁振举,姚书振,刘丛强,周宗桂,杨明国.2003.东沟坝多金属矿床喷流沉积成矿特征的稀土元素地球化学示踪.岩石学报,19(4):792-798.
    杜安道,何红蓼,殷宁万,邹晓秋,孙亚莉,孙德忠,陈少珍,屈文俊.1994.辉钼矿的铼-锇同位素地质年龄测定方法研究.地质学报,68(4):339-347.
    杜安道,赵敦敏,王淑贤,孙德忠,刘敦一.2001Carius管溶样和负离子热表面电离质谱准确测定辉钼矿铼-锇同位素地质年龄.岩矿测试,20(4):247-252
    杜保峰,魏俊浩,王启,李艳军,刘国春,于海涛,刘永利.2010.中国东部钼矿成矿背景与成岩-成矿时差讨论.矿床地质,29(6):935-955.
    杜等虎,杨志明,李秋耘,刘云飞,格桑平措,王海勇.2012.西藏厅宫矿区始新世斑岩的厘定及其地质意义.矿床地质,31(4):745-757.
    杜光树,姚鹏,潘凤雏,粟登奎,李文彬,宁英毅.1998.喷流成因矽卡岩与成矿-以西藏甲马铜多金属矿床为例.成都:四川科学技术出版色,82-113.
    杜泽忠,顾雪祥,李关清,章永梅,程文斌,景亮兵,张兴国.2011.藏南拉木由塔锑(金)矿床S、Pb同位素组成及指示意义.现代地质,25(5):853-860.
    范丹.1995.世界钼矿产量-览表.稀有金属快报.(5):14-15.
    范建国,倪培,苏文超,漆亮,田京辉.2000.辽宁四道沟热液金矿床中石英的稀土元素的特征及意义.岩石学报,16(4):587-590.
    范新,陈雷,秦克章,肖波,李金祥,李秋平,陈玉水,陈金标,赵俊兴,李光明,黄树峰,琚宜太.2011.西藏山南地区明则斑岩钼矿床蚀变矿化特征与成矿时代.地质与勘探,47(1):89-98.
    方树元.2003.西藏自治区乃东县劣布铜矿区的矿床地质特征及找矿远景分析.地质找矿论丛,18(S1):48-51.
    费光春,多吉,温春齐,阳正熙,龙训荣,周雄.2011.西藏洞中拉铅锌矿床S、Pb、Sr同位素组成对成矿物质来源的示踪.矿物岩石,31(4):52-57.
    丰成友,赵一鸣,李大新,刘建楠,肖晔,李国臣,马圣超.2011.青海西部祁漫塔格地区矽卡岩型铁铜多金属矿床的矽卡岩类型和矿物学特征.地质学报,85(7):1108-1115.
    付治国,靳拥护,吴飞,周明.2007.东秦岭-大别山5个特大型铝矿床的成矿母岩地质特征分析.地质找矿论丛,22(4):277-281.
    高顺宝,郑有业.2006.西藏驱龙超大型斑岩铜矿床成矿作用的地球化学控制.地质科技情报,25(2):41-46.
    高一鸣,陈毓川,唐菊兴,杜欣,李新法,高明,蔡志超.2009.西藏工布江达县亚贵拉铅锌钼多金属矿床石英斑岩锆石SHRIMP定年及其地质意义.地质学报,83(10):1436-1444.
    高一鸣,陈毓川,唐菊兴.2010a.西藏沙让斑岩钼矿床锆石SHRIMP定年和角闪石40Ar-39Ar定年及其地质意义.矿床地质,29(2):323-331.
    高一鸣.2010b.西藏工布江达县亚贵拉-沙让多金属矿床地质特征及区域成矿研究.中国地质科学院博士学位论文.
    高一鸣,陈毓川,唐菊兴,李超,李新法,高明,段志超.2011a.西藏工布江达地区亚贵拉铅锌钼矿床辉钼矿Re-Os测年及其地质意义.地质通报,30(7):1027-1036.
    高一鸣,陈毓川,王成辉,侯可军.2011b.亚贵拉-沙让-洞中拉矿集区中新生代岩浆岩Hf同位素特征与岩浆源区示踪.矿床地质,30(2):279-291.
    高一鸣,陈毓川,唐菊兴,罗茂澄,冷秋锋,王立强,杨海锐,普布次仁.2012.西藏曲水县达布斑岩铜(钼)矿床成岩成矿年代学研究.地球学报,33(4):613-623.
    耿全如,潘桂棠,金振民,王立全,朱弟成,廖忠礼.2005.西藏冈底斯带叶巴组火山岩地球化学及成因.地球科学-中国地质大学学报,30(6):747-757.
    耿全如,潘桂棠,王立全,朱弟成,廖忠礼.2006.西藏冈底斯带叶巴组火山岩同位素地质年代.沉积与特提斯地质,26(1):1-7.
    耿全如,王立全,潘桂棠,金振民,朱弟成,廖忠礼,李光明,李奋其.2007.西藏冈底斯带石炭纪陆缘裂陷作用:火山岩和地层学证据.地质学报,81(9):1259-1274.
    耿全如.2007.西藏冈底斯晚古生代火山岩岩石学、地球化学及其大地构造意义.中国地质大学博士学位论文,37-94.
    管琪,朱弟成,赵志丹,董国臣,莫宣学,刘勇胜,胡兆初,袁洪林.2011.西藏拉萨地块南缘晚白垩世镁铁质岩浆作用的年代学、地球化学及意义.岩石学报,27(7):2083-2094.
    韩发.如何解释陈家杖子金矿的铅同位素资料.矿床地质,2006,25(5):582-589.
    韩逢杰.2006.西藏桑日县明则斑岩铜矿地质特征及找矿前景.地质找矿论丛,21(S1):20-21.
    郝杰,周新华,李齐,陈文寄.1996.沿雅鲁藏布江(东段)地区推覆与反向冲断构造的地质特征及其形成机制.1996.地震地质,18(1):30-35.
    和钟铧,杨德明,王天武.2006.西藏嘉黎断裂带凯蒙蛇绿岩的年代学、地球化学特征及大地构造意义.岩石学报,22(2):653-660.
    和钟铧,杨德明,郑长青,王天武.2006.冈底斯带门巴花岗岩同位素测年及其对新特提斯洋俯冲时代的约束.地质论评,52(1):100-105.
    侯增谦,曲晓明,王淑贤,高永丰,杜安道,黄卫.2003.西藏高原冈底斯斑岩铜矿带辉钼矿Re-Os年龄:成矿作用时限与动力学背景应用.中国科学(D辑),33(7):609-618.
    侯增谦,高永丰,孟祥金,曲晓明,黄卫.2004.西藏冈底斯中新世斑岩铜矿带:埃达克质斑岩成因与构造控制.岩石学报,20(2):239-248.
    侯增谦,莫宣学,高永丰,杨志明,董国臣,丁林.2006a.印度大陆与亚洲大陆早期碰撞过程与动力学模型-来自西藏冈底斯新生代火成岩证据.地质学报,80(9):1233-1246.
    侯增谦,莫宣学,杨志明,王安建,潘桂棠,曲晓明,聂凤军.2006b.青藏高原碰撞造山带成矿作 用:构造背景、时空分布和主要类型.中国地质,33(2):340-347.
    侯增谦,郑元川,杨志明,杨竹森.2012.大陆碰撞成矿租用:I.冈底斯新生代斑岩成矿系统.矿床地质,31(4):647-670.
    胡波,李泊洋,张明,张兰玲.2011.西藏门巴地区嘉黎断裂带变形特征及演化.世界地质,30(4):585-592.
    胡道功,吴珍汉,江万,石玉若,叶培盛,刘琦胜.2005.西藏念青唐古拉岩群SHRIMP锆石U-Pb年龄和Nd同位素研究.中国科学D辑:地球科学,35(1):29-37.
    胡瑞忠,毕献武.1999.哀牢山金矿带金成矿流体He和Ar同位素地球化学.中国科学D辑:地球科学,29(4):321-330.
    胡瑛,陈懋弘,董庆吉,黄庆文.2009.贵州锦丰(烂泥沟)金矿床含砷黄铁矿和脉石英及其包裹体的微量元素特征.高校地质学报,15(4):506-516.
    黄典豪,聂凤军,王义昌,姜秀杰.1984.东秦岭地区钼矿床铅同位素组成特征及成矿物质来源初探.矿床地质,3(4):20-27.
    黄典豪,王义昌,聂凤军,姜秀杰.1985.一种新的钼矿床类型-陕西黄龙铺碳酸岩脉型钼(铅)矿床地质特征及成矿机制.地质学报,(3):241-255.
    黄典豪,吴澄宇,杜安道,何红蓼.1994.东秦岭地区钼矿床的铼-锇同位素年龄及其意义.矿床地质,13(3):221-230.
    黄典豪,杜安道,吴澄宇,刘兰笙,孙亚莉,邹晓秋.1996.华北地台钼(铜)矿床成矿年代学研究-辉钼矿的Re-Os年龄及其地质意义.矿床地质,15(4):365-371.
    黄凡,陈毓川,王登红,袁忠信,陈郑辉.2011a.中国钼矿主要矿集区及其资源潜力探讨.中国地质,38(5):1111-1129.
    黄凡,王登红,陆三明,陈毓川,王波华,李超.2011b.安徽省金寨县沙坪沟铝矿辉钼矿Re-Os年龄-兼论东秦岭-大别山中生代钼矿成矿作用期次划分.矿床地质,30(6):1039-1057.
    黄志英,李光明.2004.西藏雅鲁藏布江成矿区斑岩型铜矿基本特征与找矿潜力.地质与勘探,40(1):1-6.
    吉林大学地质调查研究院.2005.1:25万门巴区幅地质调查成果与进展.沉积与特提斯地质,22(1-2):100-110.
    纪伟强,吴福元,锺孙霖,刘传周.2009.西藏南部冈底斯岩基花岗岩时代与岩石成因.中国科学D辑:地球科学,39(7):849-871.
    贾建称,温长顺,王根厚,高春光,杨国东.2005.冈底斯地区林子宗群火山岩岩石地球化学特征.中国地质,32(3):396-402.
    简伟,柳维,石黎红.2010.斑岩钼矿床研究进展.矿床地质,29(2):308-316.
    江化寨,陈自康.2005.西藏自治区乃东县劣布铜矿综合地质特征.地质找矿论丛,20(S1):81-86.
    江化寨,江善元.2006.西藏劣布铜矿的基本特征及成因初探.地质找矿论丛,21(S1):10-14.
    康志强,许继峰,陈建林,王保弟.2009.藏南白垩纪桑日群麻木下组埃达克岩的地球化学特征及成因意义.地球化学,38(4):334-344.
    康志强,许继峰,陈建林,王保弟,董彦辉.2010.西藏南部桑日群火山岩的时代:来自晚期马门侵入体的约束.地球化学,39(6):520-530.
    郎殿有,李伟.1998.内蒙古乌拉山金矿带硫同位素特征研究.内蒙古地质,1:24-34.
    郎兴海,陈毓川,唐菊兴,李志军,黄勇,王成辉,陈渊,张丽.2010a.西藏谢通门县雄村斑岩型铜金矿集区I号矿体的岩石地球化学特征:对成矿构造背景的约束.地质与勘探,46(5):887-896.
    郎兴海,唐菊兴,陈毓川,李志军,黄勇,王成辉,陈渊,张丽.2010b.西藏谢通门县雄村斑岩型铜金矿集区1I号矿体中辉钼矿Re-Os年代学及地质意义.矿物岩石,30(4):55-61.
    郎兴海,唐菊兴,陈毓川,李志军,黄勇,王成辉,陈渊,张丽,周云.2012.西藏冈底斯成矿带南缘新特提斯洋俯冲期成矿作用:来自雄村矿集区I号矿体的Re-Os同位素年龄证据.地球科学,37(3):515-521.
    郎兴海.2012.西藏雄村斑岩型铜金矿集区成矿作用与成矿预测.成都理工大学博士学位论文,35-45.
    李冰,赵志丹,王亮亮,董国臣,董昕.2007.西藏冈底斯成矿带驱龙斑岩铜钼矿的岩石地球化学特征.物探化探计算技术,29(S):195-201.
    李才,王天武,李惠民,曾庆高.2003.冈底斯地区发现印支期巨斑花岗闪长岩.-古冈底斯造山的存在证据.地质通报,22(5):364-366.
    李丹,温春齐,周雄,周玉.2009.西藏邦铺钼(铜)多金属矿床锶同位素示踪.矿物学报,S:311-312.
    李法岭.2011.河南大别山北麓千鹅冲特大隐伏斑岩型钼矿床地质特征及成矿时代.矿床地质,30(3):457-468.
    李奋其,高明,唐文清,梁婷.2010.西藏亚贵拉含钼岩体锆石LA-ICP-MS年龄和地质意义.中国地质,37(6):1566-1574.
    李光明,王高明,高达发,黄志英,姚鹏.2002.西藏冈底斯铜矿资源前景与找矿方向.矿床地质,21(S1):144-147.
    李光明,芮宗瑶.2004.西藏冈底斯成矿带斑岩铜矿的成岩成矿年龄.大地构造与成矿学,28(2):165-170.
    李光明,刘波,屈文俊,林方成,佘宏全,丰成友.2005.西藏冈底斯成矿带的斑岩-矽卡岩成矿系统:来自斑岩矿床和矽卡岩型铜多金属矿床的Re-Os同位素年龄证据.大地构造与成矿学,29(4):482-490.
    李光明,秦克章,陈雷,陈金标,范新,琚宜太.2011.冈底斯东段山南地区第三纪矽卡岩-斑岩Cu-Mo-W(Au)多金属矿床勘查模型机深部找矿意义.地质与勘探,47(1):20-30.
    李皓揚,锺孙霖,王彦斌,朱弟成,杨进辉,宋彪,刘敦一,吴福元.2007.藏南林周盆地林子宗火山岩的时代、成因及其地质意义:锆石U-Pb年龄和Hf同位素证据.岩石学报,23(2):493-500.
    李厚民,沈远超,毛景文,刘铁兵,朱和平.2003.石英、黄铁矿及其包裹体的稀土元素特征-以胶东焦家式金矿为例.岩石学报,19(2):267-274.
    李金祥,秦克章,李光明,杨列坤.2007.冈底斯中段尼木斑岩铜矿田的K-Ar、40Ar/39Ar年龄:对岩浆-热液系统演化和成矿构造背景的制约.岩石学报,23(5):953-966.
    李诺,陈衍景,张辉,赵太平,邓小华,王运,倪智勇.2007.东秦岭斑岩钼矿带的地质特征和成矿构造背景.地学前缘,14(5):186-195.
    李晓峰,Yasushi Watanabe,屈文俊.2007.江西永平铜矿花岗质岩石的岩石结构、地球化学特征及其成矿意义.岩石学报,23(10):2353-2365.
    李永峰,毛景文,胡华斌,郭保健,白凤军.2005.东秦岭钼矿类型、特征、成矿时代及其地球动力学背景.矿床地质,24(3):292-304.
    李永峰,毛景文,刘敦一,王彦斌,王志良,工义天,李晓峰,张作衡,郭保健.2006.豫西雷门沟斑岩钼矿SHRIMP锆石U-Pb和辉钼矿Re-Os测年及其地质意义.地质论评,52(1):122-129.
    李永胜.2009.西藏甲玛铜多金属矿床地质特征及矿床成因探讨.北京:中国地质大学.
    李再会,邓江红,肖渊甫,高媛.2008.冈底斯中段林子宗火山岩岩石地球化学特征.矿物岩石地球化学通报,20-26.
    梁婷,王登红,蔡明海,陈振宇,郭春丽,黄惠民.2008.广西大厂锡多金属矿床S、Pb同位素组成对成矿物质来源的示踪.地质学报,82(7):967-977.
    刘斌,段光贤.1987NaCl-H2O溶液包裹体的密度式和等容式及其应用.矿物学报,7(4):345-351.
    刘斌.2001.中高盐度NaCl-H2O包裹体的密度式和等容式及其应用.地质论评,47(6):617-622.
    刘鸿飞.1993.拉萨地区林子宗火山岩系的划分和时代归属.西藏地质,2:59-69.
    刘建明,刘家军,郑明华,顾雪祥.1998.微细浸染型金矿床的稳定同位素特征与成因探讨.地球化学,27(6):585-591.
    刘琦胜,江万,简平,叶培盛,吴珍汉,胡道功.2006.宁中白云母二长花岗岩SHRIMP锆石U-Pb年龄及岩石地球化学特征.岩石学报,22(3):643-652.
    刘婷婷,唐菊兴,刘鸿飞,张金树,崔晓亮,高一鸣.2011.西藏墨竹工卡县洞中拉铅锌矿床S、Pb同位素组成及成矿物质来源.现代地质,25(5):869-876.
    柳小明,高山,袁洪林,Bodo HATTENDORF, Detlef GuNTHER,陈亮,胡圣红.2002.193nmLA-ICP-MS对国际地质标准参考物质中42种主量和微量元素的分析.岩石学报,18(3):408-418.
    卢焕章,范宏瑞,倪培等.2004.流体包裹体.北京:科学出版社.370-394.
    罗茂澄,毛景文,王立强,冷秋锋,陈伟.2012.西藏邦铺斑岩钼铜矿床岩浆-热液流体演化:流体包裹体研究.33(4):471-484.
    罗铭玖,张辅民,董群英,许永仁,黎世美,李昆华.1991.中国钼矿床.郑州:河南科学技术出版社.
    罗照华,梁涛,陈必河,辛后田,柯珊,张自力,程素华.2007.板内造山作用与成矿.岩石学报,23(8):1945-1956.
    毛景文,郝英,丁悌平.2002.胶东金矿形成期间地幔流体参与成矿过程的碳氧氢同位素证据.矿床地质,21(2):121-127.
    毛景文,谢桂青,张作衡,李晓峰,王义天,张长青,李永峰.2005.中国北方中生代大规模成矿作用的期次及其地球动力学背景.岩石学报,21(1):169-188.
    孟祥金,侯增谦,高永丰,黄卫,曲晓明,屈文俊.2003a.西藏冈底斯东段斑岩铜铝铅锌成矿系统的发育时限:帮浦铜多金属矿床辉钼矿Re-Os年龄证据.矿床地质,22(3):246-252.
    孟祥金,侯增谦,高永丰,黄卫,曲晓明,屈文俊.2003b.西藏冈底斯成矿带驱龙铜矿Re-Os年龄及成矿学意义.地质论评,49(6):660-666.
    孟祥金,侯增谦,李振清.2006.西藏驱龙斑岩铜矿S、Pb同位素组成:对含矿斑岩与成矿物质来源的指示.地质学报,80(4):554-560.
    莫宣学,赵志丹,邓晋福,董国臣,周肃,郭铁鹰,张双全,王亮亮.2003.印度-亚洲大陆主碰撞过程的火山作用响应.地学前缘,10(3):135-148.
    莫宣学,董国臣,赵志丹,周素,王亮亮,邱瑞照,张风琴.2005.西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息.高校地质学报,11(3):281-290.
    聂凤军,孙振江,李超,刘翼飞,吕克鹏,张可,刘勇.2011.黑龙江岔路口钼多金属矿床辉钼矿铼-锇同位素年龄及地质意义.矿床地质,30(5):828-836.
    聂凤军,李香资,李超,赵宇安,刘翼飞.2013.内蒙古兴和县曹四夭特大型钼矿床辉钼矿Re-Os同位素年龄及地质意义.地质论评,59(1):175-180.
    潘凤雏,邓军,姚鹏,王庆飞,刘玉祥.2002.西藏甲马铜多金属矿床矽卡岩的喷流成因.现代地质,16(4):359-364.
    潘桂棠,王立全,朱弟成.2004.青藏高原区域地质调查中几个重大科学问题的思考.地质通报,23(1):12-17.
    潘桂棠,莫宣学,侯增谦,朱弟成,王立全,李光明,赵志丹,耿全如,廖中礼.2006.冈底斯造山带的时空结构及演化.岩石学报,22(3):521-533.
    潘兆橹,赵爱醒,潘铁红.1994.结晶学及矿物学(下册).北京:地质出版社.P.282.
    彭建堂等,胡瑞忠,漆亮,赵军红,符亚洲.2004.锡矿山热液方解石的REE分配模式及其制约因素.地质论评,50(1):25-30.
    秦克章,李光明,赵俊兴,李金祥,薛国强,严刚,粟登奎,肖波,陈雷,范新.2008.西藏首例独立钼矿-冈底斯沙让大型斑岩钼矿的发现及其意义.中国地质,35(6):1101-1110.
    秦志鹏,汪雄武,多吉,唐晓倩,周云,彭惠娟.2011a.西藏甲玛中酸性侵入岩LA-ICP-MS锆石U-Pb定年及成矿意义.矿床地质,30(2):339-348.
    秦志鹏,汪雄武,唐菊兴,唐晓倩,周云,彭惠娟.2011b.西藏甲玛过铝质花岗岩的地球化学特征及成因意义.成都理工大学学报(自然科学版),38(1):76-82.
    秦志鹏,汪雄武,唐菊兴,周云,唐晓倩.2012.西藏甲玛埃达克质斑岩的地球化学特征及意义.吉林大学学报(地球科学版),42(S1):267-280.
    曲晓明,侯增谦,黄卫.2001.冈底斯斑岩铜矿(化)带:西藏第二条“玉龙”铜矿带?矿床地质,20(4):355-366.
    曲晓明,侯增谦,李佑国.2002.S、Pb同位素对冈底斯斑岩铜矿带成矿物质来源和造山带物质循环的指示.地质通报,21(11):768-775.
    曲晓明,侯增谦,国连杰,徐文艺.2004.冈底斯铜矿带埃达克质含矿斑岩的源区组成与地壳混染:Nd、Sr、Pb、O同位素约束.地质学报,78(6):813-820.
    曲晓明,辛洪波,徐文艺.2007.西藏雄村特大型同金矿床容矿火山岩的成因及其对成矿的贡献.地质学报,81(7):964-970.
    任金卫,沈军,曹忠权,汪一鹏.2000.西藏东南部嘉黎断裂新知.地震地质,22(4):334-350.
    芮宗瑶,黄崇柯,齐国明,徐钰.1984.中国斑岩铜(钼)矿.北京:地质出版社.
    芮宗瑶,侯增谦,曲晓明,张立生,王龙生,刘玉琳.2003.冈底斯斑岩铜矿成矿时代即青藏高原隆升.矿床地质,22(3):217-225.
    芮宗瑶,李光明,张立生,王龙生.2004.西藏斑岩铜矿对重大地质事件的响应.地学前缘,11(1):145-152.
    佘宏全,丰成友,张德全,潘桂棠,李光明.2005.西藏冈底斯中东段矽卡岩铜-铅-锌多金属矿床特征及成矿远景分析.矿床地质,24(5):508-520.
    沈渭洲.稳定同位素地球化学.北京:原子能出版社,1987.
    宋彪,张玉海,万渝生,简平.2002.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论.地质论 评,48(增刊):26-30.
    宋国学,秦克章,李光明.2010.长江中下游池州地区矽卡岩-斑岩型W-Mo矿床流体包裹体与H、O、S同位素研究.岩石学报,26(9):2768-2782.
    孙东,王道永.2011.雅鲁藏布江缝合带中段构造特征及成因模式新见解.地质学报,85(1):56-63.
    孙燕,刘建明,曾庆栋.2012.斑岩型铜(钼)矿床和斑岩型钼(铜)矿床的形成机制探讨.地学前缘,19:1-15.
    孙云锴.2010.青藏高原冈底斯造山带变质地质作用及其大地构造意义.成都理工大学硕士学位论文,18-61.
    谭红艳,舒广龙,吕骏超,韩仁萍,张森,寇林林.2012.小兴安岭鹿鸣大型钼矿LA-ICP-MS锆石U-Pb和辉铝矿Re-Os年龄及其地质意义.吉林大学学报(地球科学版),42(6):1757-1767.
    唐菊兴,陈毓川,多吉,刘鸿飞,杜欣,张金树,郑文宝,高一鸣.2009a.西藏冈底斯成矿带东段主要矿床类型、成矿规律和找矿评价.矿物学报,S1:476-478.
    唐菊兴,陈毓川,王登红,王成辉,许远平,屈文俊,黄卫,黄勇.2009b.西藏工布江达县沙让斑岩钼矿床辉钼矿铼-锇同位素年龄及其地质意义.地质学报,83(5):698-702.
    唐菊兴,黄勇,李志军,邓起,郎兴海,陈渊,张丽.2009c.西藏谢通门县雄村同金矿床元素地球化学特征.矿床地质,28(1):15-28.
    唐菊兴,李志军,多吉,郎兴海,黄勇,张金树,刘鸿飞,张丽,陈渊.2010a.西藏雄村铜金矿集区纽通门铜金矿床找矿勘查取得突破.矿床地质,29(4):727-729.
    唐菊兴,黎风佶,李志军,张丽,唐晓倩,邓起,郎兴海,黄勇,姚晓峰,王友.2010b.西藏谢通门县雄村铜金矿主要地质体形成的时限:锆石U-Pb、辉钼矿Re-Os年龄的证据.矿床地质,29(3):461-472.
    唐菊兴,邓世林,郑文宝,应立娟,汪雄武,钟康惠,秦志鹏,丁枫,黎枫佶,唐晓倩,钟裕峰,彭惠娟.2011.西藏墨竹工卡县甲玛铜多金属矿床勘查模型.矿床地质,30(2):179-196.
    唐菊兴,多吉,刘鸿飞,郎兴海,张金树,郑文宝,应立娟.2012.冈底斯成矿带东段矿床成矿系列及找矿突破的关键问题研究.地球学报,33(4):393-410.
    唐永永,毕献武,和利平,武丽艳,冯彩霞,邹志超,陶琰,胡瑞忠.2011.兰坪金顶铅锌矿方解石微量元素、流体包裹体和碳-氧同位素地球化学特征研究.岩石学报,27(9):2635-2645.
    田世洪,杨竹森,侯增谦,刘英超,宋玉财,王富春,薛万文.2011.青海玉树东莫扎抓铅锌矿床S、Pb、Sr-Nd同位素组成:对晨光物质来源的指示.岩石学报,27(7):2173-2183.
    涂其军,董连慧,王克卓.2012.东天山东戈壁钼矿辉钼矿Re-Os同位素年龄及地质意义.30(3):272-276.
    王保弟,许继峰,陈建林,张兴国,王立全,夏抱本.2010.冈底斯东段汤不拉斑岩Mo-Cu矿床成岩成矿时代与成因研究.岩石学报,26(6):1820-1832.
    王成,龚庆杰,席彬彬.斑岩钼矿热液流体的地球化学演化-以美国亨德森斑岩钼矿为例.地质找矿论丛,24(2):146-150.
    王登红,陈毓川.2001.与海相火山作用有关的铁-铜-铅-锌矿床成矿系列类型及成因初探.矿床地质,20(2):112-118.
    王登红,应汉龙,骆耀南,陈毓川,朱明玉.2002.试论布什维尔德杂岩体有关的铂族元素-铬铁矿矿床成矿系列及其对中国西南部的意义.地质与资源,11(4):243-249.
    王登红,陈毓川,徐珏等.2005.中国新生代成矿作用.北京:地质出版社.
    王登红,陈毓川,朱裕生,朱明玉,徐志刚.2006.以矿床成矿系列构筑中国成矿体系及其运用.矿床地质,25(S):43-46.
    王登红,唐菊兴,应立娟,林彬,丁帅.2011.西藏甲玛矿区角岩特征及其对深部找矿的意义.岩石学报,27(7):2103-2110.
    王焕,唐菊兴,应立娟,王立强,秦志鹏.2011a.西藏甲玛铜多金属矿床主要矿石矿物特征.成都理工大学学报(自然科学版),38(1):103-112.
    王焕,王立强,应立娟,郑文宝.2011b.西藏甲玛铜多金属矿床斑铜矿特征及成因意义.矿床地质,30(2):305-317.
    王焕,唐菊兴,王立强,应立娟,郑文宝,唐晓倩.2011c.西藏墨竹工地区甲玛铜多金属矿床矽卡岩矿物学特征及其地质意义.地质通报,30(5):783-797.
    王建业.1998.斑岩铜矿与斑岩钼矿的地质特征及成因.冶金工业部地质研究所学报,(3):75-82.
    王立强,顾雪祥,程文斌,唐菊兴,钟康惠,刘晓吉.2010.西藏蒙亚啊铅锌矿床S、Pb同位素组成及对成矿物质来源的示踪.现代地质,24(1):52-57.
    王立强,陈毓川,唐菊兴,罗茂澄,冷秋锋,陈伟,王焕.2011.西藏邦铺钼(铜)矿床含矿二长花岗斑岩LA-ICP-MS锆石U-Pb定年及地质意义.矿床地质,30(2):349-360.
    王立强,唐菊兴,罗茂澄,陈伟,王焕.2012a.西藏努日矿区隐伏斑岩型矿体的潜在性研究.金属矿山,4:109-113.
    王立强,唐菊兴,王焕,李超,罗炳学.2012b.西藏哈海岗钨钼多金属矿床地质特征及辉钼矿铼-锇同位素定年.岩矿测试,31(1):113-119.
    王立强,罗茂澄,袁志洁,陈伟,冷秋锋,张学全.2012c.西藏邦铺铅锌矿床S、Pb、C、O同位素组成及成矿物质来源研究.地球学报,33(4):435-443..
    王立全,朱弟成,耿全如,廖忠礼,潘桂棠.2006.西藏冈底斯带林周盆地与碰撞过程相关花岗斑岩的形成时代及其意义.科学通报,51(16):1920-1927.
    王立全,潘桂棠,朱弟成,周长勇,袁四化,张万平.2008.西藏冈底斯带石炭纪-二叠纪岛弧造山作用:火山岩和地球化学证据.地质通报,27(9):1509-1532.
    王亮亮,莫宣学,李冰,董国臣,赵志丹.2006.西藏驱龙斑岩铜矿含矿斑岩的年代学与地球化学.岩石学报,22(4):1001-1008.
    王艳娟,胡援越,申俊峰,曲凯,殷娜,于洪军,马广刚.2011.太行山南段北洺河铁矿S、Pb同位素组成及其对成矿物质来源的示踪.现代地质,25(5):846-852.
    魏庆国,原振雷,姚军明,陈伟,乔波,赵太平.2009.东秦岭钼矿带成矿特征及其与美国克莱马克斯-亨德森钼矿带的对比.大地构造与成矿学,33(2):259-269.
    魏瑞华,高永丰,侯增谦,孟祥金,杨竹森.2008.冈底斯新近纪钾质火山作用:消减沉积物折返的地球化学与Sr-Nd-Pb同位素证据.岩石学报,24(2):359-367.
    魏文博,金胜,叶高峰,邓明,谭捍东,Unsworth M.2006西藏高原中、北部断裂构造特征:INDEPTH(Ⅲ)-MT观测提供的证据.地球科学-中国地质大学学报,31(2):257-264.
    温泉,多吉,温春齐,张学全,周雄,霍艳,费光春.2011.西藏邦铺钼铜矿区花岗斑岩成岩年龄研究.矿物岩石,31(2):48-53.
    温泉,温春齐,霍艳,周雄,费光春.,黄于鉴.2012.西藏邦铺钼铜矿区He、Ne和Ar同位素及成矿流体示踪.硬质合金,29(2):106-110.
    吴福元,李献华,郑永飞,高山.2007.Lu-Hf同位素体系及其岩石学应用.岩石学报,23(2):185-205.
    吴华英,张连昌,陈志广,万博,相鹏,张晓静.2010.西拉木伦多金属成矿带鸡冠山斑岩钼矿富氟高盐度高氧逸度流体包裹体研究.岩石学报,26(5):1363-1374.
    吴开兴,胡瑞忠,毕献武,彭建堂,唐群力.2002.矿石铅同位素示踪成矿物质来源综述.地质地球化学,30(3):73-81.
    吴元保,郑永飞.2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报,49(16):1589-1602.
    吴珍汉,叶培盛,胡道功,刘琦胜.2003.拉萨地块北部逆冲推覆构造系统.地质论评,49(1):74-80.
    武长得,朱红,邓宗策,崔军文.1990.雅鲁藏布江断裂带的构造特征.中国地质科学院院报,21:87-93.
    夏抱本,夏斌,王保弟,赵守仁.2007.冈底斯中段达布埃达克质含矿斑岩:增厚下地壳熔融与斑岩铜钼矿成因.地质科技情报,26(4):19-26.
    夏抱本,夏斌,王保弟,李建峰,张兴国,王英超.2010.汤不拉含矿斑岩的形成时代及其对斑岩钼铜矿的制约.大地构造与成矿学,34(2):291-297.
    夏代祥,刘世坤,滕云,张健民,徐开锋,谢义木,姚宗富,吴廷漪,肖兴铭.1997.西藏自治区岩石地层.中国地质大学出版社,72-163.
    肖波,秦克章,李光明,李金祥,陈雷,赵俊兴,范新.2011.冈底斯驱龙斑岩铜-钼矿区外围矽卡岩型铜矿的分布、特征及深部找矿意义.地质与勘探,47(1):43-53.
    谢尧武,刘鸿飞,强巴扎西,蒋光武.2010.拉萨市堆龙德庆县却桑地区早中三叠世查曲浦组层序厘定及其构造意义.地质通报,29(12):1833-1839.
    熊清华,周良忠,邹赣生,黄志忠.1992.雅鲁藏布江中段发现两条巨大的韧性剪切带.中国区域地质,286.
    熊清华,左祖发.1999.西藏冈底斯岩带中段南缘韧性剪切带特征.中国区域地质,18(2):175-180.
    徐向珍,杨经绥,李天福,陈松永,任玉峰,李兆丽,石玉若.2007.青藏高原拉萨地块松多榴辉岩 的锆石SHRIPM U-Pb年龄及锆石中的包裹体.地质通报,26(10):1340-1354.
    闫学义,黄树峰,杜安道.2010.冈底斯泽当大型钨铜钼矿Re-Os年龄及陆缘走滑转换成矿作用.地质学报,84(3):398-405.
    杨德明,李才,王天武.2001.西藏冈底斯东段南北向构造特征与成因.中国区域地质,20(4):392-397.
    杨德明,和钟铧.2004.西藏1:25万门巴区幅区调报告.
    杨经绥,许志琴,李天福,李化启,李兆丽,任玉峰,徐向珍,陈松永.2007.青藏高原拉萨地块中的大洋俯冲榴辉岩:古特提斯洋盆的残留?.地质通报,26(10):1277-1287.
    杨荣勇,徐兆文,陆现彩,任启江.1996.东秦岭钼矿带成矿岩体与非成矿岩体的对比研究.矿物岩石,16(3):49-53.
    杨晓勇,卢欣祥,杜小伟,李文明,张正伟,屈文俊.2010.河南南沟钼矿床地球化学研究兼论东秦岭钼矿床成岩成矿动力学.地质学报,84(7):1049-1075.
    杨永飞,李诺,倪智勇.2009.陕西省华县金堆城斑岩型钼矿床流体包裹体研究.岩石学报,25(11):2983-2993.
    杨永飞,李诺,王莉娟.2011.河南省东沟超大型钼矿床流体包裹体研究.岩石学报,27(5):1453-1466.
    杨志明.2008.西藏驱龙超大型斑岩铜矿床-岩浆作用与矿床成因.中国地质科学院博士学位论文.
    杨志明,侯增谦,宋玉财,李振清,夏代祥,潘凤雏.2008a.西藏驱龙超大型斑岩铜矿床:地质、蚀变与成矿.矿床地质,27(3):279-318.
    杨志明,侯增谦,夏代祥,宋玉财,李政.2008b.西藏驱龙铜矿西部斑岩与成矿关系的厘定:对矿床未来勘探方向的重要启示.矿床地质,27(1):28-35.
    杨志明,侯增谦.2009.西藏驱龙超大型斑岩铜矿的成因:流体包裹体及H-O同位素证据.地质学报,1838-1856.
    姚鹏,杜光树.1999.西藏甲马多金属矿床容矿岩石的地球化学特征及其成因初步研究.特提斯地质,23:46-56.
    姚鹏,郑明华,彭勇民,李金高,粟登奎,范文玉.2002.西藏冈底斯岛弧带甲马铜多金属矿床成矿物质来源及成因研究.地质论评,48(5):468-479.
    叶会寿,毛景文,李永峰,郭保健,张长青,刘珺,闫全人,刘国印.2006.东秦岭东沟超大型斑岩铝习SHRIMP锆石U-Pb和辉钼矿Re-Os年龄及其地质意义.地质学报,80(7):1078-1086.
    叶霖,高伟,杨玉龙,刘铁庚,彭绍松.2012.云南澜沧老厂铅锌多金属矿床闪锌矿微量元素组成.岩石学报,28(5):1362-1372.
    叶培盛.2004.拉萨地块中部蛇绿岩与逆冲推覆构造.中国地质科学院博士学位论文,63-104.
    叶先仁,吴茂炳,孙明良.2001.岩矿样品中稀有气体同位素组成的质朴分析.岩矿测试,20(3):174-178.
    叶先仁,陶明信,余传螯,张铭杰.2007.用分段加热法测定的雅鲁藏布江蛇绿岩的He和Ne同位素组成:来自深部地幔的信息.中国科学D辑:地球科学,37(5):573-582.
    应立娟,王登红,唐菊兴,畅哲生,屈文俊,郑文宝,王焕.2010.西藏甲玛铜多金属矿辉铝矿Re-Os定年及其成矿意义.地质学报,84(8):1165-1174.
    应立娟,唐菊兴,王登红,郑文宝,秦志鹏,张丽.2011.西藏甲玛超大型铜矿区斑岩脉成岩时代及其与成矿的关系.岩石学报,27(7):2095-2012.
    应立娟,唐菊兴,王登红,王崴平.2012.西藏甲玛超大型铜矿石榴子石特征及成因意义.地质学报,86(11):1735-1745.
    应立娟.2012.西藏甲玛铜多金属矿床的成矿机制.中国地质科学院博士学位论文.
    袁洪林,吴福元,高山,柳小明,徐平,孙德有.2003.东北地区新生代侵入体的锆石激光探针U-Pb年龄测定与稀土元素成分分析.科学通报,48(14):1511-1520.
    袁见齐,朱上庆,翟裕生等.1984.矿床学.北京:地质出版社,P.114-130.
    袁万明,侯增谦,李胜荣,王世成.2002.雅鲁藏布江逆冲带活动的裂变径迹定年证据.科学通报,47(2):147-149.
    臧文栓,孟祥金,张竹森,叶培胜.2007.西藏冈底斯成矿带铅锌银矿床的S、Pb同位素组成及其地质意义.地质通报,26(10):1393-1397.
    翟庆国,李才,李惠民,王天武.2005.西藏冈底斯中部淡色花岗岩锆石U-Pb年龄及其地质意义.地质通报,24(4):349-353.
    翟文建,崔霄峰,岳国利,杜欣,王琰,陈志敏,苏建仓.2012.西藏扎雪-门巴韧性剪切带变形时代及机制研究:来自同构造花岗岩体的证据.大地构造与成矿学,36(2):149-156.
    张德会,张文淮,许国建.2001.岩浆热液出溶和演化对斑岩成矿系统金属成矿的制约.地学前缘,8(3):194-202.
    张东亮,彭建堂,符亚洲,彭光雄.2012.湖南香花铺钨矿床含钙矿物的稀土元素地球化学.岩石学报,28(1):65-74.
    张宏飞,徐旺春,郭建秋,宗克清,蔡宏明,袁洪林.2007.冈底斯印支期造山事件:花岗岩类锆石U-Pb年代学和岩石成因证据.地球科学-中国地质大学学报,32(2):155-164.
    张理刚.1985.稳定同位素在地质科学中的应用.西安:陕西科学技术出版社.P.
    张认,和钟铧.2007.西藏冈底斯带扎雪-门巴韧性变形带形成时代及构造背景.沉积与特提斯地质,27(1):19-24.
    张哨波,高明,岳国利,崔霄峰.2009.西藏亚贵拉铅锌矿床地质特征及成因浅析.矿产与地质,23(4):297-301.
    张松,郑远川,黄克贤,李为,孙清钟,李秋耘,付强,梁维.2012.西藏努日矽卡岩型铜钨钼矿辉钼矿Re-Os定年及其地质意义.矿床地质,31(2):337-346.
    张兴国,王保弟,夏抱本,穷达.2008.冈底斯成矿带东段汤不拉斑岩钼(铜)矿的发现及意义.地质通报,27(6):837-843.
    张以春,沈树忠.2007.西藏拉萨地块的乐平统及其古地理意义.地层学杂志,31(4):345-350.
    张元厚,毛景文,简伟,李宗彦.2010.东秦岭地区钼矿床研究现状及存在问题.世界地质,29(2):188-202.
    张运强,李胜荣,陈海燕,张秀宝,周起凤,崔举超,宋玉波,郭杰.2012.胶东金青顶金矿床成矿流体来源的黄铁矿微量元素及He-Ar同位素证据.中国地质,39(1):195-202.
    张正伟,朱炳泉,常向阳,强立志,温明星.2001.东秦岭铝矿带成岩成矿背景及时空统一性.高校地质学报,7(3):307-315.
    张正伟,张中山,董有,彭万夫,张建军.2007.东秦岭铝矿床及其深部构造制约.27(3/4):372-378.
    章永梅.2012.内蒙古柳坝沟-哈达门沟金矿田成因、控矿因素与找矿方向.中国地质大学(北京),博士学位论文,94-98.
    赵俊兴,秦克章,李光明,李金祥,严刚,粟登奎,肖波,陈雷,范新.2009.冈底斯沙让钼矿的成矿年代学和岩石地球化学与青藏澳元主碰撞期成矿作用.矿物学报,S1:197-198.
    赵俊兴,秦克章,李光明,李金祥.2011.冈底斯北缘沙让斑岩钼矿蚀变特征及与典型斑岩钼矿床的对比.地质与勘探,47(1):54-70.
    赵良超,孙淑娟.1996.高钙钙蔷薇辉石的产出地质特征和晶体化学特征.吉林地质,(2):42-49.
    赵一鸣.2002.夕卡岩矿床研究的某些重要进展.矿床地质,21(2):113-120.
    赵一鸣,林文蔚,毕成思,李大新,蒋崇俊.2012.中国矽卡岩矿床.北京:地质出版社.P.74.
    赵志丹,莫宣学,Nomade S.,Renne PR.,周肃,董国臣,王亮亮,朱弟成,廖忠礼.2006.青藏高原拉萨地块碰撞后超钾质岩石的时空分布及其意义.岩石学报,22(4):787-794.
    郑淑蕙,张知非,倪葆龄,等.西藏地热水氢氧稳定同位素研究.北京大学学报,1982(1):99-106.
    郑文宝,陈毓川,宋鑫,唐菊兴,应立娟,黎枫佶,唐晓倩.2010.西藏甲玛铜多金属矿元素分布规律及地质意义.矿床地质,29(5):775-784.
    郑文宝.2012.西藏甲玛铜多金属矿床成矿模式与找矿模型.成都理工大学博士学位论文.
    郑永飞,陈江峰.2000.稳定同位素地球化学.北京:科学出版社,P
    郑有业,薛迎喜,程力军,樊子珲,高顺宝.2004.西藏驱龙超大型斑岩铜(钼)矿床:发现、特征及意义.地球科学,29(1):103-108.
    郑有业,多吉,王瑞江,程顺波,张刚阳,樊子珲,高顺宝,代芳华.2007.西藏冈底斯巨型斑岩铜矿带勘查研究最新进展.中国地质,34(2):324-334.
    郑远川.2012.青藏高原冈底斯东段成矿作用与地质背景研究.中国地质科学院博士后研究工作报告.
    周珂,叶会寿,毛景文,屈文俊,周树峰,孟芳,高亚龙.2009.豫西鱼池岭斑岩型钼矿床地质特征及其辉钼矿铼-锇同位素年龄.矿床地质,28(2):170-184.
    周肃,方念乔,董国臣,赵志丹,刘秀明.2001.西藏林子宗群火山岩的氩-氩同位素测年.矿物岩石地球化学通报,2001,20:317-319.
    周肃,莫宣学,赵志丹,邱瑞照,张双全,郭铁鹰.2004.西藏南部羊应乡后碰撞火山岩40Ar/39Ar年龄及其地质意义.自然科学进展,14(12):1411-1418
    周涛发,张乐骏,袁峰,范裕,David R. Cooke.2012安徽铜陵新桥Cu-Au-S矿床黄铁矿微量元素LA-ICP-MS原位测定及其对矿床成因的制约.地学前缘,17(2):306-316.
    周详,曹佑功.1984.西藏板块构造-建造图及说明书.北京:地质出版社,1-20.
    周雄,温春齐,温泉,吴鹏宇,曹盛远,费光春,霍艳,周玉.2010a.西藏邦铺大型斑岩钼-铜矿床二长花岗斑岩锆石SHRIMP定年及其地质意义.矿物岩石地球化学通报,29(4):373-379.
    周雄,温春齐,张学全,曹盛远,吴鹏宇,周玉,费光春.2010b.西藏邦铺大型钼铜多金属矿床Rb-Sr等时线年龄及地质意义.高校地质学报,16(4):448-456.
    周雄,温春齐,霍艳,费光春,吴鹏宇.2010c.西藏墨竹工卡地区邦铺钼铜多金属矿床成矿流体特征.地质通报,29(7):1039-1048.
    周雄,温春齐,费光春,曹盛远,吴鹏宇,霍艳.2010d.西藏邦铺斑岩型钼矿床二长花岗斑岩地球化学特征及构造意义.矿物岩石,30(4):48-54.
    周雄,温春齐,温泉,费光春,曹盛远,周玉吴,吴鹏宇.2011.西藏邦铺斑岩型钼铜多金属矿床含铝铜脉石英的激光显微探针40Ar/39Ar年龄及地质意义.矿物岩石,31(1):43-48.
    周雄,温春齐,张学全,张贻,费光春,温泉.2012.西藏邦铺钼铜多金属矿床硫、铅同位素地球化学特征.地质与勘探,48(1):24-30.
    周雄.2012.西藏邦铺钼铜多金属矿床成因研究.成都理工大学博士论文,1-155.
    周云.2010.西藏墨竹工卡县甲玛铜多金属矿成矿流体特征及演化.成都:成都理工大学.
    周云,汪雄武,唐菊兴,秦志鹏,彭惠娟,李爱国,杨科,王华,李炯,张继超.2011a.西藏甲玛铜多金属矿含矿斑岩石英斑晶单个熔融包裹体的成分研究.成都理工大学学报(自然科学版),38(1):92-102.
    周云,汪雄武,唐菊兴,秦志鹏,彭惠娟,李爱国,杨科,王华,李炯,张继超.2011b.西藏甲玛铜多金属矿床成矿流体来源及演化.矿床地质,30(2):231-248.
    周云,唐菊兴,秦志鹏,彭惠娟.2012.甲玛铜多金属矿床S、Pb同位素组成及地质意义.金属矿山,432:102-105.
    朱弟成,莫宣学,赵志丹,牛耀龄,潘桂棠,王立全,廖忠礼.2009.西藏南部二叠纪和早白垩世构造岩浆作用与特提斯演化:新观点.地学前缘,16(2):1-15.
    朱弟成,潘桂棠,王立全,莫宣学,赵志丹,周长勇,廖忠礼,董国臣,袁四化.2008a.西藏冈底斯带侏罗纪岩浆作用的时空分布及构造环境.地质通报,27(4):458-466.
    朱弟成,潘桂棠,王立全,莫宣学,赵志丹,周长勇,廖忠礼,董国臣,袁四化.2008b.西藏冈底斯带中生代岩浆岩的时空分布和相关问题的讨论.地质通报,27(9):1535-1547.
    祝向平,陈华安,马东方,黄瀚宵,李光明,李玉彬,李玉昌.西藏波龙斑岩铜金矿床的Re-Os同位素年龄及其地质意义.岩石学报,2011,27(7):2159-2163.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700