用户名: 密码: 验证码:
宁芜矿集区及邻区深部电性结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着浅部矿产资源的勘探开发殆尽,寻找深部矿产资源显得十分必要,深部矿产的形成与深部结构构造关系紧密,深部结构的透明化是深部资源探测的突破口。本文依据近年完成的6条大地电磁测深(MT)剖面数据(L1线(定远—溧阳)、L2线(姑山—江宁)、L3线(巢湖—当涂)、L4线(三山街—南陵)、L5线(鸠江区—高淳)和LY2线(芜湖—铜陵)),应用现代大地电磁数据处理技术及二维非线性共轭梯度算法,对MT数据进行了统一的处理及反演,取得了剖面覆盖区域的上地壳二维电性结构模型。结合研究区重磁不同深度异常特征、重磁多尺度边缘检测结果以及物性资料,对宁芜矿集区及其邻区深部结构进行了讨论,取得了一些新的认识。
     数据处理及分析表明:研究区上地壳电性结构可以近似为二维结构,电性主轴方位具有北东、北西两个方向,局部变化范围较大,表明宁芜火山岩盆地构造复杂,具有北东、北西向两个主构造方向。大地电磁测深数据观测最低频至0.0001Hz,满足目标研究深度(-10km)。
     二维电性结构模型表明:1.区域上地壳低阻异常带与已知的断裂带基本吻合,不同剖面的交接处电性结构相似,说明反演模型较为可靠。2.宁芜火山岩盆地自南而北具有低—高—低的电性结构特征,剖面南段及北段的低阻体可能是盆地内深断裂的电性反映,中段马鞍山附近巨型高阻体是侵入体的电性反映,照此推测,宁芜矿集区中段深部存在第二找矿空间的可能性不大。3.根据2线高、中、低频率点倾子走向认为宁芜火山岩盆地浅部构造较复杂:倾子方向为北西、北东向兼具,深部构造具有明显的北西向为主的特征。4.巢湖—当涂剖面的电性结构反映了区域的推覆构造特征,认为可能与造山过程中的扬子板块向华北板块俯冲的强挤压变形环境有关;含山附近存在“W”型低阻带,剖面东段的“茄子”状低阻体与姑山—江宁剖面南端的低阻体是同一异常体的电性反映。5.三山街—南陵剖面具有层状的电性结构特征,深部高阻层可能是基底地层的电性反映。6.繁昌盆地深部存在“团块状”低阻体,是繁昌火山岩盆地电性反映。
     采用多次匹配滤波技术对区域1:20万重力、航磁数据进行了处理,获得了浅、中、深三个不同深度层次的重磁异常信息,重磁多尺度边缘检测结果表明:1.宁芜盆地重力异常幅值比繁昌盆地低;2.边缘检测线多呈北东向展布,主要反映了区域断裂系统,宁芜火山岩盆地具有高重力异常特征,繁昌盆地局部和繁昌-马鞍山中间局部具有高重力异常的特征;3.宁芜火山岩盆地北部的南京-湖熟断裂和东部的方山-小丹阳断裂,西部的长江断裂和南部的三山-宣城断裂没有明显的异常显示;4.查明了火山岩盆地和岩体(隐伏岩体)的边界。重力及磁性异常同时显示茅山断裂、江南断裂均为切割深度较大的断裂。
As the mineral resources in shallow are nearly developed.It is necessary to explore deep mineral resources.The relationship between deep resources and deep structure is closely,so,the breakthrough of deep resource exploration is the transparency of the deep structure.Based on the magnetotelluric sounding (MT) from six profiles (the line1(Ding Yuan-Li Yang),line2(GuShan-JiangNing district),line3(ChaoHu-),line4(SanShan-NanLing),line5(JiuJiang-GaoChun),line Y2(WuHu-TongLing)) finished by Institute of Mineral Resources Chinese Academy of Geological Sciences and modern data processing technology and two-dimensional algorithm to data inversion,the paper presents a two-dimensional model of upper crust electrical structure in profile-controlled region. Combined with the gravity and magnetic anomalies of different depth and multi-scale edge detectionin and physical data in the study area, some important cognition on deep structure are obtained in NingWu volcanic basin and its adjacent area.
     Data processing and analysis show that the upper electrical structure of research area is approximately a two-dimensional structure,in which electrical axis is nearly north-east and north-west direction, partially varies in a large range,and the main strike of deep structure in the NingWu volcanic basin is north-east,north-west. The exploration depth of the lowest frequency (1000s) of MT data achieve-10km enoughly.
     Two-dimensional electrical structure model shows that:1.the low-resistivity zone or electrical gradient zone roughly coincides with the major fault line delineated by regional geological data.The electrical structure of different profile in intersection point is approximate,which indicates that the inversion model is reliable;2.The electrical structure in NingWu volcanic basin from south to north is low-high-low,and the low resistivity in south and north is deep fracture,and the high resistivity in Ma'anshan is giant granite. According to this conjecture, the possibility of a second prospecting space existing is lowest;3.According to the tipper strike analysis of high, middle and low frequency shows that the structural trend of deep in NingWu volcanic basin is north-east and shallow is north-east,north-west;4.The electrical structure of ChaoHu-DangTu profile reflects the thrust nappe structure in the study areas,which related to the deformation environment under strong squeezing as the orogenic process of the Yangtze plate subduction beneath the North China plate.5.There exists a low resistivity zone and like "W" in HanShan.The low resistivity like eggplant in the eastern section of profile3is similar to the low resistivity lies in the south of profile2,which is considered to be anomaly induced by the same low resistivity body. Profile from SanShan to NanLing is the characteristic of layered electrical structure.6.There is a massive low resistivity body in the deep of FanChang vicinity,which is thought to be anomaly induced by FanChang volcanic basin.
     Regional1:200,000gravity, magnetic data processing based on multiple matched filter technology. Gravity and magnetic anomaly of different depth-shallow, medium and deep is obtained. The results show that:1.the gravity anomaly in NingWu basin is lower than in FanChan basin. Regional gravity, magnetic data processing based on potential field multi-scale edge detection;2.The gravity multi-scale edge detection line mainly spread in the north-eastern direction,which reflects regional fault system.Regional tectonic framework is established.NingWu volcanic basin and part of FanChang volcanic basin and middle of FanChang and Ma'anshan are characteristic of high gravity anomaly;3.The gravity multi-scale edge detection line also shows NanJing-HuShu Fault in the north and FangShan-Xiao Danyang Fault in the east,but there is no obvious anomaly of ChangJiang Fault in the west and SanShan-NanLing Fault in the south;4.Aeromagnetic multi-scale edge detection line reflects the boundary of volcanic basin and concealed rock body.Gravity and magnetic anomaly commonly shows that MaoShan Fault and JiangNan Fault are deep fault.
引文
Alan G.Jones,James A.Craven.1990.The north American central plains conductivity anomaly and its correlation with gravity,magnetic,seismic,and heat flow data in Saskatchewan,Canada.Physics of the earth and planetary interiors,60:169-194
    Alfano L, Giudici M, Zaja A..1998.Integrated geoelectrical and magnetotelluric exploration at Gran Sassod'Italia range(central Apennines) [J].Annali di geofisica,41(3):315-324
    Antonio Meloni.Paolo Palangio,Marco Marchetti,Roman Teisseyre.1996.Central Italy magnetotelluric investigation.Structures and relations to seismic events:analysis of initial data[J].Annali di geofisica,1:159-177
    Avdeev D B,Fainberg E B,Singer B.S..1989.On applicability of the Tikhonov-Cagniard magnetotelluric model for sounding of a non-uniform medium[J].Physics of the earth and planetary,53:343-349
    Bai D H., Meju M.A.,Liao Z.J..2001.Magnetotelluric images of deep crustal structure of the Rehai geothermal field near Tengchong,southern China[J].Geophys.J.Int,147:677-687
    Bayrak M., Gurer A.,O. Gurer F..2006.Mohr-Circle-Based rotational invariants of a magnetotelluric data set from the Thrace Region of Turkey:geological implications[J].Turkish journal of earth sciences,15:95-110
    Blakely R J, Jachens R C.1991.Regional study of mineral resources in Nevada:Insights from three-dimensional analysis of gravity and magnetic anomalies.Geological Society of America Bulletin,103(6):795-803
    Bosch,M.McGaughey,J.2001.Joint inversion of gravity and magnetic data under lithologic constraints[J].The leading edge,20(8):877-881
    Carlos Torres-Verdin.Francis X.Bostick.1992.Implications of the Born approximation for the magnetotelluric problem in three-dimensional environments[J].Geophysics,57(4):587-602
    Cowan D R,Cowan S.1993. Separation filtering applied to aeromagnetic data[J].Exploration Geophysics,24(4):429-436
    Daniel L,Chave A.Hirth G, Schultz A.1995.Northeastern Pacific mantle conductivity profile from long-period magnetotelluric sounding using Hawaii-to-California submarine cable data[J].Journal of geophysical research,100(B9):17837~17854
    DeGroot-Hedlin C., Constable S..1990.Occam's inversion to generate smooth,two-dimensional models from magnetotelluric data[J].Geophysics,55(12):1613-1624
    Edward A B,Martyn J.Unsworth,Chih-Wen Chiang,Chow-Son Chen,Chien-Chih Chen,Francis T Wu,Ersan Trukoglu,Han-Lun Hsu.Graham J Hill.2012.Magnetotelluric imaging beneath the Taiwan orogen:An arc-continent collision[J].Journal of geophysical research,117:B01402
    Gamble T D, Goubau W M,and Clarke J.1979.Magnetotellurics with a remote magnetic reference[J].Geophysics,44(l):53~68
    Gianni Volpi,Adele Manzella,Adolfo Fiordelisi.2003.Investigation of geothermal structures by magnetotellurics(MT):an example from the Mt.Amiata area,Italy[J].Geothermics,(32):131-145
    Hansen R.2001.Gravity and magnetic methods at the turn of the millennium.Geophysics,66(1):36~37
    Heinson G S,Direen N C,Gill R M.2006.Magnetotelluric evidence for a deep-crustal mineralizing system beneath the Oliympic Dam iron oxide-copper-gold deposit,southern Astralia[J].Geological society of America,34(7):573~576
    Ingham M, Whaler K,Mcknight D.2001.Magnetotelluric sounding of the Hikurangi Margin,New Zealand[J].Geophys.J.144:343~355
    Jessell M.2001.Three-dimensional geological modelling of potential-field data[J].Computers & Geosciences.27(4):455~465
    Johnson J P,McCulloch M T.1995.Sources of mineralizing fluids for the olympic dam deposit(South Australia):Sm-Nd isotopic constraints[J].Chemical geology,121:177~199
    King A.1996.Deep drillhole electromagnetic surveys for nickel/copper sulphides at Sudbury,Canada[J].Geophysics,27(1):971-986
    Larsen J C, Mackie R L.1996.Robutst smooth magnetotelluric transfer functions[J].Geophys.J.124(3):801~819
    Linda O.,Stephen K.P..2012.Foundering lithosphere imaged with magnetotelluric data beneath Yosemite National Park,California[J].Geosphere,8(1):98~104
    Lii Q T, Qi G, Yan J Y.2013.3D geologic model of Shizishan ore field constrained by gravity and magnetic interactive modeling:A case history[J].Geophysics,78(1):B25~B35
    Malehmir A H,Tryggvason A.2009.The paleoproterozoic Kristineberg mining area,northern Sweden:Results from integrated 3D geophysical and geologic modeling,and implication for targeting ore deposits[J].Geophysics,74(1):B9~B22
    Mankhemthong N,Doser D I,Pavlis T. L.2013.Inter pretation of gravity and magnetic data and development of two-dimensional cross-sectional models for the Border Ranges fault system,south-central Alaska.Geosphere,9(2):242-259
    Milkerit B,Green A.1992.Deep geometry of sudbury structure from seismic reflection profiling[J].Geology,20:807~811
    Mishra D.C.,Sekhar D.V.C.,Raju D.C.V..1999.Crustal structure based on gravity-magnetic modelling constrained from seismic studies under Lambert Rift,Antarctica and Godavari and Mahanadi rifts,India and their interrelationship.Earth and planetary sciences letters,172:287~300
    Murphy F C.2005.Composition of multi-scale wavelets (worms) in the potential field of the Mt Isa region. I2+3 final report[R].pmdCRC,243~259
    Nabighian M N,Grauch V J,Hansen R O.2005.The historical development of the magnetic method in exploration,75th Anniversary[J],Geophysics,70(6):33-61
    Patricia Pastana de Lugao,Emanuele Francesco LaTrra,Berthold Kriegshauser et al.2002.Magnetotelluric studies of the Caldas Novas geothermal reservoir,Brazil[J].Journal of applied geophysics,49:33-46.
    Pawlowski R S,Hansen R.1990.Gravity anomaly separetion by Wiener filtering.Geophysics,55(5):5339~548
    Pierre-Andre Schnegg.1999.A computing method for 3D magnetotelluric modelling directed by polynomials[J].Earth planets space,51:1005~1012
    Rodriguez J,Esparza F J, Gomez-Trevino E.2010.2-D niblett-bostick magnetotelluric inversion[J].Geologica acta,8(1):15~31
    Shamsipour P,Marcotte D,Chouteau M..2012.Integrating multiscale parameters information into 3D stochastic magnetic anomaly inversion.Geophysics,77(4):D85-D93
    Siripunvaraporn W, Egbert G.2000.REBOCC:An E-cient Data-Subspace Inversion for Two-dimensional magnetotelluric data[J].Geophysics,65(3):791-803
    Smirnov M Y.2003.Magnetotelluric data processing with a robust statistical procedure having a high breakdown point[J].Geophys.J.Int.152:1~7
    Steven C Constable,Robert L.Parker,Catherine G.Constable.1987.Occam's inversion:A practical algorithm for generating smooth models from electromagnetic sounding data[J].Geophysics,52(3):289~300
    Stuart G W,Jolley S J.2005.Application of 3-D seismic attributes analysis to mine planning:Target gold deposit,South Africa[J].The leading edge,7:736~739
    Sutarno D,Vozoff K.1991.Phase-smoothed robust M-estimation of magnetotelluric impedance function[J].Geophysics,56(12):1999-2007
    Weckmann U.,Ritter O, Jung A.2007.Magnetotelluric measurements across the Beattie magnetic anomaly and the Southern Cape Conductive Belt[J],South Africa.112:B05416
    Wen X, Unsworth M.2005.Structural imaging in the Rocky Mountain Foothills(Alberta)using magnetotelluric exploration[J].Geohorizons,90(3):321-333
    Wijns C,Perez C.Kowalczyk P.2005.Theta map:Edge detection in magnetic data[J].Geophysics,70(4):39-43
    William R,Randall L.Mackie.2001.Nonlinear conjugate gradients algorithm for 2-D magnetotelluric inversion[J].Geophysics,66(1):174-187
    蔡剑华,汤井田,雷立云,王先春.2009.大地电磁测深数据的时频分析[J].地质与勘探,45(4):462-467
    蔡军涛,陈小斌.2010.大地电磁资料精细处理和二维反演解释技术研究(二)——反演数据极化模式选择.地球物理学报,53(3):2703-2714
    常印佛,周涛发,范裕.2012.复合成矿与构造转换—以长江中下游成矿带为例[J].岩石学报,2(10):3067-3075
    陈乐寿,王光锷.1990.大地电磁测深法[M].北京:地质出版社
    陈沪生.1988.下扬子地区HQ—13线的综合地球物理调查及其地质意义[J].石油与天然气地质,9(3):211-222
    陈沪生,周雪清.1988.下扬子地区HQ—13线地球物理—地质综合解释剖面[J].地质论评34(5):483-484
    陈沪生,张永鸿.1999.下扬子及临区岩石圈结构构造特征与油气资源评价[M].地质出版社
    陈久平,陈乐寿,王光锷.1990.层状介质中三维大地电磁模拟[J].地球物理学报,33(4):480-488
    陈小斌,赵国泽,汤吉,詹艳,王继军.2005.大地电磁自适应反演算法[J].地球物理学报,48(4):937-946
    陈小斌,赵国泽,马霄.2008.关于MT二维反演中数据旋转方向的选择问题初探[J].石油地球物理勘探,43(1):113-128
    戴世坤,罗延钟.1993.二维地电模型多参数反演方法及其在MT测深中的应用[J].地球物理学报,36(6):821-830
    丁毅.1992宁芜玢岩铁矿成因新论:同化作用、高侵位和铁质聚合[J].矿床地质,11(3):195-202
    董树文,李廷栋.2009SinoProbe-——中国深部探测实验[J].地质学报,83(7):895-909.
    董树文,项怀顺,高锐,吕庆田,李建设,战双庆,卢占武,马立成.2010.长江中下游庐江—枞阳火 山岩矿集区深部结构与成矿作用[J].岩石学报,26(9):2529-2542
    董树文,马立成,刘刚,薛怀民,施炜,李建华.2011.论长江中下游成矿动力学[J].地质学报,85(5):612-625
    董树文,李廷栋,高瑞,吕庆田,魏文博,杨经绥,王学求,陈群策,石耀霖,黄大年,陈宣华,周琦.2013.我国深部探测技术与实验研究与国际同步.地球学报,34(1):7-23
    杜建国,马晓红.2011.长江中下游成矿带陆相火山岩型铁矿成矿规律[J].安徽地质,2(2):131-137
    杜建国,常丹燕.2011.长江中下游成矿带深部铁矿找矿的思考[J].地质学报,85(5):687-698
    范裕,周涛发,袁峰.2010.宁芜盆地闪长玢岩的形成时代及对成矿的指示意义[J].岩石学报,26(9):2715-2728
    冯思臣,王绪本,阮帅.2004.一维大地大地电磁测深几种反演算法的比较研究[J].石油地球物理勘探,39(5):594-599
    高文.1991.大地电磁感应的场源效应[J].地球物理学报,34(2):210-215
    高道明,洪东良.2008.钟姑矿田铁矿成矿模式与规律及找矿标志[J].金属矿山,85(3):84-87
    高红伟,张胜业.1998.阻抗张量分解进行大地电磁静校正的研究[J].地质科技情报,17(1):91-96
    高锐,卢占武,刘金凯,匡朝阳,酆少英,李朋武,张季生,王海燕.2010.庐—枞金属矿集区深地震反射剖面揭示结果—揭露地壳精细结构,追踪成矿深部过程.岩石学报,2010,26(9):2543-2552
    顾连兴,阮惠础.1990.宁芜地区两种主要类型铁矿床中铁的热液富集机制探讨[J].矿床地质,9(2):112-118
    韩波,胡祥云,何展翔.2012.大地电磁反演方法的数学分类[J].石油地球物理勘探,47(1):177-187
    侯遵泽,杨文采.1997.中国重力异常的小波变换与多尺度分析.地球物理学报,40(1):534-541
    侯通,张招崇,杜杨松.2010.宁芜南段钟姑矿田的深部矿浆—热液系统[J].地学前缘,17(1):186-194
    侯贺晟,高锐,卢占武,马立成,徐康.2012.长江中下游金属矿集区近地表速度结构层析成像实验及应用.地质学报,86(6):940-947
    胡祖志,胡祥云.2005.大地电磁三维反演方法综述[J].地球物理学进展,20(1):214-220
    胡祖志,胡祥云,何展翔.2006.大地电磁非线性共轭梯度拟三维反演[J].地球物理学报,49(4):1226-1234
    化希瑞,曹哲明,刘铁,段圣龙.2009.高频大地电磁系统数据处理方法研究[J].工程地球物理学报,6,增刊:25-32
    晋光文,孔祥儒.2006.大地电磁阻抗张量的畸变与分解.北京:地震出版社
    晋光文,孙洁,白登海,白立凤.2003.川西—藏东大地电磁资料的阻抗张量畸变分解.地球物理学报,46(7):547-552
    金胜,张乐天,魏文博,叶高峰,刘国兴,邓明,景建恩.2010.中国大陆深探测的大地电磁测深研究[J].地质学报,84(6):808-817
    兰学毅,周存亭,王建伟,汤正江,许卫,杜建国.2012.安徽省重力异常特征分区与地质构造单元划分[J].安徽地质,22(1):1-8
    林刚,许德如.2010.在宁芜玢岩铁矿深部寻找大冶式铁矿的探讨[J].矿床地质,29(3):427-436
    林刚,朱纯六,许德如.2010.宁芜南段成矿模式及对深部找矿的思考[J].大地构造与成矿学,34(3):368-377
    林昌洪.2009.大地电磁张量阻抗三维共轭梯度反演研究[D].北京:中国地质大学(北京)
    林鹤鸣,夏邦栋.1997.下扬子区中生代溧水—南陵拉分盆地的厘定[J].石油与天然气地质,18(4):276-281
    刘海泉,闫峻,石永红,刘国生.2008.安徽巢湖—铜陵断裂的地质证据.合肥工业大学学报(自然科学版),31(8):1218-1222
    刘燕戌,孟令顺,杜晓鹃,许家妹,张明仁,吕伟星.2009.利用重力和大地电磁测深资料研究大庆探区外围丹青河林场—道台桥剖面的断裂及构造分区[J].物探与化探,33(1):10-15
    刘彦,吕庆田,严加永,吴明安,祁光,邓震.2012.庐枞矿集区结构特征重磁研究及其成矿指示.岩石学报,28(10):3125-3138
    刘彦,严加永,吴明安,赵文广,赵金花,邓震.2012.基于重力异常分离方法寻找深部隐伏铁矿—以安徽泥河铁矿为例.地球物理学报,2012,55(12):4181-4193
    楼亚儿,杜杨松.2006.安徽繁昌中生代侵入岩的特征和锆石SHRIMP测年.地球化学,35(4):333-345
    卢冰,胡受奚.1990.宁芜型铁矿床成因和成矿模式的探讨[J].矿床地质,9(1):13-24
    吕庆田,侯增谦,赵金花,史大年,吴宣志,常印佛,裴荣富.2003.深地震反射剖面揭示的铜陵矿集区复杂地壳结构形态[J].中国科学D辑.,33(5):442-449
    吕庆田,杨竹森,严加永,徐文艺.2007.长江中下游成矿带深部成矿潜力、找矿思路与初步尝试—以铜陵矿集区为例[J].地质学报,81(7):865-881
    马振东,单光祥.1997.长江中下游区域地壳热结构及研究意义[J].地球科学,22(1):62-64
    孟小红,刘国峰,陈召嘻.2012.基于剩余异常相关成像的重磁物性反演方法[J].地球物理学报,55(1):304-309
    宁芜研究项目编写组.1978.宁芜玢岩铁矿[M].地质出版社.
    牛漫兰.2006.张八岭隆起南缘早白垩世火山岩稀土元素对比研究.中国稀土学报,24(6):739-744
    牛漫兰,朱光,谢成龙,吴齐,刘国生.2010.郯庐断裂带张八岭隆起南段晚中生代侵入岩地球化学特 征及其对岩石圈减薄的指示[J].岩石学报,26(9):2783-2804
    祁光,吕庆田,严加永,吴明安,刘彦.2012.先验地质信息约束下的三维重磁反演建模研究—以安徽泥河铁矿为例.地球物理学报,55(12):4194-4206
    石英俊.1985.大地电磁测深法教程[M].北京:地震出版社
    石玉书.宁芜南段区域场的研究[J].67-74
    史大年,吕庆田,徐明才,赵金花.2004.铜陵矿集区地壳浅表结构的地震层析研究.矿床地质,23(3):383-389
    史大年,吕庆田,徐文艺等.2012.长江中下游成矿带及邻区地壳结构——MASH成矿过程的P波接收函数成像证据?[J].地质学报,86(3):389-399
    宋传中,朱光,王道轩等.2000.苏皖境内滁河断裂的演化与大地构造背景[J].中国区域地质,19(4):367-374
    宋传中,张华,任升莲.2011.长江中下游转换构造结与区域成矿背景分析[J].地质学报,85(5):778-788
    谭捍东,余钦范,John Booker,魏文博.2003.大地电磁法三维快速松弛反演[J].地球物理学报,46(3):850-855
    谭捍东,魏文博,Martyn Unsworth,邓明,金胜,John Booker,Alan Jones2004.西藏高原南部雅鲁藏布江缝合带地区地壳电性结构研究[J].地球物理学报,47(4):685-690.
    汤井田,化希瑞,曹哲民,任政勇,段圣龙.2008Hilbert—Huang变换与大地电磁噪声压制[J].地球物理学报,51(2):603-610
    汤井田,李晋,肖晓,张林成,吕庆田.2012.数学形态滤波与大地电磁噪声压制[J].地球物理学报,55(5):1784-1793.
    滕吉文,孙克忠,熊绍柏,姚虹,尹周勋,程立芳,薛长顺,田东升.1985.中国东部马鞍山—常熟—骑东地带地壳与上地幔结构和速度分布的爆炸地震研究.地球物理学报,28(2):155-169
    万汉平.2010.大地电磁测深的TE和TM极化模式对比研究[D].成都:成都理工大学.
    王家映.1992.关于大地电磁的静校正问题[J].地质科技情报,11(1):69-76
    王家映.1997.我国大地电磁测深研究新进展.地球物理学报,40,增刊:206-216
    王良书,李成,施央申.1995.下扬子地温场和大地热流密度分布[J].地球物理学报,38(4):469-476
    王建伟,王晓莺,谢兰芳,周传公.2004.安徽省重力场基本特征[J].安徽地质,14(3):192-195
    王建伟,李仁和,胡开勇,周传公,廖圣柱.2009.安徽省磁场基本特征初析[J].安徽地质,19(4):268-271
    王建伟,李仁和,胡开勇,张劲松,廖圣柱.2010.安徽省区域岩石物性基本特征[J].安徽地质,20(2):112-116
    王元龙,张旗,王焰.2001.宁芜火山岩的地球化学特征及其意义.岩石学报,17(4):565-575
    魏文博,金胜,叶高峰,邓明,谭捍东.2006.藏北高原地壳及上地幔导电性结构—超宽频带大地电磁测深研究结果[J].地球物理学报,49(4):1215-1225
    魏文博,金胜,叶高峰.2009.藏南岩石圈导电性结构与流变性—超宽频带大地电磁测深研究结果[J].中国科学D辑,39(11):1591-1606
    肖骑彬,赵国泽,詹艳,陈小斌,汤吉,王继军,邓前辉.2007.大别山超高压变质带深部电性结构及其动力学意义初步研究[J].地球物理学报,50(3):812-822
    肖骑彬,赵国泽,王继军,詹艳,陈小斌,汤吉,蔡军涛,万战生,王立风,马为,张继红.2008.苏鲁造山带及邻区深部电性结构研究[J].中国科学D辑,38(1):1258-1267
    徐志敏,汤井田,强建科.2012.矿集区大地电磁强干扰类型分析[J].物探与化探,36(2):214-219
    徐亚,郝天珧,黄松,李志伟,吕川川,赵百民,胡卫剑.2011.渤海湾地区壳幔结构重磁综合研究[J].地球物理学报,54(12):3344-3351
    邢凤鸣.1996.宁芜地区中生代岩浆岩的成因—岩石学与Nd、Sr、Pb同位素证据.岩石矿物学杂志,15(2):126-137
    薛怀民,董树文,马芳.2010.长江中下游地区庐(江)—枞(阳)和宁(南京)—芜(湖)盆地内与成矿有关潜火山岩体的SHRIMP锆石U--Pb年龄[J].岩石学报,26(9):2653-2664
    闫峻,俞永飞,陈江峰.2009.宁芜地区娘娘山组火山岩Rb-Sr同位素定年及其意义.地质论评,55(1):121-125
    严加永,藤吉文,吕庆田.2008.深部金属矿产资源地球物理勘查与应用[J].地球物理学进展,23(3):871-891
    严加永,吕庆田,孟贵祥,赵金花.2009.铜陵矿集区中酸性岩体航磁3D成像及对深部找矿方向的指示.矿床地质,28(6):838-849
    严加永,吕庆田,孟贵祥,赵金花,邓震,刘彦.2011.基于重磁多尺度边缘检测的长江中下游成矿带构造格架研究[J].地质学报,85(5):901-914
    杨菱,石永辉.1990.复杂地区大地电磁测深曲线的性质及资料解释问题综述[J].地球科学—中国地质大学学报,15,增刊:69-77
    杨生,鲍光淑,张全胜.2002.远参考大地电磁测深法应用研究[J].物探与化探,26(1):27-31
    杨长福,徐世浙.2005.国外大地电磁研究现状[J].物探与化探,29(3):243-247
    杨振威,张昆,严加永,陈向斌.2012.宁—芜矿集区及其西缘深部结构初探[J].地球物理学报,55(12):4160-4168
    叶高峰,魏文博,金胜,景建恩.2009.郯庐断裂带中段电性结构及其地学意义研究[J].地球物理学报,52(11):2818-2825
    尹兵祥,王光锷.2001.大地电磁阻抗张量正则分解的地质含义分析[J].地球物理学报,44(2):279-288
    余金杰,毛景文,张长青.2007.地幔流体参与与宁芜玢岩铁矿成矿[J].自然科学进展,17(9):1216-1221
    禹尧,徐夕生.2009.长江中下游地区白垩纪富碱火山岩浆作用[J].地球科学,34(1):105-116
    曾华霖.2005.重力场与重力勘探[M].北京:地质出版社
    张季生,高锐,李秋生,管烨,彭聪,李朋武,卢占武,侯贺晟.2010.庐枞火山岩及其外围重、磁场特征.岩石学报,26(9):2613-2622
    张交东,杨长春,刘成斋,刘德良,杨晓勇,刘传鹏,黄松,任凤楼.2010.郯庐断裂南段走滑和伸展断裂的深部结构及位置关系.地球物理学报,53(4):864-873
    张旗,简平,刘敦一,王元龙,钱青.宁芜火山岩的锆石SHRIMP定年及其意义.中国科学(D辑):33(4):309-314
    张全胜,王家映.2004.大地电磁测深资料的去噪方法[J].石油地球物理勘探,39,增刊:17-23
    张恩立,张寅生,郑树杰等.郯庐断裂带皖东段与滁河断裂构造及地震活动相关性研究[J].防灾减灾工程学报,2004,24(2):202-209
    翟裕生,彭润民,邓军等.成矿系统分析与新类型矿床预测[J].地学前缘,2000,7(1):123-132
    詹艳,赵国泽,陈小斌等.宁夏海原大震区西安州—韦州剖面大地电磁探测与研究[J].地球物理学报,2004,47(2):274-281
    赵玉琛.1988.宁芜地区凹山地段旋转构造控矿的研究[J].矿床地质,7(4):73-82
    赵玉琛.1992.宁芜盆地边界断裂带及邻区玄武岩特征和意义[J].岩石矿物学杂志,11(3):225-238
    真允庆,丁梅花,戴宝章等.2009.长江中下游成矿带深部找矿的思路探讨.地质找矿论丛,24(3):179-188
    郑晔,滕吉文.1989.随县—马鞍山地带地壳与上地幔结构及郯庐构造带南段的某些特征.地球物理学报,32(6):648-659
    周涛发,范裕,袁峰.2008.长江中下游成矿带成岩成矿作用研究进展[J].岩石学报,24(8):1665-1678
    周涛发,范裕,袁峰等.2011.长江中下游成矿带火山岩盆地的成岩成矿作用[J].地质学报,85(5):712-729

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700