用户名: 密码: 验证码:
航空相机高精度速高比测量技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航空相机在空中飞行照相时,像移补偿精度是影响航空相机成像质量的关键因素,高精度像移补偿的前提是需要对速高比进行高精度的测量。本文将速高比测量转化为像移速度测量,从航空相机像移速度测量出发,以空间滤波测速法(SFV)为基础,对空间滤波器的滤波特性、滤波器的参数选择、二维速度测量以及SFV信号处理等相关技术进行了深入研究。
     通过对光学测速方法进行回顾,提出了利用空间滤波测速法对航空相机像移速度进行测量;介绍了空间滤波测速的原理和特性,并从数学角度对图像光强分布的空间滤波效应进行了介绍;讨论了透射函数对于窄带通滤波特性的影响,给出了不同形状的滤波器窗口对于典型透射函数的功率谱表达式,并对其功率谱中的频谱带宽及中心频率等特性进行了研究;通过研究空间滤波器的功率谱密度函数,对影响空间滤波特性的关键参数进行了分析;对比了透射光栅、棱镜光栅、光电二极管阵列以及液晶元件阵列等各类空间滤波器件进行像移速度测量的适用性;讨论了利用差分检波对基频成分的消除,提出了进行像移速度方向鉴别以及二维速度测量的方法;深入的讨论了处理SFV信号所涉及的信号分析技术,介绍了频谱分析,频率跟踪,计数方法以及相关技术等典型的信号分析技术。
     提出了利用线阵CCD的空间滤波特性进行航空相机像移速度测量的新方法,利用线阵CCD的空间滤波特性,通过对线阵CCD推扫所产生的图像进行隔行采样,模拟了空间滤波器的窄带通频率特性,实现了对航空相机像移速度的光学非接触测量,从而实现了速高比的测量。此方法可根据地面目标的频率分布灵活调整空间滤波器的频率特性,能够适用于航空相机速高比的精确测量。实验对5mm/s~53.2mm/s范围内几个典型像移速度进行了测量,结果表明,CCD像元尺寸为8μm,相机曝光时间为10ms时,测量误差引起的像移量误差最大为2μm,能够满足航空相机像移补偿的精度要求;实验中采用了线阵CCD的像素binning功能,大幅度提高了数据的读出速率,实现了动态累加的快速采样,同时提高图像的信噪比;提出了利用单个线阵CCD进行一维运动方向鉴别的方法,简化了光学系统;介绍了基于模糊图像的二维速度方向鉴别方法,并进行了试验验证。
     本文成功的实现了航空相机像移速度的高精度测量,从而实现了速高比的高精度测量,试验结果表明,文中提出的测量方法其精度完全满足航空相机像移补偿的精度要求。
The precision of image motion compensation is the key factor impacting the imagequality. High precision measurement of speed height ratio (SHR) is the foundation forhigh precision image motion compensation. SHR measurement is converted to imagemotion measurement in this paper, aerial camera image motion measurement is studiedwhich is based on spatial filtering velocity measurement (SFV). Filter characteristics ofspatial filtering effect, filter parameter selection, two dimension velocity measurement,SFV signal process and related techniques are further studied.
     The validity of SFV for aerial camera is proposed comparing with optical velocitymeasurement. The principal and characteristics of SFV are introduced and spatialfiltering effect of image light intensity distribution is presented mathematically. Theeffects of transmittance function on characteristics of narrow band filter are discussed.The power spectrum presentations of typical transmittance function for different shapeof filter window are presented, and the characteristics of spectrum bandwidth andcentral frequency of the power spectrum are studied. The key parameters affectingidentity of spatial filter are analyzed by studying power spectrum function of spatialfilter. The applicability of various spatial filters, such as transmittance grating, prismgrating, optical-electoral diode array and liquid crystal component array, for imagemotion compensation is compared. The pedestal component elimination usingdifference demodulation is discussed. Direction discrimination of image motion andtwo dimension velocity measurements are proposed. SFV signal process and relatedsignal analysis techniques are further discussed. Typical signal analysis techniques,such as frequency spectrum analysis, frequency tracking and counting method, areintroduced.
     A novel method for image motion measure is proposed using spatial filteringeffect of line CCD for aerial camera. The narrow band filtering property of spatial splitis simulated through interval sampling line CCD image. An optical noncontact measurement of aerial camera image motion velocity is realized, and the SHRmeasurement is accordingly achieved. This method can flexibly adjust frequencycharacteristic of spatial filter according to frequency distribution of targets on ground,so it is applicable to high precision measurement of SHR for aerial camera. Severaltypical image motion velocities ranging from5mm/s to53.2mm/s are experimentallymeasured. The experimental results indicate that the maximum image motion errorresulting from measurement error is2μm when CCD pixel pitch is8μm and time ofexposure is10ms. Pixel binning of line CCD is utilized in the experiment, whichrealizes dynamic fast sampling and enhances image SNR. Direction identificationmethod for two-dimension velocity based on blur image is introduced and experimentis carried out to validate the method.
引文
[1]刘明,匡海鹏,吴宏圣等.像移补偿技术综述[J].电光与控制,2004,11(4):46-49
    [2]刘明,李刚,李友一等.航空相机的像移计算及其补偿分析[J].光电工程,2004,12(31):12-14.
    [3] David V.Arnold,John B Dougall,Bradley Curtis,et al.System and method formonitoring speed[P].United States Patent,7426450B2,2008.
    [4]王庆有.光电技术[M].北京:电子工业出版社,2006.223-233.
    [5]李兴华,金光,翟林培.遥感相机像移速度的滤波处理[J].光电工程,2000,27(1):56-59.
    [6]易红伟,赵惠,汶德胜.联合变换相关器像移测量静态仿真试验分析[J].光学学报,2010,30(12):3471-3475.
    [7]卢万欣.采用CCD线阵做探测器的数字相关测速系统[J].长春光学精密机械学院学报,1992,15(2):85-90.
    [8]张玉欣,刘宇.基于CMOS图像传感器的实时二维相关测速法[J].液晶与显示,2010,25(6):896-900.
    [9]谢维达,邵德荣,王春辉.基于面阵图像传感器的二维相关测速研究[J].光电子技术,2003,23(4):224-228.
    [10]谢维达,王春辉,邵德荣.基于FPGA的二维相关测速方法研究[J].测控技术,2004,23(1):66-68.
    [11]张林,吴晓琴.TDICCD相机动态成像的速度同步控制研究[J].传感器技术,2005,24(12):10-15.
    [12]杨桦,朱永红,焦文春等.TDICCD成像的速度同步分析和实验[J].航天返回与遥感,2003,24(1):38-42.
    [13]Jingyi Li, Xue Liu. External Swing Method for Forward Motion Compensation ofAirborne Digital Camera [J]. Proc. of SPIE,2011,8002:800206-1-800206-3
    [14]王德江,匡海鹏,蔡希昌. TDICCD全景航空相机前向像移补偿的数字实现方法[J].光学精密工程,2008,16(12):2465-2472
    [15]Petrak, D. and Hadrich, Th. Laser Doppler anemometry and fiberoptical spatialfilter anemometry-a comparision for the multiphasle flow measurement[C].4th Int.Conf. Laser Anemom.1991,Cleveland,25-258.
    [16]Katsuaki Shirai, Yusuke Yaguchi. Highly spatially resolving laser Dopplervelocity measurements of the tip clearance flow inside a hard disk drive model [J].Experiments in Fluids,2011, Volume50, Number3:573-586
    [17]Jakobsen M.L, Yura H.T et al. Speckles and their dynamics for structured targetillumination: optical spatial filtering velocimetry [J]. Journal of Optics,2009,(054001):1464-4258.
    [18]周瑛,魏平.基于FPGA并行处理的实时图像相关速度计[J].光学技术,2006,32(1):108-110.
    [19]Rudiger zeitler.Digital correlator for measuring the velocity of solidsurfaces[J].IEEE Transactions and Measurement,1997,46(4):490-495.
    [20]J.T. Ator.Image-Velocity Sensing with Parallel-Slit Reticles[J],Journal of theOptical Society of America,1963,Vol53:1416-1422
    [21]Y.Itakura, A. Sugimura, S. Tsutsumi. Amplitude-modulated reticle constructed bya liquid crystal cell array[J].Appl. Opt. Vol20,1981:2819-2826
    [22]K. Christofori, K. Michelt. Velocimetry with spatial filters based on sensorarrays[J], Flow Meas. Instrum,1996,Vol7, No.314:265-272
    [23]Martin Schaeper, Nils Damaschke et al. Velocity Measurement for MovingSurfaces by Using Spatial Filtering Technique Based on ArrayDetectors[J],Springer-Verlag Berlin Heidelberg,2011, LNAI6752:303-310
    [24]Saeed Mohaghegh,Amir Hossein Rezaie.A convenient approach for velocitymeasurement[J]. IEEE ICICS2005.2005:339-343.
    [25]Shigeo Hosokawa, Akio Tomiyama. Spatial filter velocimetry based on time-seriesparticle images[J], Exp Fluids, Springer-Verlag,2012,52(6),1361-1372.
    [26]Han, B., Tong, Y. and Li, J. Flow velocity measurement by spatial filter andexperimental research[J]. International Symposium on Modern Measuring Techniquesfor Multiphase Flows, Nanjing,1995:356-363.
    [27]赵周伦,钟太升,侯方源.圆环扫描高比计研究[J].光学机械,1985,(6):39-48.
    [28]翟林培.具有空间滤波的圆环扫描速高比计研究[J].光学机械,1986,(3):25-32.
    [29]Butterfield M,N., Bryaht G, F. A new method of strip speed measurementusing random waveform correlation[J]. Transactions of the Society of InstrumentTechnology,1961,13(2):111-123.
    [30]Philip A.Shaffer,Jr.,Pasadena,Calif.Image motion detector[P].United StatesPatent,3537793.1968.
    [31]George W.Gigioli,Jr.,Andover,Mass [P].United States Patent,743523.1996.
    [32]J. W. Bilbro, C. DiMarzio, D. Airborne Doppler lidar measurements[J]. Appl. Opt.1986,25:3952-3960.
    [33]GIGIOL I GW, J r. Passive optical velocity measurement device and method[P].United States Patent,5745226,1998.
    [34]Albrecht, H, E. Laser Doppler and Phase Doppler Measurement Techniques[M].Experimental Fluid Mechanics, Springer-Verlag, Heidelberg,2010.
    [35]U. Schnell, J. Piot, and R. Dandliker. Detection of movement with laser specklepatterns: statistical properties[J]. J. Opt. Soc. Am.1998,15:207-216.
    [36]Mohd Fuaad Rahmat,Chang Weilam.Real time cross correlator for speedmeasurement of particle convering in pneumatic pipeline[J]. IEEE.2000:503-515.
    [37]Raffel M, Willert, Christian E. Particle Image Velocimetry[M], ExperimentalFluid Mechanics, Springer, Heidelberg,2007.
    [38]陆耀军,董守平.二维粒子图像测速系统的研制[J].实验力学,2001,16(9):338-346.
    [39]J.T.Ator.Image velocity sensing by optical correlation[J],Appl.Opt.1966,(5),1325-1331.
    [40]Gaster, M. A new technique for the measurement of low fluid velocities[J]. J. FluidMech.1964,20:183.
    [41]M Naito, M Ishigami, A Kobayashi. Spatial Filter and Its Application to IndustrialMeasurement[C]. Proc.5th IMEKO,1970, JA-129.
    [42]Liznah binti Latip,Masaru Tsudagawa.Image velocity measurement by usingspatial filter method[J]. IEEE Transactions on instrumentation and measurementtechnology conference.2002:1411-1414.
    [43]Y. Aizu and T. Asakura. Spatial Filtering Velocimetry, Fundamentals andApplications[M], Springer,2006.
    [44]Y.Aizu. Principles and development of spatial filtering velocimetry[J], Appl. phys.B43,1987:209~224
    [45]Kitagawa, Y., Hayashi, A. and Minami, S. Particle velocity measurements using anoptical fiber array spatial filter[J]. Transactions of the Society of Instrument andControl Engineers,1991,27:1041-l043.
    [46]T Ushizaka, Y. Aizu, T. Asakura. Measurement of Velocity Using a LengticularGrating[J]. Appl. Phys.1986, B39,97-106.
    [47]S. L. Yeh, S. T. Lin, and Y. H. Chang,“Precise displacement measurement for alocal surface,” Opt. Lett.2009,34:3406–3408.
    [48]H. Ohno, T. Yamaura, A. Kobayashi. Spatial Filter Detector withTwo-Dimensional M-Sequence Pattern and Its Application to Macro-Measurement ofRandom Movement[C]. The4th. Sensor Symposium, Japan,1984,61-66.
    [49]葛文奇.复合式速高比计研究[J].光学机械,1986,(3):39-48.
    [50]M. L. Jakobsen, S. G. Hanson. Lenticular array for spatial filtering velocimetry oflaser speckles from solid surfaces[J], Appl. Opt.2004,43:4643-4651.
    [51]Petrak, D. Development in fibre optical spatial filter velocimetry and application totwo-phase flow[C].2nd International Conference on Multiphase Flow,Kyoto,1995:IN1-9-IN1-13.
    [52]Petrak, D., Rauh, H. Micro-flow metering and viscosity measurement of lowviscosity Newtonian fluids using a fibre optical spatial filter technique[J]. FlowMeasurement and Instrumentation.2009,20(2):49-56.
    [53]Bergeler, S., Krambeer, H. Novel optical spatial filtering methods based ontwo-dimensional photo detector arrays[J]. Measurement Science and Technology.2004,15(7):1309-1315.
    [54]S. Kim, S. J. Lee. Effect of particle number density in in-line digital holographicparticle velocimetry[J]. Exp. Fluids,2008,44:623-631.
    [55]Pau, S., Dallas, W.J. Generalized spatial filtering velocimetry and accelerometryfor uniform and nonuniform objects[J]. Applied Optics.2009,48(24):4713-4722.
    [56]Ogiwara, H. and Ukita, H. A speckle pattern velocimeter using a periodicaldifferential detector[J]. Jap. J.Appl. Phys.1975,14:307-310.
    [57]YASUFUMI AMARI,ISAO MASUDA. Velocity sense detection based on spatialfilter method [J]. IEEE Transactions on instrumentation andmeasurement.1990,39(4):649-652.
    [58]Yoshihisa Aizu, Tsuyoshi Ushizaka, Toshimitsu Asakura. Measurement of flowvelocity in a microscopic reagion using a transmission grating: elimination of directionambiguity[J]. Applied Optics,24(5),1985,636-640.
    [59]Luc Kervewan,Herve Gilles,Sylvain Girard.Two dimensional velocitymeasurements with self-mixing technique in diode-pumped lass laser[C].IEEEphotonics technology letters,2004,17(7):1709-1711.
    [60]Theis F. Q. Iversen. Speckle-based three-dimensional velocity measurement usingspatial filtering velocimetry[J]. APPLIED OPTICS.2011,50(11):1523-1533.
    [61]M. L. Jakobsen, H. E. Larsen, S. G. Hanson. Optical spatial filtering velocimetrysensor for sub-micron in-plane vibration measurements[J]. J. Opt. A: Pure Appl.2005,10:303-307.
    [62]Fiedler Otto F. Usage of the spatial filter method for measurements of local particlevelocities in multiphase flows[J]. Advances in Sensors for Fluid Flow Measjrement.IEE.,1996,6/1-6/3.
    [63]Kazuhiro Otsuka,Tsutomu Horikoshi,Satoshi Suzuki.Image velocity estimationfrom trajectory surface in spatial temporal space[C].IEEE.1997,200-205.
    [64]曹丽,尹朝征.空间滤波测速的视频方法[J].仪器仪表学报,2001,22(3):206-208.
    [65]M. S. Uddin, H. Inaba, Y. Itakura. Adaptive computer-based spatial-filteringmethod for more accurate estimation of the surface velocity of debris flow[J]. Appl.Opt.1999,38:6714-6721.
    [66]Kuang Haipeng,Li Zhaohui,Liu Ming,et al..Real-time auto-focusing techniqueusing centroid method for space camera.Journal of Harbin Institute ofTechnology[J].2007,14(4),577-579.
    [67]Han Bing, Tong Yunxian, Li Jun. Flow Velocity Measurement Using SpatialFilter[J]. Journal of Tsing hua University (Sci&Tech),1996,36:71-76.
    [68]Yong Yan. Mass flow measurement of bulk solids in pneumatic pipelines[J]. Meas.Sci. Technol.1996,7:1687-1706.
    [69]K. T. Christensen, R. J. Adrian. Measurement of instantaneous Eulerianacceleration fields by particle image accelerometry: method and accuracy[J]. Exp.Fluids,2002,33:759-769.
    [70]磨少清,李啸骢.一种高精度的改进傅里叶测频算法[J].电力系统自动化,2003,27(12):48-49.
    [71]丁玉美,阔永红,高新波.数字信号处理—时域离散随机信号处理[M].西安:西安电子科技大学出版社,2002:16-26.
    [72]A.V.奥本海姆, R.W.谢弗.离散时间信号处理[M].西安:西安交通大学出版社,2004:115-145.
    [73]吴笃贵,贺春,易永辉.一种新颖的频率跟踪算法[J].电网技术,2004,28(14):39-43.
    [74]吴静,赵伟.适用于非同步采样的相位差准确测量算法[J].电网技术,2006,30(7):73-76.
    [75]王旭东,刘渝.多通道自相关信号检测算法及其FPGA实现[J].2007,28(5):875-881.
    [76]李一泉,何奔腾.一种基于傅氏算法的高精度测频算法[J].中国电机工程学报,2005,26(2):78-81.
    [77]董正超,Klaus Michel,Swen Bergeler等. CCD器件空间滤波在微粒运动速度检测上的应用[J],仪器仪表学报,2000,21(2):211-216
    [78]赵贵军,陈长征,万志等.推扫型TDICCD光学遥感器动态成像研究[J].光学精密工程,2006,14(2):291-296.
    [79]张贤达.现代信号处理[M].北京:清华大学出版社,2002.
    [80]鲁昭,刘国媛.TDICCD行扫描速率控制技术研究[J].光子学报,1999,28(5):455-457.
    [81]吴崇昊,陆于平,饶丹.用时域连续有限冲激响应滤波器进行过零测频的方法[J],电网技术,2007,31(7):18-21
    [82]孔辉,叶菲,王杰贵.一种改进的过零检测分析方法[J].航天电子对抗,2007,23(4):50-52.
    [83]蒋伟光.TDICCD的空间分辨率特性[J].红外,2001,9:17-21.
    [84]黄静,王岱.大面阵数字航测相机像移补偿的实现[J].光电工程,2006,33(5):28-30.
    [85]陈梁,刘春霞,龚惠兴.极轨星载TDICCD相机的像移及恢复算法研究[J].遥感学报,2002,6:35-39.
    [86]Lareau A G. Electro-optical imaging array with motion compensation[J]. SPIE,1993,2023:65-79.
    [87]张健,张伯珩,边川平,李露遥.CCD信号处理的滤波器设计[J].航天返回与遥感,2006,27(4):49-52.
    [88]王庆有.图像传感器应用技术[M].北京:电子工业出版社,2003:78-98.
    [89]周望,沈为民,周健康. Binning技术在光谱仪中的试验研究[J].激光与光电子学进展,2010,47(4):041604-1-041604-5.
    [90]Li Hao, Zhang Hui, Guo Xiaolian.Image Restoration After Pixel Binning in ImageSensors[J].Tsinghua Science and Technology.2009,14(4):541-545.
    [91]佟首峰,阮锦,郝志航.CCD图像传感器降噪技术的研究[J].光学精密工程,2000,8(2):140-145.
    [92]H. E. Plesser, T. Geisel. Signal Processing by means of noise[J]. Neuralcomputing,2001,(38):307-312.
    [93]MALUEG R M. Two-axis image motion detector[P]. United States Patent,3950099,1976.
    [94]闫得杰,徐抒岩,韩诚山.飞行器姿态对空间相机像移补偿的影响[J].光学精密工程,2008,16(11):219922203.
    [95]Lareau A G, Partynski A J. Dual-band framing cameras: technology and status[J].SPIE,2000,4127:148-156.
    [96]Yitzhaky Y, Kopeika N S. Identification of Blur Parameters from Motion BlurredImages[J]. Graphical Models and Image Processing,1997,59(5):310-320.
    [97]王晓红,赵荣椿.匀速直线运动模糊的PSF之估计[J].计算机应用,2001,21(9):40-41.
    [98]姜华,刘国庆.图像运动模糊方向的检测方法[J].计算机应用,2008,28:220-222.
    [99]邓泽峰,熊有伦.基于频域方法的运动模糊方向识别[J].光电工程.2007,34(10),98-101.
    [100] Du H,Voss K J.Effects of point-spread function on calibration and radiometricaccuracy of CCD camera[J].Applied Optics.2004,43(3):665-670.
    [101]陈前荣,陆启生,成礼智.基于方向微分的运动模糊方向鉴别[J].中国图像图形学报,2005,10(5):590-595.
    [102] R. C. Gonzalez and P. Wintz, Digital Image Processing[M](2nd ed.),Academic Press, New York, USA,1987.
    [103] Kwok Kit Lau and Bertram E Shi.A1-D image velocity sensor using gaborfiltering[C].IEEE international Symposium on Circuits and Systems.2000,(I):423-426.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700