用户名: 密码: 验证码:
高寒草甸坡向梯度上植物群落组成及其氮磷化学计量学特征的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
坡向是青藏高原山地上决定植物群落组成变化的主导因子之一。坡向影响着地表接受的太阳辐射量,而太阳辐射在不同坡向上的再分配决定了土壤温度、土壤蒸发量、土壤含水量等生态因子的分配。南坡(阳坡)接受的太阳辐射较多,较热、干旱,而北坡(阴坡)接受的太阳辐射较少,故而较湿、阴冷。由于不同坡向光、热、水、土等自然因素的不同,植被的组成会产生相应的变化。这种在坡向的生境梯度上,植物群落组分结构上的变化如何影响土壤理化特征、植物的化学计量特征、抗逆生理特征等,而这些又如何响应于群落组成的变化,这是高寒草甸地区群落学研究中少有涉及的论题。
     本文以青藏高原东部的高寒草甸为例,分析了阴阳坡梯度上土壤因子和植物群落组成的变化特征,研究了植物叶片氮磷化学计量特征对坡向的响应以及植物物种生理因子的坡向差异。
     本文的主要结果为:
     (1)从阳坡到阴坡,环境因子的变化较大,日平均土壤温度和光照度的变化趋势为阳坡>半阴半阳坡>阴坡,土壤含水量的变化趋势为阴坡>半阴半阳坡>阴坡。土壤养分的变化趋势为:土壤全磷和有机质总体表现为阴坡大于阳坡,而土壤全氮和速效氮、速效磷在坡向梯度上变化不显著。
     (2)坡向梯度上植物组成结构发生了明显变化,阳坡主要由禾草(禾本科和莎草科)组成,阴坡则主要由杂草(非豆科杂草)组成。阴坡-阳坡梯度上群落物种多样性指数和丰富度指数的变化显著,其均表现为阴坡>半阴半阳坡>阳坡。
     (3)在阳坡-阴坡梯度上,植物叶片的氮磷化学计量特征也发生了变化。在阳坡,植物叶片氮磷含量都小于阴坡,而磷含量的变化尤为显著;阳坡的叶片氮磷比则显著的高于阴坡。另外,植物叶片功能群的氮磷计量特征同样发生了变化,禾草类的平均叶片氮磷含量显著低于杂草类,而豆科的叶片氮含量和氮磷比在不同坡向均高于禾草和杂草类。
     (4)在阳坡-阴坡梯度上,阳坡植物的氮磷比明显大于16,而阴坡则小于14,根据限制性元素计量比值判断,不同坡向上限制性元素发生了变化,即阳坡为磷限制,而阴坡则为氮限制。
     (5)在阳坡-阴坡梯度上,植物的生长率与N:P呈显著负相关,与植物叶片磷含量呈显著正相关,这支持生长速率假说。另外,随着海拔高度的上升,植物叶片氮磷含量和氮磷比都呈现明显的下降趋势,这一现象支持生物-地球化学假说。
     (6)在阴坡-阳坡梯度上,随着土壤含水量的下降和土壤温度、光照度的增加,植物物种脯氨酸与可溶性糖含量呈增加趋势,其大小顺序为:棘豆(Oxytropis kansuensis)>狼毒(Stellera chamaejweisme)>火绒草(Leontopodium leontopodioides)>莓叶委陵菜(Otentilla fragarioides)>矮嵩草(Kobresia humilis)>金露梅(Potentilla fruticosa),而植物叶绿素呈减少趋势,其大小顺序为:棘豆(Oxytropis kansuensis)<矮嵩草(Kobresia humilis)<莓叶委陵菜(Otentilla fragarioides)<火绒草(Leontopodium leontopodioides)<金露梅(Potentilla fruticosa)<狼毒(Stellera chamaejweisme),这些表明随着逆境胁迫的加剧,植物通过增加自身细胞的渗透调节物质来应对外界胁迫的能力。
     本研究主要结论如下:
     (1)在高寒草甸阴坡-阳坡梯度上,植物群落组成和物种多样性均发生了变化,引起这种变化的主导因素为土壤含水量。
     (2)在阴坡-阳坡梯度上,植物叶片的氮磷化学计量特征并不一致,阴坡的植物叶片氮磷含量都显著高于阳坡,而其氮磷比则显著小于阳坡。限制性元素发生了变化,阴坡为氮限制,而阳坡则为磷限制,土壤含水量和土壤温度共同决定了这一变化。
     (3)由阴坡至阳坡的生境梯度上,随着土壤含水量的下降和土壤温度、光照度的增加,逆境胁迫的增强,植物物种的脯氨酸和可溶性糖含量总体呈增加趋势,而叶绿素含量总体呈下降趋势,这是植物对逆境胁迫的一种生理适应,表明在阳坡植物具有较强的抗逆性。
Slope aspect is one of the key factors in determining plant community composition on terrestrial ecosystem of the Qinghai-Tibet Plateau Mountain. Slope aspect greatly influence the coming solar radiation, which determine soil temperature, soil evaporation, soil water content and other ecological factors. South-facing slope (sunny slope) absorbs more solar radiation, hence it is hotter and drier, while north-facing slope (shady slope) absorbs less solar radiation, so it is wetter and colder. Thus, vegetation responded with different structure and compositon in different slope aspects. Most studies on the large scale have shown that the distributions of light, heat, water affect vegetation structure and community composition on terrestrial ecosystem, many studies did on aspect impects-less on high altitude. Here we analyzed the variation characteristic of soil factors and plant community composition along north-south-facing slope gradient, studied the response of plant leaf N and P stoichiometry characteristic to slope aspect, and discussed the nitrogen, phosphorus stoichiometry differences in different functional groups and the physiological changes of species at north-and south-facing slope on a alpine meadow of the eastern Tibetan Plateau.
     The main results of the study showed:
     1. From the south-facing slopes to north-facing slope, the change of environmental factors was larger, daily average soil temperature and light intensity were south-facing slope> west-facing slope> north-facing slope, soil water content was north-facing slope> west-facing slope> south-facing slope. Soil total phosphorus and organic matter were greater in north-facing slope than south-facing slope. Soil total nitrogen, available nitrogen and available phosphorus didn't show a significant change in the aspect gradients.
     2. Significant changes in plant composition occurred in the different slope aspects where the south-facing slope was dominated mainly by grasses (Poaceae and Cyperaceae) and the north-facing slope was dominated by mainly forbs (non-legumes forbs). Species diversity and richness changes significantly in the different slope aspects, it showed north-facing slope> west-facing slope> south-facing slope.
     3. Nitrogen and phosphorus stoichiometry in plant leaves also changed dramatically from the south-facing slopes to north-facing slope, in the south-facing slope species average leaf nitrogen and phosphorus content were significantly less than the north-facing slope, but Leaf N:P ratio was significantly higher in south-facing slope than the north-facing slope. In addition, we also found that the nitrogen and phosphorus stoichiometry in the plant functional groups also changed, average plant leaf nitrogen and phosphorus content of grasses was significantly lower than the forbs, and the legume leaf nitrogen content and N:P ratio in different aspects higher than that of grasses and forbs.
     4. The limiting elements changed from the south-facing slope to north-facing slope. In the south-facing slope the N:P ratio of plant leaf was greater dramaticlly than16, while the north-facing slope was less than14. Therefore, according to the limit elements stoichiometry ratio theory, south-facing slope was phosphorus limitation, while north-facing slope was nitrogen limitation.
     5. From the south-facing slopes to north-facing slope, the plant growth rate was significantly negatively correlated with N:P, while it was significantly positively correlated with phosphorus content of plant leaves, which supported the growth rate hypothesis. Nitrogen and phosphorus content in plant leaves and N:P ratio showed a significantly decline trend with increasing of altitude, which supported the biogeochemical hypothesis.
     6. Along the north-facing slope to south-facing slopes, soil water content declined and soil temperature, light intensity increased, the trend of proline and soluble sugar content of plant species were increased. The order of proline and soluble sugar content:Oxytropis kansuensis> Stellera chamaejweisme> Otentilla fragarioid.es> Kobresia humilis> Potentilla fruticosa, while the trend of plant chlorophyll content were declined, and the order plant chlorophyll content:Oxytropis kansuensis     According to these results, we draw the following conclusions:
     1. Soil water content was the key factor determining vegetation composition and species diversity on the north-and south-facing slope gradients in alpine meadow.
     2. Plant leaf nitrogen and phosphorus stoichiometry was not consistent along the south-facing slope to north-facing slope gradients, the nitrogen and phosphorus content of the plant leaves on north-facing slope were significantly higher than south-facing, N:P ratio was significantly less than the south-facing slope. These suggested that these stoichiometry changes were controlled by soil water content and soil temperature.
     3. Along the north-facing slope to south-facing slope gradients, soil water content declined and soil temperature, light intensity increased. With the increasing of stress, plant species of proline and soluble sugar content was significantly increased, while chlorophyll content decreased, and this was physiological adaptation of plant to stress, it shown that the stress resistance of plants was stronger in south-facing slope.
引文
Agren G.I. Stoichiometry and nutrition of plant growth in natural communities. Annual Review of Ecology Evolution and Systematics,2008,39,153-170.
    Agren G.I. The C:N:P stoichiometry of autotrophs-theory and observations. Ecology Letters, 2004,7,185-191.
    Anderson T.R., Boersma M.& Raubenheimer D. Stoichiometry:linking elements to biochemicals. Ecology,2004,85,1193-1202.
    Anderson, T. R., Elser, J.J., Hessen, D.O. Stoichiometry and population dynamics. Ecology Letters, 2004,7:884-900.
    Astrom, M., Dynesius, M., Hylander, K.& Nilsson, C. Slope aspect modifies community responses to clear-cutting in boreal forests. Ecology,2007,88:749-758.
    Auslander, M, Nevo, E., Inbar, M. The effects of slope orientation on plant growth, developmental instability and susceptibility to herbivores. Journal of Arid Environments. 2003,55,3:405-416.
    Badano, E.I., Cavieres, L.A., Molina-Montenegro, M.A.& Quiroz, C.L.. Slope aspect influences plant association patterns in the Mediterranean matorral of central Chile. Journal of Arid Environments,2005,62:93-108.
    Belovsky G.E. Diet optimization in a generalist herbivore:the moose. Theoretical Population Biology,1978,14,105-134.
    Bennie, J., Hill, M.O., Baxter, R., Huntley, B. Influence of slope and aspect on long-term vegetation change in British chalk grasslands. Journal of Ecology.2006,94,2:355-368.
    Blackman S A, Wettalaufer.S H,Obedorf R. Maturation proteins associated with desiccation tolerance in soybean.Plant Physiol,1991,96:868-874.
    Blum A, A Ebercon Genotypic responses in sorghum to drought stress. Free praline accumulation and drought resistance, Crop Sci,1976,16:428-431.
    Bohert H J, Jensen R G. Strategies for engineering water stress tolerance in plants.Trends in Biotechnology,1996,14:89-97.
    Boyer J. S. Plant productiv ity and environment. Science,1982,24:218.
    Braakhekke WG, Hooftman DAP. The resource balance hypothesis of plant species diversity in grassland. Journal of Vegetation Science,1999,10,187-200.
    Campbell, C. Grasses and grasslands. Systematics and Ecology. J. R. Estes, R. J. Tyrl and J. N. Brunken, editors. Brittonia.1982,34,2:218-219.
    Carletti, P., Vendramin, E., Pizzeghello, D., et al. Soil humic compounds and microbial communities in six spruce forests as function of parent material, slope aspect and stand age. Plant and Soil,2009,315:47-65.
    Chapin F S. Direct and indirect effects of temperature on arctic plants Polar Biology,1983,2, 47-52.
    Chapin FS Ⅲ, Matson PA, Mooney HA. Principles of Terrestrial Ecosystem Ecology. Springer-Verlag, New York.2002,298.
    Clark, D. B. and Clar k, D. A. Landscape scale variation in forest structure and biomass in a tropical rain forest. Forest Ecology and Management,2000,137 (13):243-254.
    Daufresne T.& Loreau M. Plant-herbivore interactions and ecological stoichiometry:when do herbivores determine plant nutrient limitation? Ecology Letters,2001,4,196-206.
    De Bello, F., Leps, J., Sebastia, M.T.. Variations in species and functional plant diversity along climatic and grazing gradients. Ecography,2006,29,6:801-810.
    Dickman E.M., Newell J.M., Gonzalez M.J., Vanni M.J. Light, nutrients, and food-chain length constrain plank-tonic energy transfer efficiency across multiple trophic levels. Proceedings of the National Academy of Sciences of the United States of America,2008,105, 18408-18412.
    Downing J.A.& McCauley E. The nitrogen:phosphorus ralationship in lakes. Limnology and Oceanography,1992,37,936-945.
    Dybzinski R, Fargione J E, Zak D R, Fornara D & Tilman D. Soil fertility increases with plant species diversity in a long-term biodiversity experiment. Oecologia,2008,158,85-93.
    Elser J.J.& Hassett T.P. A stoichiometric analysisi of the zooplankton phytoplankton interaction in marine and freshwater ecosystems. Nature,1994,370,211-213.
    Elser J.J.& Urabe J. The stoichiometry of consumer-driven nutrient cycling:theory, observations, and consequences. Ecology,1999,80,735-751.
    Elser J.J., Acharya K., Kyle M., et al. Growth rate-stoichiometry couplings in diverse biota. Ecology Letters,2003a,6,936-943.
    Elser J.J., Bracken M.E., Cleland E.E., et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology letters,2007, 10,1135-42.
    Elser J.J., Brien, Dobberfuhl, et al. The evolution of ecosystem processes:growth rate and elemental stoichiometry of a key herbivore in temperate and arctic habitats. Journal of Evolutionary Biology,2000a,13,845-853.
    Elser J.J., Dobberfuhl D.R., MacKay N.A., et al. Organism size, life history, and N:P stoichiometry:toward a unified view of cellular and ecosystem processes. BioScience,1996, 46,674-684.
    Elser J.J., Fagan W.F., Denno R.F., et al. Nutritional constraints in terrestrial and freshwater food webs. Nature,2000b,408,578-580.
    Elser J.J., Hayakawa H.& Urabe J. Nutrient limitation reduces food quality for zooplankton: Daphnia response to seston phosphorus enrichment. Ecology,2001,82,898-903.
    Elser J.J., Kyle M.M., Smith M.S., et al. Biological stoichiometry in human cancer. PLoS ONE, 2007b,2, e1028.
    Elser J.J., Nagy J.& Kuang Y. Biological stoichiometry:an ecological perspective on tumor dynamics. Bioscience,2003b,53,112-1120.
    Elser J.J., Sterner R.W., Gorokhova E., et al. Biological stoichiometry from genes to ecosystems. Ecology Letters,2000c,3,540-550.
    Falkowski P.G., Barber R.T.& Smetacek V. Biogeochemical controls and feedbacks on ocean primary productivity. Science,1998,281,200-206.
    Falkowski P.G.. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO 2 in the ocean. Nature,1997,387,272-275.
    Gao Y,Ren A,Liu F. Relationships between free praline concent ration, soil water content and leaf water content in simulated swards of perennial ryegrass (Lolium perenne L.).Acta Scientiarum Naturalium Universitatis Nankaiensis,1999,32,3:169-176.
    Gamier, E., Cortez, J., Billes, G., Navas, M.-L., Roumet, C., Debussche, M., Laurent, G., Blanchard, A., Aubry, D., Bellmann, A., Neill, C., Toussaint, J.-P. Plant Functional Markers Capture Ecosystem Properties during Secondary Succession. Ecology,2004,85,9: 2630-2637.
    Gong, X., Brueck, H., Giese, K.M., Zhang, L., Sattelmacher, B., Lin, S. Slope aspect has effects on productivity and species composition of hilly grassland in the Xilin River Basin, Inner Mongolia, China. Journal of Arid Environments.2008,72,4:483-493.
    Gong, Z.T. Chinese soil taxonomy:theories, methods and applications. Science Press, Beijing.1999.
    Gong, Z.T.. Chinese soil taxonomy:theories, methods and applications. Science Press, Beijing.1999.
    Gorokhova E.& Kyle M. Analysis of nucleic acids in Daphnia:development of methods and ontogenetic variations in RNA-DNA content. Journal of Plankton Research,2002,24, 511-522.
    Grace, J.B. The factors controlling species density in herbaceous plant communities:an assessment. Perspectives in Plant Ecology, Evolution and Systematics.1999,2,1:1-28.
    Grassein, F., Till-Bottraud, I., Lavorel, S. Plant resource-use strategies:the importance of phenotypic plasticity in response to a productivity gradient for two subalpine species. Annals of Botany.2010,106,4:637-645.
    Gusewell S.& Bollens U. Composition of plant species mixtures grown at various N:P ratios and levels of nutrient supply. Basic and Applied Ecology,2003,4,453-466.
    Gusewell S. N:P ratios in terrestrial plants:variation and functional significance. New Phytologist, 2004,164:243-266.
    Han W, Fang JY, Guo D & Zhang Y. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist,2005,168,377-385.
    Han, W.X., Fang, J.Y., Reich, P.B., et al. Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China. Ecology Letters,2011,14,788-796.
    He J.S., Wang L., Flynn D.F.B., et al. Leaf nitrogen:phosphorus stoichiometry across Chinese grassland biomes. Oecologia,2008,155,301-310.
    He J.S., Wang Z.H., Wang X.P., et al. A test of the generality of leaf trait relationships on the Tibetan Plateau. New Phytologist,2006b,170,835-848.
    He JS, Fang JY, Wang ZH, Guo DL, Flynn DFB, Geng Z. Stoichiometry and large-scale patterns of leaf carbon and nitrogen in the grassland biomes of China. Oecologia,2006a,149, 115-122.
    Heerwaarden L M V, Toet S & Aerts R. Nitrogen and phosphorus resorption efficiency and proficiency in six sub-arctic bog species after 4 years of nitrogen fertilization. Journal of Ecology.2003,91,1060-1070.
    Hessen D O. Stoichiometry in food webs-Lotka revisited. Oikos,1997,79,195-200.
    Hessen D.O.& Agren G.I., Anderson T.R. et al. Carbon sequestration in ecosystems:the role of stoichiometry. Ecology,2004,85,1179-1192.
    Hessen D.O.& Lyche, A. Inter- and intraspecific variations in zooplankton element composition. Archiv fur Hydrobiologie,1991,121,355-363.
    Hessen D.O. Too much energy? Ecology,2004,85,1177-1178.
    Hubbell, S.P.:A Unified Theory of Biodiversity and Biogeography. Princeton University Press, Princeton, NJ 2001.
    Jackson R.B., Mooney H.A.& Schulze E.D. A global budget for fine root biomass surface area, and nutrient contents. Proceedings of the National. Academy of Sciences of the United States of America,1997,94,7362-7366.
    Jobbagy, E. G., Paruelo, J. M. and Leon, R. J. C. Vegetation heterogeneity and diversit y in flat and mountain landscapes of Patagonia (Argentina). Journal of Vegetation Science,1996,7 (4): 599-608.
    Jones, H.G. Plants and microclimate, a quantitative approach to environmental plant physiology. Cambridge University Press, Cambridge.1992,428 pp.
    Jouany C, Cruz P, Petibon P & Duru M. Diagnosing phosphorus status of natural grassland in the presence of white clover. European Journal of Agronomy,2004,21,273-285.
    Kaiser W. M. Eeffct of water deficits on photo synthesis capacity. Physiologic Planetarium,1987, 71:142-149.
    Karl D.M., Bjorkman K.M., Dore J.E., et al. Ecological nitrogen-to-phosphorus stoichiometry at station ALOHA. Deep Sea Research Part II:Topical Studies in Oceanography,2001,48, 1529.
    Kazakou, E., Vile, D., Shipley, B., Gallet, C., Gamier, E. Co-variations in litter decomposition, leaf traits and plant growth in species from a Mediterranean old-field succession. Functional Ecology.2006,20 (1):21-30.
    Kochy, M., Wilson, S.D. Competitive effects of shrubs and grasses in prairie. Oikos.2000,91,2: 385-395.
    Koerselman W, Meuleman A F M. The vegetation N:P ratio:a new tool to detect the nature of nutrient limitation. Journal of Applied Ecology,1996,33:1441-1450.
    Kooijman S.A.L.M. The stoichiometry of animal energetics. Journal of Theoretical Biology,1995, 177,139-149.
    Kooijman S.A.L.M., Andersen T.& Kool B.W. Dynamic energy budget representations of stoichiometric constraints on population dynamics. Ecology,2004,85,1230-1243.
    Korner C. Alpine Plant Life:Functional Plant Ecology Of High Mountain Ecosystems. Springer Berlin Heidelberg.2003
    Kull, O., Aan, A. The relative share of graminoid and forb life-forms in a natural gradient of herb layer productivity. Ecography.1997,20,2:146-154.
    Larcher, W. Physiological plant ecology.2nd ed. Springer-Verlag, Berlin and New York,1980, 303-308.
    Lerman, A., Mackenzie, F. T,. Ver, L. M. B. Nitrogen and phosphorus controls of the carbon cycle. Journal of Conference Abstracts,2000,5:638.
    Levitt J. Responses o f plants to environmentals tress. New York:Academic Press,1972.
    Lotka A.J. Elements of Physical Biology. Williams and Wilkins, Baltimore.1925.
    Main T, Dobberfuhl D.R.& Elser J.J. N:P stoichiometry and ontogeny in crustacean zooplankton:a test of the growth rate hypothesis. Limnology and Oceanography,1997,42, 1474-1478.
    Makino W., Cotner J.B., Sterner R.W., et al. Are bacteria more like plants or animals? Growth rate and resource dependence of bacterial C:N:P stoichiometry. Functional Ecology,2003, 17,121-130.
    Markow T.A., Raphael B., Dobberfuhl D.R., et al. Elaemental stoichiometry of Drosophila and their hosts. Functional Ecology,1999,13,78-84.
    Mattson W.J.& Scriber J.N. Nutritional ecology of insect folivores of woody plant:Nitrogen, water, fiber, and mineral considerations. Wiley Press, New York.1987.
    McGroddy M.E., Daufresne T.& Hedin L.O. Scaling of C:N:P stoichiometry in forests worldwide: implications of terrestrial redfield-type ratios. Ecology,2004,85,2390-2401.
    Michaels, A. The ratios of life. Science,2003,300,906-907.
    Moorcroft P.R., Hurtt G.C.& Pacala S.W. A method for scaling vegetation dynamics:The ecosystem demography model (Ed). Ecological Monographs,2001,71,557-586.
    Morin, P.J. Biodiversity's ups and downs. Nature.2000,406 (6795):463-464.
    Nevo, E. Evolution in action across phylogeny caused by microclimatic stresses at "Evolution Canyon". Theoretical Population Biology.1997,52,3:231-243.
    Nielsen S.L., Enriquez S., Duarte C.M., et al. Scaling maximum growth rates across photosynthetic organisms. Functional Ecology,1996a,10,167-175.
    Niklas, K.J. Plant Allometry, Leaf Nitrogen and Phosphorus Stoichiometry, and Interspecific Trends in Annual Growth Rates. Annals of Botany.2006,97,2:155-163.
    Niklas, K.J., Owens, T., Reich, P.B., et al. Nitrogen/phosphorus leaf stoichiometry and the scaling of plant growth. Ecology Letters.2005,8,6:636-642.
    Niu, K.C., Luo, Y.J., Choler, P.& Du, G.Z. The role of biomass allocation strategy in diversity loss due to fertilization. Basic and Applied Ecology,2008,9:485-493.
    Okada M, Kitajima M, Butler W L. Inhibition of Photosystem N and Photosystem 6 in chloroplasts by UV radiation. Plant cell physiol,1976,17 (1):35-43.
    Oleksyn, J., Reich P. B., Zytkowia, K. R. et al. Nutrient conservation increases with latitude of originin European Pinus sylvestris populations. Oecologia,2003,136:220-235.
    Olsen S R, Cole C V, Watanabe F S & Dean L A. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Gov. Printing Office, Washington D.C.1954, pp.1-19.
    Perakis S S & Hedin L O. Nitrogen loss from unpolluted South American forests by dissolved organic compounds. Nature,2002,415,416-419.
    Rahbek, C. The relationship among area, elevation, and regional species richness in neotropical birds. American Naturalist,1997,149:875-902.
    Ratnam J, Sankaran M, H anan N P, et al. Nutrient resorption pattern of plant functional groups in a tropical savanna:variation an d functional significance. Oecologia,2008,157:141-151.
    Raubenheimer D.& Simpson S.J. Organismal stoichiometry:Quantifying non-independence among food components. Ecology,2004,85,1203-1216.
    Redfield AC. The biological control of chemical factors in the environment.1958.
    Reich P.B.& Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences of the United States of America, 2004,101,11001-11006.
    Reiners W.A. Complementary models for ecosyetems. American Naturalist,1986,127,59-73.
    Resler LM. Geomorphic controls of spatial pattern and process at alpine treeline. The Professional Geographer,2006,58,124-138.
    Rhee G.Y. Effects of N:P atomic ratios and nitrate limitation on algal growth, cell composition and nitrate uptake. Limnology and Oceanography,1978,23,10-25.
    Riazi A, Matsuda K, Arslan A. Water stress induced changes in concent ration of proline and other solutes in growing regions of young barley leaves Journal of Experimental Botany, 1985,36:1716-1725.
    Roberts, M. R. and Wuest, L. J. Plant communities of New Brunswick in relation to environmental variation. Journal of Vegetation Science,1999,10 (3):321-334.
    Roscher C, Thein S, Schmid B & Scherer-Lorenzen M. Complementary nitrogen use among potentially dominant species in a biodiversity experiment varies between two years. Journal of Ecology,2008,96,477-488.
    Sakamoto M. Primary production by phytoplankton community in some Japanese lakes and its dependence on lake depth. Archiv fur Hydrobiologie,1966,61,1-28.
    Sascha Reth, Markus Rrichstein, Eva Falgel. The effect of soil water content, soil temperature, soil pH-value and the root mass on soil CO2 efflux-A modified model. Plant and Soil,2005, 268:21-33.
    Sebastia M. T. Plant guilds drive biomass response to global warming and water availability in subalpine grassland. Journal of Applied Ecology,2007,44,158-167.
    Sherman F. Stoichiometry and chemical metrology. Karl Fisher reaction. Accreditation and Quality Assurance,1999,4,230-234.
    Sinclair TR, Park WI. Inadequacy of the Liebig limiting-factor paradigm for explaining varying crop yields. Agronomy Journal,1993,85,742-746.
    Smith V.H. Implications of resource-ratio theory for microbial ecology. Advances in Microbial Ecology,1993,13,1-37.
    Sternberg, M, Shoshany, M. Influence of slope aspect on Mediterranean woody formations: Comparison of a semiarid and an arid site in Israel. Ecological Research.2001,16,2: 335-345.
    Sterner R W, Elser J J.Ecological stoichiometry:The biology of elements from molecules to the biosphere. Princeton:Princeton University Press.2002.167-196.
    Sterner R.W.& Schulz, K.L. Zooplankton nutrition:recent progress and reality check. Aquatic Ecology,1998,33,1-19.
    Sterner R.W. The ratio of nitrogen to phosphorus resupplied by herbivores:zooplankton and the algal competitive arena. American Naturalist,1990,136,209-229.
    Striebel M, Sporl G, Stibor H. Light-induced changes of plankton growth and stoichiometry: experiments with natural phytoplankton communities. Limnology and Oceanography,2008, 53,513-522.
    Sullivan J H, Teramura A H. Effects of ultraviole-t B irradiation on seedling growth in the Pinaceae. Amer J Bot,1988,75 (2):225-230.
    Sundareshwar P.V., Morris J.T., Koepfler E.K., et al. Phosphorus limitation of coastal ecosystem processes. Science,2003,299,563-565.
    Tang Zhang cheng, The Accumulation of Free proline and its Roles in water-stressed sorghum seedlings, Acta phytophysiologica Sinica,1989,15,1:105-110.
    Taylor AH, Skinner CN. Spatial patterns and controls on historical fire regimes and forest structure in the Klamath Mountains. Ecological Applications,2003,13,704-719.
    TerBraak, C.J.F.Canonical community ordination.Part I:basic theory and linear methods. Ecoscience,1994,1,127-140.
    Tilman D. Mechanisms of plant competition. Oxford:Blackwell Science.1997,239-261.
    Tilman D. Resource competition and community structure. USA:Princeton University Press.1982, 139-177.
    Trannin, W.S., Urquiaga, S., Guerra, G, Ibijbijen, J., Cadisch, G. Interspecies competition and N transfer in a tropical grass-legume mixture. Biology and Fertility of Soils.2000,32,6: 441-448.
    Treichel S JBrinckmann E.Bcheitler B,et al. Occurrence and changes of proline content in plants in the southern Namib Desert in relations to increasing and decreasing drought. Planta,1984, 162:236-242.
    Urabe J.& Watanabe Y. Implications of sestonic elemental ratio in zooplankton ecology:reply to the comment by Brett. Limnology and Oceanography,1993,38,1337-1340.
    Vanni MJ, Flecker AS, Hood JM, Headworth JL. Stoichiometry of nutrient recycling by vertebrates in a tropical stream:linking biodiversity and ecosystem function. Ecology Letters,5,2002,285-293.
    Vitousek P M. Nutrient cycling and nutrient use effciency. American Naturalist,1982,119, 553-572.
    Vitousek P.M.& Howarth R.W. Nitrogen Limitation on Land and in the Sea-How can it occur. Biogeochemistry,1991,13,87-115.
    Vitousek PM. Nutrient Cycling and Limitation:Hawai'i as a Model System. Princeton University Press, Princeton.2004.
    Vrede T., Dobberfuhl D.R., Kooijman S.A.L.M., et al. Fundamental connections among organism C:N:P stoichiometry, macromolecular composition and growth. Ecology,2004,85, 1217-1229.
    Vrede T., Persson J.& Aronsen G. The influence of food quality (P:C ratio) on RNA:DNA ratio and somatic growth rate of Daphnia. Limnology and Oceanography,2002,47,487-494.
    Walker T.W.& Adams A.F.R. Studies on soil organic matter,2. Influence of increased leaching at various stages of weathering on levels of carbon, nitrogen, sulfur and organic and total phosphorus. Soil Science,1959,87,1-10.
    Walker T.W.& Adams A.F.R. Studies on soil organic matter, Influence of phosphorus content of parent materials on accumulation of carbon, nitrogen, sulfur and organic phosphorus in grassland soils. Soil Science,1958,85,307-318.
    Weider L.J., Glenn K.L., Kyle M., et al. Associations among ribosomal (r) DNA intergenic spacer length, growth rate, and C:N:P stoichiometry in the genus Daphnia. Limnology and Oceanography,2004,49,1417-1423.
    Weih, M., Karlsson, P. S. The Nitrogen Economy of Mountain Birch Seedlings:Implications for Winter Survival, Journal of Ecology,1999,87:211-219.
    White T.C.R. The Inadequate Environment:Nitrogen and the Abundance of Animals. Springer-Verlag, New York.1993.
    Williams R.J.P.& Silva J.J.R.F.d. The Natural Selection of the Chemical Elements:The Environment and Life's Chemistry. Clarendon. Oxford.1996.
    Wright, I.J., Reich, P.B., Cornelissen, J.H.C., et al. Assessing the generality of global leaf trait relationships. New Phytologist.2005,166,2:485-496.
    Wright, I.J., Reich, P.B., Westoby, M., et al. The worldwide leaf economics spectrum. Nature. 2004,428,6985:821-827.
    Xu SHJ, An LZ, Feng HY. The seasonal effects of water stress on Ammopip tanthusmongo licus in a desert environment. Journal of Arid Environments,2002,51:437-447.
    Yin, X. W. Variation in foliar nitrogen concent ration by forest type and climatic gradients in North America, Canadian Journal of Forest Research,1993,23:1587-1602.
    Yu Q., Chen Q.S., Elser J.J.,et al..2010. Linking stoichiometric homeostasis with ecosystem structure, functioning, and stability. Ecology Letters,13,1390-1399.
    Yuan Z.Y., Han Y.H. Chen, Peter B. Reich. Global-scale latitudinal patterns of plant fne-root nitrogen and phosphorus, nature communications,2011,2,344.
    Zhang L.X., Bai Y.F.& Han X.G. Application of N:P stoichiometry to ecology studies. Acta Botanica Sinica,2003,45,1009-1018.
    Zhang L.X., Bai Y.F.& Han X.G. Differential responses of N:P stoichiometry of Leymus chinensis and Carex korshinskyi to N additions in a steppe ecosystem in Nei Mongol. Acta Botanica Sinica,2004,46,259-270.
    Zheng S.X.& Shangguan Z. Spatial patterns of leaf nutrient traits of the plants in the Loess Plateau of China. Trees-Structure and Function,2007,21,357-370.
    鲍巨松,杨成书,薛吉全等.水分胁迫对玉米生长发育及产量形成的影响[J].1990,(3):7-9.
    陈菊艳,杨远庆.遮光对野扇花生长特性和生理指标的影响[J].西北植物学报,2010,30(8):1646-1652.
    陈文年.岷江源头阴坡与阳坡针叶林物种多样性比较[J].内江师范学院学报,2001,19(2):31-34.
    陈文年.岷江源头阴坡与阳坡针叶林物种多样性比较[J].内江师范学院学报.2004,19(2):31-34.
    程滨,赵永军,张文广等.生态化学计量学研究进展[J].生态学报,2010,30(6):1628-1637.
    丁凡,廉培勇,曾德慧.松嫩平原草甸三种植物叶片N、P化学计量特征及其与土壤N、P浓度的关系[J].生态学杂志,2011,30(1):77-81.
    杜国祯,覃光莲,李自珍等.高寒草甸植物群落中物种丰富度与生产力的关系研究[J].植物生态学报,2003,27(1)125-132.
    方精云,沈泽昊,崔海亭.试论山地的生态特征及山地生态学的研究内容[J].生物多样性,2004,12(1):10-19.
    高三平,李俊祥,徐明策等.天童常绿阔叶林不同演替阶段常见种叶片N、P化学计量学特征[J].生态学报,2007,27(3):947-952
    勾昕.高寒草甸植物群落演替过程物种多样性和化学计量学动态分析.[博士学位论文].兰州,兰州大学,2009.
    韩文轩,吴漪,汤璐瑛.北京及周边地区植物叶的CNP元素计量特征[J].北京大学学报(自然科学版,2008,4:67-72.
    贺金生,韩兴国.生态化学计量学:探索从个体到生态系统的统一化理论[J].植物生态学报,2010,34(1):2-6.
    胡自治,张映生.甘肃天祝高山线叶高草草地的第一性物质生产和能量效率[J].中国草业科学,1988,5:7-13.
    蒋有绪,王伯荪,臧润国等.海南岛热带雨林的生物多样性及机制[M].北京:科学出版社2002.
    李吉跃,张建国.北方主要造林树种耐旱机理及其分类模型的研究[J].北京林业大学学报,1993,15(3):1-10.
    李昆,陈玉德.元谋干热河谷人工林地的水分输入与土壤水分研究[J].林业科学研究,1995,8(6):651-657.
    李奇.青藏高原东缘植物群落构建机制研究—生态位和中性过程的相对重要性(博士学位论文).兰州:兰州大学.2011.
    李新娥.亚高寒草甸阳坡-阴坡梯度上植物功能性状及群落构建机制研究(博士学位论文).兰州:兰州大学.2011.
    刘建锋,杨文娟,江泽平等.遮荫对濒危植物崖柏光合作用和叶绿素荧光参数的影响[J].生态学报,2011,31(20):5999-6004.
    刘清华,钟章成.紫外线-B对银杏光合生理指标的影响[J].2002,37(3):378-382.
    刘万德,苏建荣,李帅锋等.云南普洱季风常绿阔叶林演替系列植物和土壤CNP化学计量特征[J].生态学报,2010,30(23):6581-6590.
    刘友良主编.植物水分逆境生理[M].北京:农业出版社,1992:95.
    刘增力,郑成洋,方精云.河北小五台山主要植被类型的分布与地形的关系:基于遥感信息的分析[J].生物多样性,2004,12(1):146-154.
    马剑英,周邦才,夏敦胜等.荒漠植物红砂叶绿素和脯氨酸累积与环境因子的相关分析[J],西北植物学报,2007,27(4):769-775.
    聂莹莹,李新娥,王刚.阳坡-阴坡生境梯度上植物群落a多样性与p多样性的变化模式及其与环境因子的关系.兰州大学学报(自然科学版),2010,46(6):73-79.
    邱波,任青吉,杜国祯等.高寒草甸不同生境类型植物群落的α即p多样性研究[J].西北植物学报,2004,24(4):655-661.
    任书杰,于贵瑞,陶波等.中国东部南北654种植物叶片氮和磷的化学计量学特征研究[J].环境科学,2007,28,2665-2667.
    沈泽昊,胡会峰,周宇等.神农架南坡植物群落多样性的海拔梯度格局[J].生物多样性,2004,12(1):99-107.
    宋晓谕,张仁懿,王刚等.甘南亚高山草甸弃耕演替过程中的物种多样性与生产力变化模式及相互关系研究.草业学报,2010,19(6):1-8.
    唐志尧,柯金虎.秦岭牛背梁植物物种多样性垂直分布格局[J].生物多样性,2004,12(1):108-114.
    王长庭,龙瑞军,王启基等.高寒草甸不同海拔梯度土壤有机质氮磷的分布和生产力变化及其与环境因子的关系[J].草业学报,2005,14(4):15-20.
    王国宏.祁连山北坡中段植物群落多样性的垂直分布格局[J].生物多样性,2002,10(1):7-14.
    王婧.延河流域植物群落结构对环境梯度变化的响应[D].硕士论文,陕西杨陵,2011.
    王绍强,于贵瑞.生态系统C、N、P元素的生态化学计量学特征[J].生态学报,2008,28(8):3937-3947.
    王向涛,张世虎,杜国祯等.不同放牧强度下高寒草甸植被特征和土壤养分变化研究.草地学报,2010,18(4):510-516.
    王鑫,胡玉昆,热合木都拉·阿迪拉等.高寒草地主要类型土壤因子特征及对地上生物量的影响[J].干旱区资源与环境,2008,22(3):196-200.
    王学奎.植物生理生化实验原理和技术(第2版)[M].北京:高等教育出版社,2007.
    吴征镒主编.中国植被[M].北京:科学出版社.1980,1-429.
    夏阳.1993.水分逆境对果树脯氨酸和叶绿素含量变化的影响[J].甘肃农业大学学报,28(1)26-31.
    徐呈祥,刘友良,马艳萍.硅对盐胁迫下库拉索芦荟叶绿素荧光参数和叶绿体超微结构的影响[J].园艺学报,2007,34(4):979-984.
    薛伟,李向义,朱军涛等,遮阴对疏叶骆驼刺叶形态和光合参数的影响[J].植物生态学报2011,35(1):82-90.
    杨中领,张家洋,李慧等.施肥和刈割对青藏高原东部高寒草甸群落生物量补偿效应的影响.生态学杂志,2012,31(9):2276-2282.
    庾强.内蒙古草原植物化学计量生态学研究[D].博士学位论文,北京,中国科学院植物研究所,2009.
    曾德慧,陈广生.生态化学计量学:复杂生命系统奥秘的探索[J].植物生态学报,2005,29(6):1007-1019.
    张光明.植物和昆虫相互作用的C:N:P化学计量生态特征[D].博士学位论文,北京:中国科学院植物研究所,2006.
    张杰琦,李奇,王刚等.氮素添加对青藏高原高寒草甸植物群落物种丰富度及其与地上生产力关系的影响.植物生态学报,2010,34(10),1125-1131.
    张蕾,张春辉,杜国祯等.青藏高原东缘31种常见杂草种子萌发特性及其与种子大小的关系.生态学杂志,2011,30(10):2115-2121.
    赵君,张仁懿,王刚等.甘南亚高寒草甸金露梅叶片氮磷化学计量学动态[J]。兰州大学学报, 2011,47(2):88-92.
    郑成洋,刘增力,方精云.福建黄岗山东南坡和西北坡乔木物种多样性及群落特征的垂直变化[J].生物多样性,2004,12(1):63-74.
    庄丽,陈亚宁.塔里木河下游干旱胁迫条件下柽柳生理代谢的响应[J].科学通报,2006,51(4):442-447.
    庄树宏,王克明,陈礼学.昆仑山老杨坟阳坡与阴坡半天然植被植物群落生态学特性的初步研究[J].植物生态学报,1999,23(3):238-249.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700