用户名: 密码: 验证码:
黄花蒿土壤微生物与抗疟相关成分的关联性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄花蒿(Artemisia annua L.),属菊科一年生草本植物,已入药2000多年,具有清热解毒的功效,是中医常用中草药之一。20世纪70年代,我国科学家从黄花蒿中分离出青蒿素,成为提取青蒿素的唯一原料药材。目前,全世界有40%左右的人口受到疟疾威胁,青蒿素是世界卫生组织(WHO)推荐治疗疟疾的首选药物。
     在黄花蒿生长过程中,通过根系分泌、降雨淋溶和枯枝落叶等多种途径向土壤释放青蒿素等多种化感物质,严重抑制周围和后茬作物生长,危害土壤动物,降低土地生产力。土壤是植物生长的场所,土壤微生物是土壤的重要成分,它们参与土壤中的物质代谢和能量转化,深刻影响土壤理化性质和健康水平。我国西南地区的黄花蒿种植面积和青蒿素产量占全球的80%以上,长期大规模种植黄花蒿对土壤微生物的影响报道不多。论文作者运用土壤学、微生物学和分析化学等学科的理论和方法,系统研究黄花蒿土壤微生物结构多样性、酶活性及养分状况,抗疟相关成分在植株体内和根际土壤的含量及分布。阐明土壤微生物与土壤养分、酶活性的相关性,及根际土壤微生物与抗疟相关成分的关联,评价黄花蒿栽培对土壤微生物的生态压力,对于降低集约化种植黄花蒿的生态风险,减轻对士壤的危害有重要意义。主要结果如下
     1黄花蒿土壤养分及酶学性质
     在野生黄花蒿生长的土壤中,氮、磷、钾含量,pH及蔗糖酶、脲酶和碱性磷酸酶活性因环境条件和土壤类型不同而异,其中,根际土壤有效氮、磷、钾含量,以及蔗糖酶、脲酶和碱性磷酸酶活性显著高于非根际,说明黄花蒿能活化土壤养分,可能与耐瘠能力有关。在黄花蒿栽培土壤中,土壤养分与土壤酶活性因土壤类型和施肥处理不同而异,根际土壤有效养分、有机质和土壤酶活性高于或显著高于非根际,施肥提高根际和非根际土壤中的养分含量,因此,施肥促进黄花蒿生长,改善土壤养分供应。
     2黄花蒿土壤微生物量碳、氮及磷脂脂肪酸(PLFAs)
     在野生黄花蒿生长土壤中,土壤微生物量碳氮因样地不同而有差异;在人工种植黄花蒿的土壤中,施肥显著影响微生物量碳氮,根际土壤中的微生物量碳氮显著高于非根际,说明黄花蒿根系分泌物是土壤微生物量碳氮的重要来源。不施肥处理的微生物量碳氮最高;施肥导致根际土壤微生物量碳氮不同程度的降低,但有机无机配施的降幅显著低于纯施无机肥,说明有机无机配施有益于促进土壤微生物生长繁殖,增加微生物数量。此外,无论是野生还是栽培黄花蒿的土壤中,磷脂脂肪酸(PLFAs)含量根际总体显著高于非根际,且与微生物量碳呈显著或极显著正相关,表明PLFAs可用于黄花蒿土壤微生物定量分析。
     在野生黄花蒿生长的土壤中,检测到24种PLFAs,其含量因样地不同而有差异,根际土壤中的PLFAs含量高于非根际土壤;在人工栽培黄花蒿土壤中,检测到21种PLFAs。这些脂肪酸包括代表细的19种11~19碳PLFAs,代表放线菌的10Me18:0,代表真菌的18:2ω6,9,18:1ω9c和18:1ω9t,代表线虫的20:0。其中,含量较高的PLFAs有14:0,16:0,18:2ω6,9,18:1ω9c,18:1ωo9t,10Me18:0和20:0。施肥显著降低根际土壤中的PLFAs含量(根际土壤G+细菌除外)。此外,在不施肥的土壤中,微生物结构多样性指数显著低于施肥,尤其是有机无机配施,说明合理施肥有益于提高土壤微生物的多样性,改善它们种群结构。
     3土壤微生物与土壤养分的相关性
     在野生黄花土壤中,微生物量碳氮与有机质、有效氮、有效磷含量呈显著正相关;在黄花蒿人工栽培的土壤中,微生物量碳氮与土壤养分和有机质均无显著相关。说明微生物能活化土壤养分,供给植物营养,施肥大幅度增加土壤养分含量,微生物活化供应土壤养分的作用降低。
     无论是土壤微生物量碳氮,还是微生物PLFAs含量,均与土壤蔗糖酶、脲酶和磷酸酶活性无显著相关,黄花蒿根系及残体可能是土壤酶的重要来源,显著影响土壤养分的转化利用,进一步说明了黄花蒿广泛的适应性。
     4黄花蒿抗疟相关成分在植株体内的含量及分布
     在黄花蒿植株体内,萜烯类包括青蒿素、去氧青蒿素、青蒿酸;酚类有东莨菪内酯、猫眼草酚、猫眼草黄素,总多酚;均表现出叶>茎>根的趋势,说明叶片是这些物质的合成和储存器官。此外,DPPH·清除能力叶片最高,显著高于茎和根系,后二者无显著差异或差异较小。黄花蒿的抗氧化活性与总多酚、东莨菪内酯、猫眼草酚、猫眼草黄素之间均呈显著正相关。在野生条件下,黄花蒿的长势、抗疟相关成分含量及抗氧化活性因来源不同而异,且差异较大;在栽培条件下,施肥显著影响黄花蒿的长势、抗疟相关成分含量及抗氧化活性。其中,不施肥的生物量,萜烯类化合物含量低于施肥,但酚类物质的猫眼草酚、猫眼草黄素及总多酚含量高于施肥;施肥显著促进黄花蒿生长,提高黄花蒿总多酚、东莨菪内酯、猫眼草酚和猫眼草黄素的产量(累积量),以及青蒿素、去氧青蒿素、青蒿酸的含量和累积量,且相对稳定,尤以有机无机配施最为显著,估计与养分供应改善有关。
     5黄花蒿根际土壤微生物与抗疟相关成分的关联性
     抗疟相关成分在黄花蒿根际土壤有为数不等的含量,因样地和成分不同而异;栽培黄花蒿根际土壤中,不施肥处理酚性物质总体含量较高,施肥后有所降低,萜烯类成分则相反,施肥后分泌量不同程度增加。相关分析表明,酚性物质在野生和栽培黄花蒿根际土壤与某类或某些类群微生物呈显著或极显著正相关,如含量较高的东莨菪内酯,与根际土壤细菌、G-细菌和真菌呈显著或极显著正相关。青蒿酸则相反,在野生黄花蒿根际土壤中,青蒿酸含量与细菌、G-细菌、放线菌和真菌PLFAs含量呈显著正相关,由于在野生黄花蒿生长的土壤中,青蒿酸浓度低,不对土壤微生物产生抑制作用,反而为它们提供了碳源,促进其生长繁殖。但是,在人工栽培条件下,根际土壤中的青蒿酸含量是野生条件下2倍以上,且与细菌、G-细菌和真菌PLFAs含量呈显著负相关,与野生黄花蒿根际土壤结果相反,说明青蒿酸抑制土壤微生物的生长繁殖。
     6黄花蒿水浸提液及青蒿素对土壤微生物的影响
     黄花蒿根、叶及根际土壤水浸提液降低土壤微生物PLFAs含量,其降幅因水浸提液和微生物种类不同而异。表现为对土壤微生物的抑制作用,培养时间内(1-12d),随培养时间延长,抑制作用增大,对细菌、真菌和放线菌的抑制率分别介于5.59%~75.10%,15.13%-69.77%,23.81%~63.82%之间,说明土壤微生物对黄花蒿分泌物和淋溶物的敏感程度不同,进而影响土壤的健康质量。此外,浓度为24,48mg/L的青蒿素显著抑制无机磷细菌生长,葡萄糖和果糖等碳源吸收利用,浓度愈高抑制作用越强。与此同时,磷细菌分泌氢离子和草酸速率降低,溶磷能力下降1.02%-49.49%。因此,在黄花蒿种植的土壤中,土壤微生物种群结构改变,生物量(PLFAs含量)降低,有益微生物生长繁殖受到抑制,进而影响土壤的生产能力。
Artemisia annua L., a compositae annual herb, is one of the commonly used Chinese herbal medicines.It has activities of heat-clearing and detoxifying since used as a medicine for over2000years. It has become the only medicinal materials since Chinese scientist isolated artemisinin from A. annua in the seventies of the20th century. Now, Artemisinin combination treatments are now first-line drugs, as recommended by World Health Organization (WHO), because about40%of the world's population is threatened by malaria.
     In the growth process of A. annua, allelochemicals which are secreted by its roots or produced via volatilization and eluviation of the aerial parts and through decomposition of plant body remnants so on, are released into soil and severely affect the growth of around and after culture crop, harm soil animals, at last reduce the land productivity. Soil is a place plant growing, soil microorganisms, which are important components of soil, deeply effect physical and chemical properties and health level of it because they are involved in soil metabolism and energy transformation. The area of cultivated A. annua and yield of artemisinin in Southwest of China accounted for more than80%of the world, it was not much reported that A. annua long-term cultivated on large-scale had effect on soil microorganisms. It is importantly significant to reduce the ecological risk resulted from intensive cultivation of A. annua and alleviate the harm on soil that soil microorganisms and anti-malaria-related compounds of A. annua is studied. Soil microorganism, enzymatic activity, nutrient, concentration and distribution of anti-malaria-related compounds of A. annua were studied, which was based on the theory and method of major knowledge including pedology, microbiology, analytical chemistry and modern instrumental analysis. Correlation between microorganism, enzymatic activity and nutrient in soil, and the relationship of rhizosphere microorganism and anti-malaria-related compounds of A. annua was researched. Ecological pressure of A. annua cultivation on soil microorganism was evaluated further, and the following results were obtained:
     1Soil nutrient and enzymatic properties of A. annua
     The concentration of nitrogen (N), phosphorus (P) and potassium (K) in soil of wild A. annua changes with environment and soil type, same as soil pH, invertase, urease and phosphatase. The concentration of N, P and K, and the activities of invertase, urease and phosphatase in rhizosphere soil of A. annua were higher than non-rhizosphere, it was suggested that A. annua could activate soil nutrient, which might be related to the ability of resistance to nutritional deficiency. Soil nutrient and enzymatic activities of cultivated A. annua changed with fertilization and soil type. The available nutrient, organic matter and enzymatic activities in rhizosphere soil were higher or significantly higher than non-rhizosphere, and fertilization improved the concentration of soil nutrient in rhizosphere and non-rhizosphere, so it was useful for fertilizer to promote supply of soil nutrient, at last improve the growth of A.. annua.
     2Soil microbial biomass C, N and phospholipid fatty acids (PLFAs) of A. annua
     In soil of wild A. annua, microbial biomass C, N changed with sample sites, while in soil of cultivated A. annua, fertilization significantly affected microbial biomass C and N. It was suggested that root secretion of A. annua was the important C and N sources of soil microorganism since microbial biomass C and N in rhizosphere was higher than non-rhizosphere. As far as microbial biomass C, N were concerned, they were most highest in no fertilizer rhizosphere soil, fertilization lead to decreasing concentration of them on different degree, but the declined percent in soil of combination of chemical fertilizer and manure (CFM) was lower than inorganic fertilizer (CF), it was suggested that CFM improved the growth, reproduction and amount of soil microorganism. In addition, not only wild in wild but also cultivated soil, total concentration of PLFAs in rhizosphere soil was higher than non-rhizosphere, and significantly or highly significantly related with microbial biomass C, which indicated that microbial biomass could be measured by PLFAs.
     24PLFAs were detected in wild A. annua, the concentration of them general in rhizosphere soil was higher than non-rhizosphere, and changed with sample sites; while21PLFAs were detected in cultivated A. annua soil. These PLFAs included19bacterial biomarkers (11~19C); The sum of10Me18:0represented Actinomycetes PLFA; the fungi were represented by18:2cω6,9,18:1ω9c and18:1ω9t;20:0represented nematode. Fertilization led to significantly drop of PLFAs in rhizosphere soil, addition to the Gram positive bacteria (G+). Diversity index of microorganism in no fertilizer soil was lower than CFM, which showed that rational fertilization could improve diversity and population structure of soil microorganism.
     3. Correction of soil microorganism and nutrient
     In wild A. annua soil, microbial biomass C and N were significantly positively related to concentration of organic matter, available N, P and K, while there were no significantly relationship in cultivated A. annua soil. It was suggested that soil microorganism could activated nutrient, and support plant with available nutrient, but fertilization highly increased the concentration of soil nutrient, which reduced the ability of microorganism activating and supporting nutrient.
     No significant correlations of soil enzymatic activities with microbial biomass C, N and the concentration of PLFAs of soil microorganism, the roots and residues of A. annua were main sources of it and significantly affect nutrient transformation and utilization of soil. Broadly adaptive abilities of A. annua growth were future explain.
     4. Concentration and contribution of anti-malaria-related compounds in A. annua
     In A. annua, the content of terpene compounds including artemisinin, deoxyartemisinin and artemisinin acid, Phenols including polyphenols, scopoletin, chrysosplenol-D and chrysosplenetin were following trend:leaf> stem> root, it was indicated that leaves were the main organs of these compounds synthesis and storage. The antioxidant activities of the leaf extracts were highest in all organs, and related positively with the concentration of polyphenols, scopoletin, chrysosplenol-D and chrysosplenetin. The growth, concentration of anti-malaria-related compounds and antioxidant activities in wild A. annua changed with sample plots, and the variation was large. In cultivated A. annua, the plant biomass and concentration of terpene compounds under no fertilization were lower than fertilization, contrast to polyphenols, chrysosplenol-D and chrysosplenetin. In all, fertilization not only improved the growth, production of polyphenols, scopoletin, chrysosplenol-D and chrysosplenetin of A. annua, but also increased the concentration and production of artemisinin, deoxyartemisinin and artemisinin acid, and the variation was narrow, CFM was most significant in all treatments, it might be related with improvement of nutrient.
     5Correlation between soil microorganism and anti-malaria-related compounds of A. annua
     Correlation analysis showed that the phenols in rhizosphere soil of wild and cultivated A. annua were significantly or extremely significantly positively related with certain or some groups of microbes, such as scopoletin was significantly positively related with bacteria, G-bacteria and fungi PLFAs. Contrast to them, artemisinin acid in rhizosphere soil of wild A. annua significantly positively related with bacteria, G-bacteria, Actinomycetes and fungi PLFAs, because the concentration was low and not produce inhibitory effect on soil microorganisms, while provided then with carbon source and promoted their growth, but in cultivated A. annua soil, the concentration of artemisinin acid was2times of wild soil, and was significantly negatively related with bacteria, G-bacteria and fungi PLFAs, it showed that artemisinin acid inhibited the growth and propagation of soil microorganism.
     6Effect of A. annua extracts and artemisinin on soil microorganism
     The concentration of soil microbial PLFAs was decreased by water extract solution from roots, leaves and rhizosphere soil of A. annua, and the declining variation was affected by sources of water extract solution and microbial group. It showed that soil microorganism was inhibited, and the inhibitory effect increased with the extension of incubation time within culturing time (1~12d), the ratio variations of inhibition on bacteria, fungi and Actinomycetes were5.59%~75.10%,15.13%~69.77%,23.81%~63.82%. It was suggested that soil health was affected indirectly because of differently sensitive degree of soil microorganism to secretions and leaching from A. annua. In addition to, different concentration (24,48mg/L) artemisinin severely affected the growth and propagation, carbon source utilization ratio of PSB with increasing its concentrations, organic acid secretion reduced, and P solubilization of PSB decreased1.02%-49.49%at the same time. Microbial population structure were changed, biomass (PLFAs content) were reduced, the growth and propagation of them were inhibited, and at last production capacity of the soil was reduced in soil of cultivated A. annua.
引文
白震,张明,宋斗妍,等.不同施肥对农田黑土微生物群落的影响[J].生态学报,2008,(7):3244-3253.
    白震,张明,闫颖, 等.长期施肥对农田黑土微生物活力与群落结构的影响[J].土壤学报,2009,(1):107-116.
    鲍士旦.土壤农化分析[M].第3版.北京:中国农业出版社,2005.
    卜洪震,王丽宏,尤金成,等.长期施肥管理对红壤稻田土壤微生物量碳和微生物多样性的影响[J].中国农业科学,2010,16:3340-3347.
    蔡国琴,李国珍,叶和春,等.Ri质粒促活的青蒿发根组织培养及青蒿素的生物合成[J].生物工程学报,1995,11:315-320.
    陈德基,付雨芳,范崇正,等;青蒿素衍生物实验治疗动物血吸虫病研究初报[J].云南医药,1981.6:60-63.
    陈俊意,甘晓玲,邓步华.影响缙云山青蒿青蒿素含量的因素研究[J].西南农业学报,2009,6:1574-1576.
    陈志敏,商文静,吴云峰,等.几种中草药丙酮提取物对西瓜花叶病毒2号的抗性研究[J].西北农业学报,2003,12(4):35-37.
    邓定安,许承辉,蔡俊超,等.有抗肿瘤活性的青篙素衍生物[J].药学学报,1992,27(4):317-319.
    丁伟,叶江平,蒋卫,等.长期施肥对植烟土壤微生物的影响[J].植物营养与肥料学报,2012,18(5):1168-1176.
    丁焕新,李镜锋,陈旭明,等.天然药物青蒿素及其衍生物的作用机理研究进展[J].中国普外基础与临床杂志.2010,17(5):519-521.
    高志玲,陈艳,谢英辉.黄花蒿挥发油的体外抑菌活性研究[J].食品科学,2010,19(31):209-211.
    高志梅,李拥军,谷文祥.青蒿化感作用的初步研究[J].华南农业大学学报,2007,28(1):122-124.
    关松荫.土壤酶及其研究法[M].北京:农业出版社,1986.
    郭红斌,弓素梅.青蒿素与青蒿水提液对感染柔嫩艾美耳球虫肉鸡的疗效评价.动物医学进展[J],2011,3:82-85.
    郭鸿儒.黄花蒿(Artemisia annua L.)化感物质的分离鉴定及化感物质作用机理研究[D].甘肃农业大学.2007.
    韩小冰,马玲,马伟,等.不同方法提取蒿属植物有效物质的抑菌活性研究[J].森林工程,2008,24(3):13-16.
    郝晓晖,胡荣桂,吴金水,等.长期施肥对稻田土壤有机氮、微生物生物量及功能多样性的影响[J].应用生态学报,2010,21(6):1477-1484.
    何寻阳,王克林,陈志辉,等.岩溶洼地土壤微生物指标对不同土地利用方式的响应[J].土壤通报,2008,39(3):509-513.
    何振立.土壤微生物量及其在养分循环和环境质量评价中的意义[J].土壤,1997,29(2):61-69.
    黄黎,刘菊福,刘林祥,等.中药青篙的解热抗炎作用研究[J].中国中药杂志,1993,18:44-48.
    黄璐琦,郭兰萍.中药资源生态学研究[M].上海:上海科学技术出版社,2007:70.
    惠竹梅,岳泰新, 张瑾,等.西北半干旱区葡萄园生草体系中土壤生物学特性与土壤养分的关系[J].中国农业科学2011,11:2310-2317.
    吉艳芝,冯万忠,陈立新,等.落叶松混交林根际与非根际土壤养分、微生物和酶活性特征[J].生态环境,2008,17(1):339-343.
    靳正忠,雷加强,徐新文,等. 塔里木沙漢公路防护林土壤微生物生物量与土壤环境因子的关系[J].应用生态学报,2009,20(1):51-57.
    李娟,赵秉强,李秀英,等.长期有机无机肥料配施对土壤微生物学特性及土壤肥力的影响[J].中国农业科学.2008,(1):144-152.
    李倩,吴叶宽,黄建国.青蒿素对根瘤菌的化感效应研究[J].中国中药杂志,2011,36(24):3428-3433.
    李传涵,王长荣,李明鹤.毛白杨、刺槐混交林丰产机理的研究[J].湖北林业科技,1991(1):1-5.
    李金花,李镇清,刘振国.不同刈牧强度对冷蒿生长与资源分配的影响[J].应用生态学报,2004,15(3):408-412.
    李隆云,舒抒,吴叶宽.优质青蒿产业化生产与经营[M].重庆:重庆出版社.2009
    李云寿,唐绍宗,邹华英,等.黄花蒿提取物的杀虫活性[J].农药,2000,39(10):25-26.
    李忠佩,吴晓晨,陈碧云.不同利用方式下土壤有机碳转化及微生物群落功能多样性变化[J].中国农业科学,2010,21(6):1477-1484.
    廖化为,王定勇,李晓蒙.湖南雪峰山地区野生黄花蒿挥发油化学成分的研究[J].西北药学杂志,2006,19(9):652-564.
    刘芳.青蒿挥发油抗植物病原真菌活性的研究[J].白城师范学院学报,2009,23(6):26-28.
    刘飞,伍晓丽,崔广林,等.青蒿根际微生物数量动态及其与青蒿素含量的关系研究[J].时珍国医国药,2010,21(1):37-38.
    刘军,唐志敏,刘建国,等.长期连作及秸秆还田对棉田土壤微生物量及种群结构的影响[J].生态环境学报,2012,8:1418-1422.
    刘璐,宋同清,彭晚霞,等.木论喀斯特自然保护区土壤微生物生物量的空间格局[J].生态学报,2012,32(1):207-214.
    刘本叶,叶和春,李国凤,等.青蒿发根生长及青蒿素生物合成动态的研究[J].生物工程学报.1998,14(4):401-404.
    刘秋文,赵金玲,陈金娥等.干、鲜青蒿叶中活性成分含量及抗氧化性对比研究[J].中国食品工业,2011,7:63-65.
    刘亚丽,剡根强,王静梅.新疆地区黄花蒿粗提物的体外抑菌效果观察[J].石河子大学学报:自然科学版,2009,27(4):458-461.
    路洪顺.黄花蒿的开发利用价值与栽培技术[J].国林副特产,2002,60(1):6-7.
    罗世琼,杨宇虹,晋艳,等.长期施肥对烤烟-小麦轮作红壤各级团聚体氮及其酶活性的影响[J].水土保持学报,2012,4:127-132.
    罗希茜,郝晓晖,陈涛,等.长期不同施肥对稻田土壤微生物群落功能多样性的影响[J].生态学报,2009,29(2):740-748.
    毛达如,申建波.植物营养研究方法(第二版)[M].中国农业大学出版社.2005,pp:426.
    宁睿,李优琴,王春梅.青蒿粗提物的抑菌活性研究[J].江西农业科学,2007,3:61-63.
    牛红榜,刘万学,万方浩.紫茎泽兰(Areratin aadenophora Sprengal (Asteraceae))入侵对土壤微生物群落和理化性质的影响[J].生态学报,2007,27(7):2051-2060.
    潘净艳.辽宁药用植物土壤微生物多样性及生防菌株研究[D].沈阳农业大学,2008.
    裴雪霞.典型种植制度下长期施肥对土壤微生物群落结构多样性的影响[D].农业资源与农业区划研究所,2007.
    漆小雪,韦霄,陈宗游,等.黄花蒿干物质的积累及青蒿素与N、P、K量的动态变化研究[J].中草药.2011,42(12):2541-2544.
    祁建军,赵晓萌,周丽莉,等.西洋参根际土壤微生物群落组成与多样性研究[J].中国中药杂志,2010,35(18):2378-2382.
    邱现奎,董元杰,万勇善,等.不同施肥处理对土壤养分含量及土壤酶活性的影响[J].土壤,2010,42(2):249-255.
    任卫东,贾莉洁,王莲莲,等.长期施肥对小麦、玉米根际和非根际土壤微生物量碳及水溶性有机碳含量的影响[J].西北农业学报,2011,20(12):145-151.
    邵清松,郭巧生,顾光同,曹沈丽.不同种植制度和施肥处理对杭白菊土壤微生物功能多样性的影响[J].2011, 36(23):3233-3237.
    沈光金.青篙素及其衍生物的抗血吸虫作用[J].中国寄生虫病防治杂志,1997,10(2):145-147.
    沈慧敏.黄花蒿(Artemisia annua L.)化感物质释放途径及化感作用机理研究[D].甘肃农业大学.2006.
    唐莉娜,张秋芳,陈顺辉.不同有机肥与化肥配施对植烟土壤微生物群落PLFAs和烤烟品质的影响[J].中国烟草学报,2010,16(1):36-40.
    陶波,赵微,韩玉军,等.假苍耳根系分泌物对土壤中微生物的影响[J].东北农业大学学报,2010,41(2):15-19.
    汪润池,宗良纲,邱晓蕾,等.有机与常规种植蔬菜地土壤微生物群落特征的比较[J].南京农业大学学报,2012,35(2):99-104.
    王静,杨持,王铁娟.冷蒿(Atemisia frigida)种群在放牧干扰下构件的变化[J].生态学报,2006,26(3):960-965.
    王静,杨持,王铁娟.放牧退化群落中冷蒿种群生物量资源分配的变化[J].应用生态学报,2005,16(12):2316-2320.
    王慧珍,杨宝峰,罗大力,等.青蒿素抗心律失常作用的研究[J].中国药理学通报,1998,14(1):102.
    王满莲,蒋运生,韦霄,等.栽培密度和施肥水平对黄花蒿生长特性和青蒿素的影响[J].植物营养与肥料学报,2010,16(1):185-192.
    王云玲,丁建新.篙甲醚片剂的稳定性研究[J].中草药,1989,20(7):9-11.
    王志勇,江雪飞,郑慧,等.脂肪酸甲酯法检测空心莲子草入侵影响土壤微生物群落结构的初步研究[J].2011,31(6):6-9.
    韦霄,李锋,许成琼,等.黄花蒿生物学特性研究[J].广西植物,1997,17(2):166-168.
    韦美丽,崔秀明,陈中坚,等.黄花蒿栽培研究进展[J].现代中药研究与实践.2005,(19)5:60-63.
    韦树根,马小军,冯世鑫,等.中国黄花蒿主产区种质资源评价[J].中国中药杂志,2008,3(33):241-244.
    韦中强,李成东,肖杰易,等.施肥水平对青蒿产量和质量影响的研究[J].时珍国医国药,2008,19(5):1286-1287.
    吴静,丁伟,张永强,等.黄花蒿(Artemisia annua L.)提取物对两种病原真菌的生物活性[J].农药,2007,46(10):713-718.
    吴建国,艾丽. 祁连山3种典型生态系统土壤微生物活性和生物量碳氮含量[J].植物生态学报,2008,32(2):465-476.
    肖树华,王家龙,田子英,等.篙甲醚预防日本血吸虫感染的现场观察[J].中国寄生虫学与寄生虫病杂志,1995,13(3):170.
    熊汉锋,王运华.梁子湖湿地土壤养分的空间异质性[J].植物营养与肥料学报,2005,11(5):584-589.
    徐华勤,肖润林,邹冬生,等.长期施肥对茶园土壤微生物群落功能多样性的影响[J].生态学报,2007,27(8):3355-3361.
    徐继红,章元沛.二氢青蒿素与青蒿琥酯的抗孕作用[J].药学学报,1996;31(9):657-661.
    薛箑,刘国彬,戴全厚,等. 黄土丘陵区人工灌木林恢复过程中的土壤微生物生物量演变[J]. 应用生态学报,2008,19(3):517-523.
    颜慧,钟文辉,李忠佩,等.长期施肥对红壤水稻土磷脂脂肪酸特性和酶活性的影响[J].应用生态学报,2008,19(1):71-75.
    颜慧,蔡祖聪,钟文辉.磷脂脂肪酸分析方法及其在土壤微生物多样性研究中的应用[J].土壤学报,2006,43(5):851-859.
    杨持,宝音陶格涛,李良.冷蒿种群在不同放牧强度胁迫下构件的变化规律[J].生态学报,2001,21(3):405-408.
    杨成德,龙瑞军,陈秀蓉.东祁连山高寒草甸土壤微生物量及其与土壤物理因子相关性特征[J].草业学报,2007,16(4):62-68.
    杨国恩,宝丽,张晓琦,等.黄花蒿中的黄酮化合物及其抗氧化活性研究[J].中药材.2009,33(11):1684-1688.
    杨丽英,李绍平,谷安宇,等.黄花蒿繁殖生物学初步研究[J].西南农业学报,2008:1036-1039
    杨水平,杨宪,黄建国,等.氮磷钾肥和密度对青蒿生长和青蒿素产量的影响[J].中国中药杂志,2009,34(17):47-52.
    杨水平,杨宪,黄建国,等.青蒿素生产研究进展[J].热带亚热带植物学报,2004,12(2):189-194.
    杨振国,张永强,丁伟.栽培型和野生型黄花蒿提取物对朱砂叶螨杀螨活性比较[J].生态学杂志,2011,30(7):1398-1402.
    姚健,赵保堂.王俊龙,等.甘肃黄花蒿超临界CO2萃取产物化学成分的差异性分析[J].草业科学,2010,3:57-63.
    姚槐应,黄昌勇.土壤微生物生态学及其实验技术[M].科学出版社,2006,pp:144-146.
    于树,汪景宽,李双异.应用PLFA方法分析长期不同施肥处理对玉米地土壤微生物群落结构的影响[J].生态学报,2008,28(9):4221-4227.
    余正文.青蒿抗疟化合物代谢积累及其相关性研究[D].重庆大学,2010.
    俞慎,李勇,王俊华,等.土壤微生物生物量作为红壤质量生物指标的探讨[J].土壤学报,1999,36(3):413-422.
    占纪勋,魏秋棼,单成启,等.四个青蒿素生物转化产物抗体外培养恶性疟原虫活性研究[J].中国热带医学,2003,3(1):17-20.
    张佳,张峰,王莹,等.黄花蒿叶中抑菌成分提取方法的研究[J].江苏农业科学,2009(3):138-139.
    张宝贵,李贵桐.土壤生物在土壤磷有效化中的作用[J].土壤学报,1998,35(1):105-109.
    张辰露.连作对丹参生长的障碍效应[J].西北植物学报,2005,25(5):1029-1034.
    张凤杰,陈功锡,刘祝祥,等.湘西黄花蒿挥发油研究[J].中药材,2010,33(12):74-78.
    张福锁.环境胁迫与植物根际营养[M].北京:中国农业出版社,1998.1-11.
    张奇春,王光火,方斌.不同施肥处理对水稻养分吸收和稻田土壤微生物生态特性的影响[J].土壤学报,2005,42(1):116-121.
    张淑香,高子勤,海玲.连作障碍与根际微生态研究Ⅲ.土壤酚酸物质及其生物学效应[J].应用生态学报,2000,11(5):741-744.
    张小波,郭兰萍,黄璐琦,等.广西青蒿生产适宜性的区域差异分析[J].资源科学,2008,30(5):759-763.
    张晓蓉,彭光花,陈功锡,等.黄花蒿残渣挥发油化学成分及其抑菌活性分析[J].中草药,2011,42(12):2418-2421.
    张永强,丁伟,赵志模,等.不同生长时期黄花蒿提取物对朱砂叶螨的生物活性[J].生态学杂志,2007,26(12):1969-1973.
    赵进,孙晔,田丽娟.不同产地黄花蒿挥发油成分的GC-MS研究[J].陕西中医学院学报,2009,32(5):72-75.
    郑红艳.青蒿素母液体外抗真菌试验[J].四川畜牧兽医,2001,28(5):33-34.
    郑丽屏,王剑文,谭仁祥.黄花蒿种质资源的RAPD分析[J].中草药,2007,38(4):602-605.
    中国药典委员会.中国药典.一部[S].北京:中国医药科技出版社,2010:184.
    钟国跃,凌云黄花蒿优质种质资源的研究[J].中草药1998,4:264-267.
    周天,郭继勋,韩德复,等.黄花蒿挥发油对蚊虫的毒杀活性及其化学成分[J].应用生态学报,2006,17(5):907-910.
    周晋,邱晓红.抗疟药青篙素抗心律失常的作用机制[J].药学学报,1999,34(8):569-572.
    周宇杰,丁伟,王春升.青蒿粗提物对朱砂叶螨生物活性的初步研究[J].西南农业大学学报,2006,28(2):306-308.
    朱丽霞,章家恩,刘文高.根系分泌物与根际微生物相互作用研究综述[J].生态环境,2003,12(1):102-105.
    邹婷,张犇,陈韶华,等.黄花蒿发根的液体培养及青蒿素合成的动态特征研究[J].抗感染学报,2010,7(1):19-23.
    Abid M M, Khan A, Jain D C, et al. Occurrence of Some Antiviral Sterols in Artemisia annua [J]. Plant Science,1991,75(2):161-165.
    Al-Yahya'ei M. Arbuscular mycorrhizal fungal communities associated with date palms in a traditional and a modern experimental plantation and with desert plants in the adjacent natural habitats in Southern Arabia [D].University of Basel, Faculty of Science,2008.
    Amann R, Ludwig W, Schleifer K. Phylogenetic identification and in situ detection of individual microbial cells without cultivation [J]. Microbiological Reviews,1995,59(1):143-169.
    Ana Garcia-Villaraco V, Agustin P, Javier Gutierrez Manero F. et al. Characterization of the rhizosphere microbial community from different Arabidopsis thaliana genotypes using phospholipid fatty acids (PLFA) analysis [J]. Plant Soil,2010,329:315-325.
    Analogues H O, Takahisa H, Yutaka Y, et al. Generation of anti-trypanosomal agents through concise synthesis and structural diversification of sesquiterpene [J]. Journal of the American Chemical Society.2011,133 (18):7096-7105.
    Andersson B E, Welinder L, Olsson P A, Olsson S, et al. Growth of inoculated white-rot fungi and their interactions with the bacterial community in soil contaminated with polycyclic aromatic hydrocarbons, as measured by phospholipid fatty acids [J]. Bioresource Technology,2000, 73(1):29-36.
    Anthony O, Adesemoye, Joseph W. Kloepper. Plant-microbes interactions in enhanced fertilizer use efficiency [J]. Applied Microbiology and Biotechnology,2009,85:1-12.
    Antoun H, Beuchamp CJ, Goussard N, et al. Potential of Rhizobium and Bradyrhizobium species as growth promoting bacteria on non-legumes:effect on radishes(Raphanus sativus L.) [J]. Plant Soil,1998.204:57-67.
    Avula B, Wang Y H, Troy J. S, et al. Comparison of LC-UV, LC-ELSD and LC-MS Methods for the Determination of Sesquiterpenoids in Various Species of Artemisia [J]. Chromatographia. 2009,70:797-803.
    Baath E, Anderson T H. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques [J]. Soil Biology and Biochemistry,2003,35(7): 955-963.
    Bagchi G D, Jain D C, Kumar S, et al. A Potent Plant Growth Inhibitor from Artemisia annua [J]. Phytochemistry,1997,46(5):1131-1133.
    Bais H P, Weir T L, Perry L G. et al. The role of root exudates in rhizosphere interactions with plants and other organisms [J]. Annual Review of Plant Biology,2006,57:233-266.
    Balkwill D L, Leachs F R, Wilson J T, et al. Equivalence of microbial biomass measures based on membrane lipid and cell wall components, adenosine triphosphate and direct counts in sub-surface aquifer sediments [J]. Microbial Ecology,1998,16:73-84.
    Bardgett R D, Lovell R D, Hobbs P J, et al. Seasonal changes in soil microbial communities along a fertility gradient of temperate grasslands [J]. Soil Biology and Biochemistry,1999,31: 1021-1030.
    Bhakuni R S, Jain D C, Sharma, R P et al. Secondary metabolites of Artemisia annua and their biological activity [J]. Current Science,2001,80:35-48.
    Bijayalaxmi D N, Yadava P S. Seasonal dynamics in soil microbial biomass C, N and P in a mixed-oak forest ecosystem o f Manipur, North-east India [J]. Applied Soil Ecology,2006,31(3): 220-227.
    Bilia A R, Magalhaes P M, Bergonzi M C, et al. Simultaneous analysis of artemisinin and flavonoids of several extracts of Artemisia annua L obtained from a commercial sample and a selected cultivar[J]. Phytomedicine,2006,13:487-493.
    Bligh E G, Dyer W J. A rapid method of total lipid extraction and purification [J]. Canadian Journal of Biochemistry and Physiology,1959,37(8):911-917.
    Bochner B. Breath prints at the microbial level [M]. American Society for Microbiology News,1989, 535-539.
    Bohme L, Langer U, Bohme F. Microbial biomass, enzyme activities and microbial community structure in two European long-term field experiments [J]. Agriculture, Ecosystems and Environment,2005,109:141-152.
    Bomberg M, Jurgens G, Saano A, et al. Nested PCR detection of Archaea in defined compartments of pine mycorrhizospheres developed in boreal forest humus microcosms [J]. FEMS Microbiology Ecology,2003,43(2):163-171.
    Bossio, D A, Scow K M. Impacts of carbon and flooding on soil microbial communities: phospholipid fatty acid profiles and substrate utilization patterns [J]. Microbial Ecology,1998, 35:265-278.
    Brewster J D. A simple micro-growth assay for enumerating bacteria [J]. Journal of Microbiological
    Methods,2003,53:77-86.
    Brown G D. Two new compounds from Artemisia annua [J]. Journal of Natural Products,1992,55: 1756-1760.
    Chabot R, Beuchamp C J, Kloepper J W, et al. Effect of phosphorus on root colonization and growth promotion of maize by bioluminiscent mutants of phosphate-solubilizing Rhizobium leguminosarum biovar phaseoli [J]. Soil Biology and Biochemistry,1998,30:1615-1618.
    Chaboud A. Isolation, Purification and chemical composition of maize root cap slime [J]. Plant and Soil,1983,73:395-404.
    Chapman H D, Pratt P F. Methods of Analysis for Soil, plants, and Water [M] University of California, Division of Agriculture, Berkeley,1961, pp:169-170.
    Chen H 1, Li Y J, Li B, et al. Impacts of exotic plant invasions on soil biodiversity and ecosystem processes [J]. Biodiversity Science,2005,35:555-565.
    Chen P K, Leather G R. Plant Growth Regulatory Activities of Artemisinin and Its Related Compounds [J]. Journal of Chemical Ecology,1990,16(6):1867-1876.
    Christine V H, Ian F W, Donald J H, et al. Plant invasion alters nitrogen cycling by modifying the soil nitrifying community[J]. Ecology Letters,2005.8:976-985.
    Coleman D C, Crossley D A. Fundamentals of Soil Ecology [J]. Academic Press, San Diego.2005.
    Darcy A. Study of soybean and lentil root exudates influence of soybean isofavonoids on the growth of rhizobia and some rhizospheric microorganisms [J]. Plant and Soil,1987,101:267-272.
    Darrah P R. Model of the rhizosphere [J]. Plant and Soil 1991,138:147-158.
    De Freitas J R, Banerjee N R, Germida J J. Phosphate solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola(Brassica napus L.) [J]. Biology Fertilizer. Soils, 1997,24:358-364.
    Delabays N, Simonnet X, Gaudin M. The genetics of artemisinin content in Artemisia annua L. and the breeding of high yielding cultivars [J]. Current Medicinal Chemistry,2001.8:1795-1801
    Dhingra V, Pakki S R, Narasu M L, Antimicrobial activity of artemisin in and its precursors [J]. Current Science,2000,78:708-710.
    Dickens H E, Anderson J M. Manipulation of soil microbialcommunity structure in bog and forest soils using chloroform fumigation [J]. Soil Biology and Biochemistry.1999.31:2049-2058.
    Ding L L, Qi B, Shang Z H, Long R J et al.. The characteristics of soil microorganism quantity under different alpine grasslands in Eastern Qilian Mountain [J]. Journal of Agro-Environment Science,2007,26(6):2104-2111.
    Djukic I, Zehetner F, Mentler A, et al. Gerzabek. Microbial community composition and activity in different Alpine vegetation zones [J]. Soil Biology and Biochemistry,2009,1:1-7.
    Domingueza M C, Rosaa M, Borobiob M V. Application of a spectrophotometric method for the determination of post-antibiotic effect and comparison with viable counts in agar [J]. Journal Antimicrobial Chemotherrapy,2001,47:391-398.
    Donald R Z, Willame H, David C W. Plant diversity, soil microbial communities, and ecosystem functio n:Are there any links [J]. Ecolog y,2003,84(8):2042-2050.
    Douterelo 1, Goulder R, Lillie M. Soil microbial community response to land-management and depth, related to the degradation of organic matter in English wetlands:Implications for the insitu preservation of archaeological remains [J]. Applied Soil Ecology,2010,44(3):219-227.
    Doutre D A, Hay G W, Hood A, et al. Spectrophotometric methods to determine carbohydrates in soil [J]. Soil Biology and Biochemistry,1978,10(6):457-462.
    Drenovsky R E, lliott G N, Graham K J, et al. Comparison of phospholipid fatty acid (PLFA) and total soil fatty acid methyl esters (TSFAME) for characterizing soil microbial communities [J]. Soil Biology and Biochemistry,2004,36(11):1793-1800.
    Eberbach P L, Douglas L A. Herbicide effects on the growth and nodulation potential of Rhizobium trifolii with Trifolium subterraneum L [J]. Plant Soil,1989,119:15-23.
    Ebiamadon A B, Umoren E U, Brisibe F, et al. Nutritional characterisation and antioxidant capacity of different tissues of Artemisia annua L. [J]. Food Chemistry 2009,115:1240-1246.
    Eckstein-Ludwig U, Webb R J, van Goethem I'D A, et al. Artemisinin targets the SERCA of Plasmodium falciparum [J]. Nature,2003,424:957-961.
    Effert h T. Willmar Schwabe Award 2006:antiplasmodial andantitumor activity of artemisinin-f rom bench to bedside [J]. Planta Meddica,2007,73 (4):299-309.
    Elford B C, Roberts M F, Phillipson J D, et al. Potentiation of the antimalarial activity of qinghaosu by methoxylated flavones [J]. Transactions of the Royal Society of Tropical,1987,81:434-436.
    Elkan G H, Kwik I. Nitrogen, energy and vitamin nutrition of rhizobium japonicum [J]. Journal of Applied Bacteria,1968,31:399-404.
    Engelen B, Meinken K, Wintzingerode F V, et al. Monitoring impact of a pesticide treatment on bacterial soil communities by metabolic and genetic fingerprinting in addition to conventional testing procedures [J]. Applied and Environmental Microbiology,1998,64:2814-2821.
    Farhat M B, Farhat A, Bejar W, et al. Characterization of the mineral phosphate solubilizing activity of Serratia marcescens CTM 50650 isolated from the phosphate mine of Gafsa [J]. Archives of Microbiology,2009,191:815-824.
    Fletcher W W, Dickenson P B, Forrest J D, et al. The effect of soil applications of certain substituted phenoxyacetic and phenoxybutyric acids on the growth and nodulation of Trifolium repens Sylvester[J]. Phyton,1957,9:41-46.
    Fletcher W W, Dickenson P B, Raymond J C. The effect of certain hormone herbicides on the growth and nodulation of Trifolium repens Sylvester in aseptic culture [J]. Phyton,1956,7: 121-130.
    Francois L, Peter H S. Continuous-flow synthesis of the anti-malaria drug artemisinin [J]. angewandte chemie International Edition,2012,51,1706-1709.
    Frostegard A, Baath E. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil [J]. Biology and Fertility of Soils,1996,22:59-65.
    Frostegard A, Tunlid A, Baath E. Phospholipid fatty acid composition, biomass, and activity of microbial communities from two soil types experimentally exposed to different heavy metals[J]. Applied and Environmental Microbiology,1993,59:3605-3617.
    Gaind S, Gaur A C. Thermotolerant phosphate solubilizing microorganisms and their interaction with mung bean [J]. Plant Soil,1991,133:141-149.
    Ghose T K. Measurement of cellulose activities [J]. Pure and Applied Chemistry,1987,59:257-268
    Goldstein A H. Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by gram negative bacteria [J]. Biological Agricultury. Horticultury,1995,12:185-193.
    Graham P H. Vitamin requirements of root nodule bacteria [J]. Journal of General Microbiology, 1963,30:245-248.
    Graham P H, Ocampo G, Ruiz L D, et al. Survival of Rhizobium phaseoli in contact with chemical seed protectants [J]. Agronomy Journal,1980,12:625-627.
    Gramss G, voigt K D, Kirschc B. Oxidoreductase enzymes liberated plant roots and the their effects on soil humic material [J]. Chemosphere,1999,38(7):1481-1494.
    Halder A K, Mishra A K, Bhattacharya P, et al. Solubilization of rock phosphate by Rhizobium and Bradyrhizobium [J]. Journal of general and applied microbiology,1990,36:81-92.
    Hao W, Ren L, Ran W. Allelopathic effects of root exudates from watermelon and rice plants on Fusarium oxysporum f.sp. niveum [J]. Plant Soil,2010,336:485-497.
    Harrison M J, Pacha R E, Morita RY. Solubilization of inorganic phosphates by bacteria isolated from upper Klamath Lake sediment [J]. Limnology and Oceanography,1972,17:50-57.
    Harsh P B, Tiffany L W, Laura G P, et al. The role of root exudates in rhizosphere interactions with plants and other organisms [J]. Annual Review of Plant Biology,2006.57:233-266.
    Hartwing U A. Chrysoeriol and luteolin r eleased from alfalfa seeds induce nod genes in rhizobium meliloti [J]. Plant Physiol,1990,92:116-122.
    Hawkes C V, Wren I F, Herman D J, et al. Plant invasion alters nitrogen cycling by modifying the soil nitrifying community [J]. Ecology Letter,2005,8:976-985.
    Hesselsoe M, Boysen S, Iversen N, et al. Degradation of organic pollutants by methane grown microbial consortia [J]. Biodegradation,2005,16(5):435-448.
    Hinsinger P. Bioavailability of soil inorganic P in the rhizosphere as affected by root induced chemical changes:a review [J]. Plant Soil,2001,237:173-195.
    Holt J G, Kreig W R. Sneath P H A, et al. Bergey's manual of determinative bacteriology [M], 9thedn. Williams and Wilkin Copany, Baltimor,1994, pp:154-157.
    Ika Djukic, Franz Zehetner, Axel Mentler, et al. Microbial community composition and activity in different alpine vegetation zones [J]. Soil Biology & Biochemistry,2009:1-7
    Insam H. Developments in soil microbiology since the mid 1960s [J]. Geoderma,2001,100(3-4): 389-402.
    Jayashree S, Vadivukkarasi P, Anand K., et al. Evaluation of pink-pigmented facultative methylotrophic bacteria for phosphate solubilization [J]. Archives of Microbiology,2011, 193(8):543-552.
    Jenkinson D S, Ladd J N. Microbial biomass in soil:Measuremen and turnover [J]. Soil Biochenistry, 1981, (5):415-471.
    Jennifer L K, Lee A B, Miranda H. Methods of studying soil microbial diversity [J]. Journal of Microbiological Methods,2004,58(2):169-188.
    Jensen V. Notes on the biology of Azotobacter [J]. Journal of Applied Bacteriology,1951,14:89-93
    Jessing K K, Cedergreen N, Jensen J, et al. Degradation and ecotoxicity of the biomedical drug artemisinin in soil [J]. Environmental Toxicology and Chemistry,2009,28:701-710.
    Johnsen K, Nielsen P. Diversity of Pseudomonas strains isolated with King's B and Gould's S1 agar determined by repetitive extragenic palindromic-polymerase chain reaction,16S rDNA sequencing and Fourier transform infrared spectroscopy characterization [J]. FEMS Microbiology Letters,1999,173(1):155-162.
    Jorge F S F, Devanand L L, Tomikazu. Flavonoids from artemisia annua L. as antioxidants and their potential synergism with artemisinin against malaria and cancer [J]. Molecules,2010,15, 3135-3170.
    Joseph S L, Hugenholtz P, Sangwan P, et al. Laboratory cultivation of widespread and previously uncultured soil bacteria[J]. Applied and Environmental Microbiology,2003,69:7210-7215.
    Julia M B, Assumpcio A, Joan R, et al. Comparing nutritional value and yield as functional units in the environmental assessment of horticultural production with organic or mineral fertilization [J]. Intertional J Life Cycle Assess,2011,16:12-26.
    Juteau F, Masotti V, Bessiere J M, et al. Antibacterial and antioxidant activities of Artemisia annua essential oil [J]. Fitoterapia,2002,73:532-535.
    Kandeler E, Tscherko D, Bruce K D, et al. Structure and function of the soil microbial community in microhabitats of a heavy metal polluted soil [J]. Biology and Fertility of Soils,2000,32(5): 390-400.
    Keith-Roach M J, Bryan N D, Bardgett R D, et al. Seasonal changes in the microbial community of a salt marsh, measured by phospholipid fatty acid analysis [J]. Biogeochemistry,2002,60(1): 77-96.
    Kelly J J, Haggblom M M, Tate R L. Effects of heavy metal contamination and remediation on soil microbial communities in the vicinity of a zinc smelter as indicated by analysis of microbial community phospholipid fatty acid profiles [J]. Biology and Fertility of Soils,2003,38:65-71.
    Kelly J J, Haggblomb M, Tate R L. Changes in soil microbial communities over time resulting from one time application of zinc:a laboratory microcosm study [J]. Soil Biology and Biochemistry, 1999,31(10):1455-1465.
    Khaled A, El-Tarabily, Tarek Y. Enhancement of morphological, anatomical and physiological characteristics of seedlings of the mangrove Avicennia marina inoculated with a native phosphate-solubilizing isolate of Oceanobacillus picturae under greenhouse conditions [J]. Plant Soil,2010,332:147-162.
    Kim K Y, McDonald G A, Jordan D. Solubilization of hydroxypatite by Enterobacter agglomerans and cloned Escherichia coli in culture medium [J]. Biology and Fertility of Soils,1997b.24: 347-352.
    Kim K Y, Jordan D, Krishnan H B. Rahnella aqualitis, a bacterium isolated from soybean rhizosphere, can solubilize hydroxyapatite. FEMS Microbiology Letter 1997a,153:273-277.
    Klayma D.L. Qinghaosu (Arteminin)-an antimalarial drug from China [J]. Science,1985,228: 1049-1055.
    Koeppe E E, Southwick L M. The relationship of tissue chlorogenic acid concentration and leaching of phenolics from sunflowers grown under varying phosphates nutrient condition [J]. Canadian Journal of Botany,1976.54:593-5999.
    Kordalis S, Aslan I, Calmasur O, et al. Toxicity of essential oils isolated from three Artemisia species and some of their major components to granary weevil, Sitophilus granarius (L.) (Coleoptera:Curculionidae) [J]. Industrial Crops and Products.2006,23:162-170.
    Kotan R, Kordali S, Cakir A. Antimicrobial and insecticidal activities of essential oil isolated from Turkish Salvia hydrangea DC [J]. Biochemical Systematics and Ecology,2008.36:360-368.
    Kourteva P S, Ehrenfelda J G, Haggblomb M. Experimental analysis of the effect of exotic and native plant species on the structure and function of soil microbial communities [J]. Soil Biology and Biochemistry,2003,35(7):985-905.
    Kpomblekou K, Tabatabai M A. Effect of organic acids on release of phosphorus from phosphate rocks. Soil Science,1994.158:442-453.
    Lai J P, Lim Y H., Su, J, et al. Identification and characterization of major flavonoids and caffeoylquinic acids in three compositae plants by LC/DAD-APCI/MS [J]. Journal of Chromatography B,2007.848:215-225.
    Lee S. Artemisinin, promising lead natural product for various drug developments [J]. Mini-Reviews in Medicinal Chemistry,2007,7(4):411-422.
    Li G Q, Fu L C, et al. Clinical trials of artemisinin and its derivalives in the treatment of malaria in China [J]. Transactions of the Royal Society of Tropical,1994,88(51):5-6.
    Li J, Liu X., Dong F., Xu J., et al. Potential allelopathic effects of volatile oils from Descurainia sophia (L.) Webb ex Prantl on wheat [J]. Biochemical Systematics and Ecology,2011,39: 56-63.
    Li L N, Zhang H D, Yuan S J, et al. Differential sensitivity of colorectal cancer cell lines to artesunate is associated wit h expression of beta2catenin and E2cadherin [J]. European Journal of Pharmacology,2008,588 (1):1-8.
    Li X F, Wang J, Huang D et al. Allelopathic potential of Artemisia frigida and successional changes of plant communities in the northern China steppe [J]. Plant Soil,2011,341:383-398.
    Li Y, Han W B, Wu Y K et al. A hydrogen peroxide based access to qinghaosu (artemisinin)[J]. Organic Letters,2011,13 (16):4212-4215.
    Liao M, Chen C L, Zeng L S, et al. Influence of lead acetate on soil microbial biomass and community structure in two different soils with the growth of Chinese cabbage(Brassica chinensis) [J]. Chemosphere,2007,66(7):1197-1205.
    Liu S, Wang C K. Spatial-temporal patterns of soil microbial biomass carbon and nitrogen in five temperate forest ecosystems [J]. Acta Ecologica Sinica,2010,30(12):3135-3143.
    Liu W X, Xu X S, Wu X H, et al. Decomposition of silicate minerals by Bacillus mucilaginosus in liquid culture [J]. Environmental Geochemistry and Health,2006,28(2):133-140.
    Ma R X, Feng Y. Effect of allelopathic chemical on growth ad denitrification of bacillus subtitis under anaerobic condition [J]. Chemistry Ecology,1998,24:187-193.
    Maire N, Borcard D, Laczko E, et al. Organic matter cycling in grassland soils of the Swiss Jura mountains:biodiversity and strategies of the living communities [J]. Soil Biology and Biochemistry,1999,31(9):1281-1293.
    Marschner H. Mineral nutrition of higher plants[M]. London:Academic Press,1995, pp:537-595.
    Martikainen P J, Palojarvi A. Evaluat ion of the fumig atio n ex traction method for the determination of microbial C and N in a range of fo rest soils [J]. Soil Biology Biochemistry, 1990,22:797-802.
    Martinez-Toledo M V, de la Rubia T, Moreno J, et al. Root exudates of zea mays and production of auxins, gibberellins and cytokinins by Azotobacter chroococcum [J]. Plant and Soil,1988,110: 149-155.
    McCaig A E, Grayston S J, Prosser J I, et al. Impact of cultivation on characterisation of species composition of soil bacterial communities [J]. FEMS Microbiology Ecology,2001,35(1): 37-48.
    Meriles J M, Vargas G S, Conforto C, et al. Soil microbial communities under different soybean cropping systems:characterization of microbial populationdynamics, soil microbial activity, microbial biomass and fatty acid profiles [J]. Soil and tillage Research,2009,103(2):271-281.
    Meshnick S R, Taylor T E, Kamchongpaisa S. Artemisinin and the antimalarial endoperoxides:from herbal remedy to targeted chemotherapy [J]. Microbiology Review,1996,60:301-315.
    Murray A H, Iason G R, Stewart C-Effect of simple phenolic compounds of heather (Calluna vulgaris) on rumen microbial activity in Vitro [J]. Journal of Chemistry Ecology,1996,22: 1493-1505.
    Mummey D L, Stahl P D, Buyer J S. Microbial biomarkers as an indicator of ecosystem recovery following surface mine reclamation [J]. Applied Soil Ecology,2002,21(3):251-259.
    Paul E A, Clark F E. Soil microbiology and biochemistry (2nd ed.) [M]. San Diego:Academic Press, 1996.
    Peng W X, Wang K L, Song T Q, et al. Controlling and restoration models of complex degradation of vulnerable Karst ecosystem [J]. Acta Ecologica Sinica,2008,28(2):811-820.
    Pikovskaya R I. Mobilization of phosphates in soil in connection with the vital activities of some microbial species [J]. Mikrobiologiya,1948,17:362-370.
    Podile A R, Kishore G K. Plant growth-promoting rhizobacteria [M]. In Plant-Associated Bacteria, Part 2, Gnanamanickam, S.S Netherlands Springer,2006, pp:195-230.
    Premono Edi M, Moawad M A, Vlek P L G. Effect of phosphate solubilizing Pseudomonas putida on the growth of maize and its survival in the rhizosphere [J]. Indonesian journal of crop science. 1996,11:13-23.
    Rebecca E D. Kerri L S, Louise E J. et al. Land use and climatic factors structure regional patterns in soil microbial communities [J]. Global Ecology and Biogeography,2010.19:27-39.
    Reyes I, Bernier L, Simard R, et al. Effect of nitrogen source on solubilization of different inorganic phosphates by an isolate of Pencillium rugulosum and two UV-induced mutants [J]. FEMS Microbiology. Ecology.1999,28:281-290.
    Rice E, Pancholy S K. Inhibition of nitrification by climax ecosystems 3. Inhibitors other than tannins [J]. American Journal of Botany,1974,61:1094-1103.
    Rice-Evans C A, Miller N J, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids [J]. Free Radical Biology and Medicine,1996,20:933-956.
    Richardson A E, Simpson R J. Soil microorganisms mediating phosphorus availability update on microbial phosphorus [J]. Plant physiology,2011,156:989-996.
    Rodriguez H, Fraga R, Gonzalez T, et al. Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria [J]. Plant Soil,2006,287:15-21.
    Rusznyak A, Vladar P, Molnar P, et al. Cultivable bacterial composition and BIOLOG catabolic diversity of biofilm communities developed on Phragmitesaustralis [J]. Aquatic Botany,2008, 88(3):211-218.
    Sagoe C I, Ando T, Kouno K, et al. Relative importance of protons and solution calcium concentration in phosphate rock dissolution by organic acids [J]. Soil Science & Plant Nutrent 1998,44:617-625.
    Schmid G., Hofheinz W. Total synthesis of qinghaosu [J]. Journal of American Chemistry Socciety, 1983,105 (3):624-625.
    Schutter M E, Dick R P. Comparison of fatty acid methyl ester (FAME) methods for characterizing microbial communities [J]. Soil Science Society of America Journal,2000,64(5):1659-1668.
    Seshadri S, Ignacimuthu S, Lakshminarsimhan C. Variation in heterotrophic and phosphate solubilizing bacteria from Chennai, southeast coast of India[J]. Indian J. Mar. Sci.2002,31: 69-72.
    Sivakumar G, Liu C Z, Towler M J, et al. Biomass production of hairy roots of Artemisia annua L and Arachis hypogaea in a scaled-up mist bioreactor [J]. Biotechnology and Bioengingeering, 2010,107:802-813.
    Smalla K, Wieland G, Buchner A, et al. Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis:Plant-dependent enrichment and seasonal shifts revealed [J]. Applied and Environmental Microbiology,2001,67(10):4742-4751.
    S(?)rheim R, Torsvik V L, Goks(?)yr J. Phenotypical divergences between populations of soil bacteria isolated on different media [J]. Microbial Ecology,1989,17(2):181-192.
    Steenwerth, K L, Jackson, L E, Carlisle, E A, et al. Microbial communities of a native perennial bunchgrass do not respond consistently across a gradient of land-use intensification [J]. Soil Biology and Biochemistry,2006,38:1797-1811.
    Steinberger, Y, Zelles, L, Bai, Q Y, et al. Phospholipid fatty acid profiles as indicators for the microbial community structure in soils along a climatic transect in the Judean Desert [J]. Biology and Fertility of Soils,1999,28:292-300.
    Stevenson F J, Cole M A. Cycles of soil:carbon, nitrogen, phosphorus, sulfur, micronutrients.2 edn [M]. Wiley Publisher, New York,1999, pp:219-318.
    Sylvia D M, Fuhrmann J J, Hartel P G, et al. Principles and applications of soil microbiology,2nd edn [M]. Pearson Prentice Hall, Upper Saddle River, NJ.2005.
    Taiz L, Zeiger E. Plant Physiology.3edn [M]. Sinauer Associates Inc. Publishers,2002, pp:15-19
    Turmel M C, Courchesne F, Benoit Cr-H. Microbial activity and water-soluble trace element species in the rhizosphere of spring wheat (Triticum aestivum cv. USU-Perigee) [J]. Journal of Environmental Monitoring,2011,13:1059-1072.
    Vahjen W, Munch J C, Tebbe C C. Carbon source utilization of soil extracted microorganisms as a tool to detect the effects of soil supplemented with genetically engineered and non-engineered Corynebacterium glutamicum and a recombinant peptide at the community level [J]. FEMS Microbiology Ecology,1995,18(4):317-319.
    Vepsalainen M, Erkomaa K, Kukkonen S, et al. The impact of crop plant cultivation and peat amendment on soil microbial activity and structure [J]. Plant and Soil,2004,264(1/2):273-286.
    Vestal J R, White D C. Lipid analysis in microbial ecology:Quantitative approaches to the study of microbial communities [J]. Biology Science,1989,39(8):535-541.
    Von Gadow A, Joubert E, Hansmann C F. Comparison of the antioxidant activity of rooibos tea(Aspalatlms linearis) with green, oolong and black tea [J]. Food Chemistry,1997,61(1): 1199-1200.
    Wang S K, Zhao X Y, Zuo X A, et al. Vertical distribution and seasonal dynamics of soil microbial number in sandy grassland of Horqin [J]. Arid and Geography,2009,32(4):610-615.
    Weathers P J, DeJesus-Gonzalez L, Kim Y J, et al. Alteration of biomass and artemisinin production in Artemisia annua roots by media sterilization method and sugars [J]. Plant Cell Reports,2004, 23(4):414-418.
    White D C, Bobbie R J, Herron J S, et al. Biochemical measurements of microbial mass and activity from environmental samples.In:Costerton J.W., Colwell R.R.(Eds). Native Aquatic Bacteria: Enumeration. Activity and Ecology [M]. Philadelphia, American:AmericanSociety for Testing and Materials,1979, pp:69-81.
    White N J, Qinghaosu (Artemisinin):The Price of Success [J]. Science,2008,320:330-334.
    Winslow C E A, Walker H H, Sutermeister M. The influence of aeration and of sodium chloride upon the growth curve of bacteria in various media [J]. Bacteriology 1932,10:185-208.
    World Health Organization. World Malaria Report 2010 (WHO, Geneva,2010).
    Wu Y P, Yu X S, Wang H Z, et al. Does history matter? Temperature effects on soil microbial biomass and community structure based on the phospholipids fatty acid (PLFA) analysis [J]. Journal of Soils and Sediments,2010,10(2):223-230.
    Wyslouzil B E, Waterbury R G, Weathers P J. The growth of single roots of Artemisia annua in nutrient mist reactors [J]. Biotechnology Bioengineering,2000,70(2):143-150.
    Wyslouzil B.E. Waterbury RG, Weathers PJ. Biotechnology and Bioengineering [J].2000,70(2): 143-150.
    Xue D, Yao H Y, Ge D Y, et al. Soil microbial community structure in diverse land use systems:A comparative study using Biolog, DGGE and PLFA analyses [J]. Pedosphere,2008,18(5): 653-663.
    Yadav J S, Satheesh Babu R, Sabitha G. Stereoselective total synthesis of (+)-artemisinin [J]. Tetrahedron Letters,2003,44(2):387-389.
    Yang Z N, Peng Q C, Luo S Q et al. Central properties of the metabolites of houttuynia cordata thunb.populations from different altitudes in Guizhou [J]. Chinese Food Science,2010,31(16): 261-269.
    Yang Z.S, Zhou W.L, Sui Y, et al. Synthesis and immunosuppressive activity of new artemisinin derivatives [J]. Journal Medicial Chemistry,2005,48 (14):4608-4617.
    Yao H Y, He Z L, Huang C Y. Phospholipid fatty acid profiles of Chinese red soils with varying fertility levels and land use histories [J]. Pedosphere,2001,11(2):97-103.
    Zelles L. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterization of microbial communities in soil:A review [J]. Biology and Fertility of Soils,1999,29:111-129
    Zhang W J, Rui W Y, Tu C,et al. Responses of soil microbial community structure and diversity to agricultural deintensification[J]. Pedosphere,2005,15(4):440-447.
    Zheng W, Wang S Y. Antioxidant activity and phenolic compounds in selected herbs[J]. Journal Agriculture and Food Chemistry 2001,49:5165-5170.
    Zhu C Y, Cook S P. A concise synthesis of (+)-artemisinin [J]. Journal of the American Chemical Society,2012,134:13577-13579.
    Zogg G P, Zak D R, Ringelberg D B, et al. Compositional and functional shifts in microbial communities because of soil warming [J]. Soil Science Society of America Journal,1997,61: 475-481.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700