用户名: 密码: 验证码:
真核生物AU-rich元件结合蛋白HuR和GAPDH3的结构功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、人源mRNA稳定蛋白HuR的结构与功能研究
     哺乳动物细胞中,mRNA的降解受到精确调控,这一调控机制需要顺式作用元件和反式作用因子的相互作用。其中研究得最详细的顺式作用元件是位于mRNA3'-非编码区的富含AU序列的元件(ARE)。这一序列元件最显著的一个特征就是具有数目和分布不等的AUUUA五联体核苷酸。目前已经鉴定出二十多种结合ARE的蛋白,包括本篇论文的研究对象HuR(human antigen R)。HuR蛋白属于脊椎动物Hu家族成员,该家族蛋白还包括HuB、HuC和HuD。HuR分子量约为36kDa,它的表达不具有组织特异性。这个蛋白含有三个RNA识别基序(RRM),其中N端两个串联的RRM结构域(RRM1/2)可以以高亲和力结合ARE,而位于C端的第三个RRM结构域则可以结合poly (A)尾巴和其他的蛋白配体。HuR被认作是一个关键的转录后调节蛋白而受到越来越多的关注。小角散射实验(SAXS)结果显示HuR的构象在结合底物RNA前后发生了很大的变化。但迄今为止还没有晶体结构从细节上验证这一结果。故研究HuRRRM1/2识别底物RNA的分子机制具有其实际意义。
     本论文中,我们解析了HuR RRM1/2无底物状态时的晶体结构。该结构呈现一种开放的构象,两个RRM结构域之间不存在任何相互作用。突变实验证实HuR RRM1/2与其他RRM结构域一样也是通过它的p片结合RNA的。我们同时也解析了HuR RRM1/2结合11个碱基RNA (5'-AUUUUUAUUUU-3')复合物的晶体结构。该复合物的结构则是一种闭合的状态。RRM1/2通过一个碱性的沟槽结合底物RNA。荧光偏振实验结果显示RRM1是最主要的RNA结合结构域。通过结合自由能分析以及荧光偏振的实验结果分析,我们得出这样的推论,RRM1首先结合了底物RNA,随之HuR RRM1/2构象发生巨大变化,这样的变化使得RRM2和RRM1/2之间的linker提供更多的与RNA结合的接触面积,以此大大增强了HuR与RNA的亲和力。
     二、酿酒酵母甘油醛-3-磷酸脱氢酶3(GAPDH3)的结构与功能研究
     糖酵解途径是细胞产生ATP的重要方式。甘油醛-3-磷酸脱氢酶(GAPDH, EC:1.2.1.12)是糖酵解过程中一个关键的酶。在无机磷酸和辅因子NAD+存在时,GAPDH将底物甘油醛-3-磷酸(GAP)转化成1,3-二磷酸甘油酸。GAPDH的分子量约为37kDa,主要存在于细胞质中,也可以在不同细胞器之间穿梭。近些年来越来越多的实验证据显示GAPDH具有多种糖酵解过程外的功能。例如:DNA损伤修复、细胞凋亡、膜融合、tRNA转运以及mRNA稳定性调节等。已经有多个物种的GAPDH的晶体结构得到解析,但是关于GAPDH识别RNA的分子机制还不是很清楚。酿酒酵母中一共存在三个异构体形式的GAPDH: GAPDH1、GAPDH2和GAPDH3。之前的研究表明酵母中只有碱性最强的异构体(GAPDH1)具有结合poly(U)的能力。但是我们通过荧光偏振实验显示其中偏酸性的异构体GAPDH3也具有结合RNA的能力。
     为了研究GAPDH3结合RNA的分子机制,我们解析了GAPDH3的晶体结构。酿酒酵母的GAPDH3与其他物种的GAPDH具有十分相似的总体结构:NAD+结合结构域(氨基酸残基1-149)和催化结构域(氨基酸残基150-332).溶液状态下GAPDH3以同源四聚体的形式存在。酶活实验结果显示,GAPDH3对于NAD-的表观米氏常数约为682μM。荧光偏振实验结果表明GAPDH3可以结合mRNA (5'-AUUUAUUUAUUUA-3'),其解离常数Kd约为18μM。辅因子NAD+可以抑制其RNA结合能力且这种抑制作用呈浓度依赖型。关于GAPDH3结合RNA的分子机制的进一步研究正在进行中。
Part I. The structural and functional research of human mRNA binding protein HuR
     In mammalian cells, mRNA decay requires exquisite regulation of specific cis-regulatiory sequences and trans-acting factors. Adenylate-and uridylate-rich elements (ARES) which are located in3'-untranslated regions (UTR) are the most well studied cis-regulatory element responsible for mRNA degration. The significant feature of ARE is the presence of AUUUA pentamer. Among scores of ARE-binding proteins, Hu antigen R (HuR) is the best characterizaed mRNA decay factor. HuR, one member of Hu family (the other ones are HuB, HuC and HuD), is a ubiquitously expressed-36kDa protein. It contains three RNA recognition motifs (RRM). The N-terminal tandem RRM domains (RRM1/2) recognize ARE with high affinity while the third RRM (RRM3) interacts with poly (A) and other protein ligands. HuR has been implicated as a key posttranscriptional regulator. Previous small-angle x-ray scattering (SAXS) studies on HuR suggest that the conformation of HuR RRM1/2changes when binding to RNA. However the structural details are still unclear since the lack of comparable crystal structures of HuR RRM1/2. Therefore, it is important to investigate the structure-function relationship of HuR RRM1/2.
     The thesis presents the structural basis for ARE recognition by HuR RRM1/2. We determined the crystal structure of HuR RRM1/2in RNA-free form, revealing an open conformation with no interactions between two RRM domains. Mutagenesis analysis showed that HuR RRM1/2binds to mRNA through its β-sheets. We also solved the crystal structure of HuR RRM1/2complexed with11-base mRNA (5'-AUUUUUAUUUU-3'). This structure presents a closed state compared to the RNA-free form. HuR RRM1/2binds this target RNA via its positively charged cleft. Fluorescence polarization assays (FPA) indicate that RRM1is the primary ARE-binding domain in HuR. Combined with the results of free energy analysis, we speculate that HuR RRM1/2undergoes dramatical conformational changes during RNA binding process. And this conformational changes induce subsequent contacts between RRM2and inter-domain linker with RNA, increasing the RNA binding affinity of HuR greatly.
     Part Ⅱ. The structural and functional research of glyceraldehyde-3-phosphate dehydrogenase3(GAPDH3) from Saccharomyces cerevisiae
     The enzyme glyceraldehydes-3-phosphate dehydrogenase (GAPDH, EC:1.2.1.12) is one of the essential enzyme in the glycolytic pathway which is the primary pathway in the cells responsible for the production of ATP. GAPDH catalyzes the sixth step reaction which is the oxidative phosphorylation of glyceraldehydes-3-phosphate (GAP) to1,3-bisphosphoglycerate (BPG) using the cofactor NAD+. GAPDH is a ubiquitous enzyme of~37kDa that is located prominently in the cytoplasm and can shuttle between other compartments. Although GAPDH is originally thought of as a housekeeping enzyme and an important enzyme for glycolysis specially, numerous studies have described a range of new functions for this protein. These diverse roles include DNA repair, cell apoptosis, membrane fusion, tRNA export and mRNA stability regulation. A lot of GAPDH structures from different specises have been solved, however, the RN A recognition mechanism of GAPDH remains unclear. There are three isoforms of GAPDH in Saccharomyces cerevisiae:GAPDH1, GAPDH2and GAPDH3. Previous studies reported that only the most basic isoform of yeast GAPDH (GAPDH1) could bind poly (U). However, we showed that a less basic one (GAPDH3) also possesses poly (U) binding capacity using fluorescence polarization assays (FPA).
     To explore the recognition mechanism how GAPDH3binds to RNA, we determined the crystal structure of yeast GAPDH3. The overall structure of GAPDH3is similar to GAPDHs of other species and is composed of two domains:the NAD+binding domain (residues1-149) and the catalytic domain (residues150-332). GAPDH3presents as a homotetramer in solution. Enzymatic activity studies of GAPDH3showed that the apparentKNAD+is about682μM which is a little higher than the values reported for the homolgous GAPDHs. The results of FPA showed that GAPDH3can bind to mRNA (5'-AUUUAUUUAUUUA-3') with a Kd value about18μM. FPA assays also indicated that the RNA binding activity of GAPDH3is inhibited by NAD+in a concentration-dependent manner. Further studies on the RNA recognition mechanism is currently in progress.
引文
Abdelmohsen, K., Pullmann, R., Lai, A., et al. (2007). Phosphorylation of HuR by Chk2 regulates SIRT1 expression. Mol Cell,25,543-557.
    Andrade, J., Pearce, ST., Zhao, H., et al. (2004). Interactions among p22, glyceraldehyde-3-phosphate dehydrogenase and microtubules. Biochem J,384,327-336.
    Azam, S., Jouvet, N., Jilani, A., et al. (2008). Human Glyceraldehyde-3-phosphate Dehydrogenase Plays a Direct Role in Reactivating Oxidized Forms of the DNA Repair Enzyme APE1. J Biol Chem,283,30632-30641.
    Baba, T., Kobayashi, H., Kawasaki, H., et al. (2010). Glyceraldehyde-3-phosphate dehydrogenase interacts with phosphorylated Akt resulting from increased blood glucose in rat cardiac muscle. Febs Lett,584,2796-2800.
    Bae, B.I., Hara, M.R., Cascio, M.B., et al. (2006). Mutant huntingtin:nuclear translocation and cytotoxicity mediated by GAPDH. Proc Natl Acad Sci U S A,103,3405-3409.
    Barreau, C., Paillard, L.& Osborne, H.B. (2005). AU-rich elements and associated factors:are there unifying principles? Nucleic Acids Res,33,7138-7150.
    Benoit, R.M., Meisner, N.C., Kallen, J., et al. (2010). The X-ray Crystal Structure of the First RNA Recognition Motif and Site-Directed Mutagenesis Suggest a Possible HuR Redox Sensing Mechanism. J Mol Biol,397,1231-1244.
    Bhalla, A.D., Gudikote, J.P., Wang, J., et al. (2009). Nonsense codons trigger an RNA partitioning shift. J Biol Chem,284,4062-4072.
    Bonafe, N., Gilmore-Hebert, M., Folk, N.L., et al. (2005). Glyceraldehyde-3-phosphate dehydrogenase binds to the AU-rich 3'untranslated region of colony-stimulating factor-1 (CSF-1) messenger RNA in human ovarian cancer cells:Possible role in CSF-1 posttranscriptional regulation and tumor phenotype. Cancer Res,65,3762-3771.
    Bracken, C.P., Szubert, J.M., Mercer, T.R., et al. (2011). Global analysis of the mammalian RNA degradome reveals widespread miRNA-dependent and miRNA-independent endonucleolytic cleavage. Nucleic Acids Res,39,5658-5668.
    Brengues, M., Teixeira, D.& Parker, R. (2005). Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies. Science,310,486-489.
    Brennan, C.M., Gallouzi, I.E.& Steitz, J.A. (2000). Protein ligands to HuR modulate its interaction with target mRNAs in vivo. J Cell Biol,151,1-13.
    Brown, V.M., Krynetski, E.Y., Krynetskaia, N.F., et al. (2004). A novel CRM1-mediated nuclear export signal governs nuclear accumulation of glyceraldehyde-3-phosphate dehydrogenase following genotoxic stress. J Biol Chem,279,5984-5992.
    Burke, J.R., Enghild, J.J., Martin, M.E., et al. (1996). Huntingtin and DRPLA proteins selectively interact with the enzyme GAPDH. Nat Med,2,347-350.
    Campanella, M.E., Chu, H.& Low, P.S. (2005). Assembly and regulation of a glycolytic enzyme complex on the human erythrocyte membrane. Proc Natl Acad Sci U S A,102,2402-2407.
    Carlile, G.W., Tatton, W.G.& Borden, K.L.B. (1998). Demonstration of a RNA-dependent nuclear interaction between the promyelocytic leukaemia protein and glyceraldehyde-3-phosphate dehydrogenase. Biochem J,335,691-696.
    Carujo, S., Estanyol, J.M., Ejarque, A., et al. (2006). Glyceraldehyde 3-phosphate dehydrogenase is a SET-binding protein and regulates cyclin B-cdk1 activity. Oncogene,25,4033-4042.
    Chae, M.J., Sung, H.Y., Kim, E.H., et al. (2009). Chemical inhibitors destabilize HuR binding to the AU-rich element of TNF-alpha mRNA. Exp Mol Med,41,824-831.
    Chang, N., Yi, J., Guo, G.E., et al. (2010). HuR Uses AUF1 as a Cofactor To Promote p16(INK4) mRNA Decay. Mol Cell Biol,30,3875-3886.
    Chang, Y.F., Imam, J.S.& Wilkinson, M.E. (2007). The nonsense-mediated decay RNA surveillance pathway. Annu Rev Biochem,76,51-74.
    Chen, C.Y.& Shyu, A.B. (1995). AU-rich elements:characterization and importance in mRNA degradation. Trends Biochem Sci,20,465-470.
    Chen, R.W., Saunders, P. A., Wei, H.F., et al. (1999). Involvement of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and p53 in neuronal apoptosis:Evidence that GAPDH is upregulated by p53. J Neurosci,19,9654-9662.
    Chiu, S.Y., Serin, G., Ohara, O., et al. (2003). Characterization of human Smg5/7a:A protein with similarities to Caenorhabditis elegans SMG5 and SMG7 that functions in the dephosphorylation of Upfl. Rna,9,77-87.
    Choi, Y.B., Tenneti, L., Le, D.A., et al. (2000). Molecular basis of NMDA receptor-coupled ion channel modulation by S-nitrosylation. Nat Neurosci,3,15-21.
    Chuang, D.M., Hough, C.& Senatorov, V.V. (2005). Glyceraldehyde-3-phosphate dehydrogenase, apoptosis and neurodegenerative diseases. Annu Rev Pharmacol,45,269-+.
    Clery, A., Blatter, M.& Allain, F.H.T. (2008). RNA recognition motifs:boring? Not quite. Curr Opin Struc Biol,18,290-298.
    Colell, A., Ricci, J.E., Tait, S., et al. (2007). GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation (vol 129, pg 983, 2007). Cell,130,385-385.
    Costantino, C.L., Witkiewicz, A.K., Kuwano, Y, et al. (2009). The Role of HuR in Gemcitabine Efficacy in Pancreatic Cancer:HuR Up-regulates the Expression of the Gemcitabine Metabolizing Enzyme Deoxycytidine Kinase. Cancer Res,69,4567-4572.
    Crowder, S.M., Kanaar, R., Rio, D.C., et al. (1999). Absence of interdomain contacts in the crystal structure of the RNA recognition motifs of Sex-lethal. Proc Natl Acad Sci U S A, 96,4892-4897.
    Cumming, R.C.& Schubert, D. (2005). Amyloid-beta induces disulfide bonding and aggregation of GAPDH in Alzheimer's disease. Faseb J,19,2060-2062.
    Dai, R.P., Yu, F.X., Goh, S.R., et al. (2008). Histone 2B (H2B) expression is confined to a proper NAD(+)/NADH redox status. J Biol Chem,283,26894-26901.
    Dastoor, Z.& Dreyer, J.L. (2001). Potential role of nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase in apoptosis and oxidative stress. J Cell Sci, 114,1643-1653.
    David, P.S., Tanveer, R.& Port, J.D. (2007). FRET-detectable interactions between the ARE binding proteins, HuR and p37AUF1. Rna,13,1453-1468.
    de Silanes, I.L., Fan, J.S., Yang, X.L., et al. (2003). Role of the RNA-binding protein HuR in colon carcinogenesis. Oncogene,22,7146-7154.
    Demarse, N.A., Ponnusamy, S., Spicer, E.K., et al. (2009). Direct Binding of Glyceraldehyde 3-Phosphate Dehydrogenase to Telomeric DNA Protects Telomeres against Chemotherapy-Induced Rapid Degradation. J Mol Biol,394,789-803.
    Diaz-Moreno, I., Hollingworth, D., Kelly, G., et al. (2010). Orientation of the central domains of KSRP and its implications for the interaction with the RNA targets. Nucleic Acids Res, 38,5193-5205.
    Dixon, D.A., Tolley, N.D., King, PH., et al. (2001). Altered expression of the mRNA stability factor HuR promotes cyclooxygenase-2 expression in colon cancer cells. J Clin Invest, 108,1657-1665.
    Doller, A., Akool, E.S., Huwiler, A., et al. (2008). Posttranslational modification of the AU-Rich element binding protein HuR by protein kinase C delta elicits angiotensin Ⅱ-induced stabilization and nuclear export of clooxygenase 2 mRNA. Mol Cell Biol,28,2608-2625.
    Doller, A., Huwiler, A., Muller, R., et al. (2007). Protein kinase C alpha-dependent phosphorylation of the mRNA-stabilizing factor HuR:Implications for posttranscriptional regulation of cyclooxygenase-2. Mol Biol Cell,18,2137-2148.
    Du, X.L., Matsumura, T., Edelstein, D., et al. (2003). Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J Clin Invest,112,1049-1057.
    Duee, E., Olivier-Deyris, L., Fanchon, E., et al. (1996). Comparison of the structures of wild-type and a N313T mutant of Escherichia coli glyceraldehyde 3-phosphate dehydrogenases: implication for NAD binding and cooperativity. J Mol Biol,257,814-838.
    Emsley, P.& Cowtan, K. (2004). Coot:model-building tools for molecular graphics. Acta Crystallogr D,60,2126-2132.
    Fan, X.H.C.& Steitz, J.A. (1998). Overexpression of HuR, a nuclear-cytoplasmic shuttling protein, increases the in vivo stability of ARE-containing mRNAs. Embo J,17,3448-3460.
    Foster, M.W., Hess, D.T.& Stamler, J.S. (2009). Protein S-nitrosylation in health and disease:a current perspective. Trends Mol Med,15,391-404.
    Frischmeyer, P.A., van Hoof, A., O'Donnell, K., et al. (2002). An mRNA surveillance mechanism that eliminates transcripts lacking termination codons. Science,295,2258-2261.
    Fujimura, K.,Kano. F.& Murata, M. (2008). Dual localization of the RNA binding protein CUGBP-1 to stress granule and perinucleolar compartment. Exp Cell Res,314,543-553.
    Fukao, A., Sasano, Y., Imataka, H., et al. (2009). The ELAV Protein HuD Stimulates Cap-Dependent Translation in a Poly(A)- and elF4A-Dependent Manner. Mol Cell, 36,1007-1017.
    Funakoshi, Y., Doi, Y., Hosoda, N., et al. (2007). Mechanism of mRNA deadenylation:evidence for a molecular interplay between translation termination factor eRF3 and mRNA deadenylases. Gene Dev,21,3135-3148.
    Gallouzi, I.E., Brennan, C.M., Stenberg, M.G., et al. (2000). HuR binding to cytoplasmic mRNA is perturbed by heat shock. P Natl Acad Sci USA,97,3073-3078.
    Gareau, C., Fournier, M.J., Filion, C., et al. (2011). p21(WAF1/CIP1) Upregulation through the Stress Granule-Associated Protein CUGBP1 Confers Resistance to Bortezomib-Mediated Apoptosis. Plos One,6.
    Garneau, N.L., Wilusz, J.& Wilusz, C.J. (2007). The highways and byways of mRNA decay. Nat Rev Mol Cell Biol,8,113-126.
    Gherzi, R., Lee, K.Y., Briata, P., et al. (2004). A KH domain RNA binding protein, KSRP, promotes ARE-directed mRNA turnover by recruiting the degradation machinery. Mol Cell,14,571-583.
    Good, P.J. (1995). A Conserved Family of Elav-Like Genes in Vertebrates. P Natl Acad Sci USA, 92,4557-4561.
    Graille, M., Chaillet, M.& van Tilbeurgh, H. (2008). Structure of yeast Dom34-A protein related to translation termination factor eRFl and involved in No-Go decay. J Biol Chem, 283,7145-7154.
    Gratacos, F.M.& Brewer, G. (2010). The role of AUF1 in regulated mRNA decay. Wires Rna, 1,457-473.
    Graven, K.K., Troxler, R.F., Kornfeld, H., et al. (1994). Regulation of Endothelial-Cell Glyceraldehyde-3-Phosphate Dehydrogenase Expression by Hypoxia. J Biol Chem, 269,24446-24453.
    Halees, A.S., El-Badrawi, R.& Khabar, K.S.A. (2008). ARED Organism:expansion of ARED reveals AU-rich element cluster variations between human and mouse. Nucleic Acids Res, 36,D137-D140.
    Halees, A.S., Hitti, E., Al-Saif, M., et al. (2011). Global assessment of GU-rich regulatory content and function in the human transcriptome. Rna Biol,8,681-691.
    Handa, N., Nureki, O., Kurimoto, K., et al. (1999). Structural basis for recognition of the tra mRNA precursor by the sex-lethal protein. Nature,398,579-585.
    Hara, M.R., Agrawal, N., Kim, S.F., et al. (2005). S-nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siahl binding. Nat Cell Biol,7,665-U640.
    Hara, M.R., Thomas, B., Cascio, M.B., et al. (2006). Neuroprotection by pharmacologic blockade of the GAPDH death cascade. Proc Natl Acad Sci U S A,103,3887-3889.
    Harada, N., Yasunaga, R., Higashimura, Y., et al. (2007). Glyceraldehyde-3-phosphate dehydrogenase enhances transcriptional activity of androgen receptor in prostate cancer cells. J Biol Chem,282,22651-22661.
    Houseley, J., LaCava, J.& Tollervey, D. (2006). RNA-quality control by the exosome. Nat Rev Mol Cell Bio,7,529-539.
    Houseley, J.& Tollervey, D. (2009). The Many Pathways of RNA Degradation. Cell,136,763-776.
    Huang, J.S., Hao, L.J., Xiong, N., et al. (2009). Involvement of glyceraldehyde-3-phosphate dehydrogenase in rotenone-induced cell apoptosis:Relevance to protein misfolding and aggregation. Brain Res,1279,1-8.
    Hui, J.Y., Reither, G.& Bindereif, A. (2003). Novel functional role of CA repeats and hnRNP L in RNA stability. Rna,9,931-936.
    Hwang, J.& Maquat, L.E. (2011). Nonsense-mediated mRNA decay (NMD) in animal embryogenesis:to die or not to die, that is the question. Curr Opin Genet Dev, 21,422-430.
    Ishimaru, D., Ramalingam, S., Sengupta, T.K., et al. (2009). Regulation of Bcl-2 Expression by HuR in HL60 Leukemia Cells and A431 Carcinoma Cells. Mol Cancer Res,7,1354-1366.
    Ishitani, R.& Chuang, D.M. (1996). Glyceraldehyde-3-phosphate dehydrogenase antisense oligodeoxynucleotides protect against cytosine arabinonucleoside-induced apoptosis in cultured cerebellar neurons. P Natl Acad Sci USA,93,9937-9941.
    Ishitani, R., Kimura, M., Sunaga, K., et al. (1996a). An antisense oligodeoxynucleotide to glyceraldehyde-3-phosphate dehydrogenase blocks age-induced apoptosis of mature cerebrocortical neurons in culture. J Pharmacol Exp Ther,278,447-454.
    Ishitani, R., Sunaga, K., Hirano, A., et al. (1996b). Evidence that glyceraldehyde-3-phosphate dehydrogenase is involved in age-induced apoptosis in mature cerebellar neurons in culture. J Neurochem,66,928-935.
    Ishitani, R., Tanaka, M., Sunaga, K., et al. (1998). Nuclear localization of overexpressed glyceraldehyde-3-phosphate dehydrogenase in cultured cerebellar neurons undergoing apoptosis. Mol Pharmacol,53,701-707.
    Isken, O.& Maquat, L.E. (2007). Quality control of eukaryotic mRNA:safeguarding cells from abnormal mRNA function. Gene Dev,21,1833-1856.
    Jafarifar, F., Yao, P., Eswarappa, S.M., et al. (2011). Repression of VEGFA by CA-rich element-binding microRNAs is modulated by hnRNP L. Embo J,30,1324-1334.
    Jang, B.C., Munoz-Najar, U., Paik, J.H., et al. (2003). Leptomycin B, an inhibitor of the nuclear export receptor CRM1, inhibits COX-2 expression. J Biol Chem,278,2773-2776.
    Jang, M., Kang, H.J., Lee, S.Y., et al. (2009). Glyceraldehyde-3-phosphate, a glycolytic intermediate, plays a key role in controlling cell fate via inhibition of caspase activity. Mol Cells,28,559-563.
    Kakuguchi, W., Kitamura, T., Kuroshima, T., et al. (2010). HuR Knockdown Changes the Oncogenic Potential of Oral Cancer Cells. Mol Cancer Res,8,520-528.
    Kandasamy, K., Joseph, K., Subramaniam, K., et al. (2005). Translational control of beta(2)-adrenergic receptor mRNA by T-cell-restricted intracellular antigen-related protein. J Biol Chem,280,1931-1943.
    Karpel, R.L.& Burchard, A.C. (1981). A basic isozyme of yeast glyceraldehyde-3-phosphate dehydrogenase with nucleic acid helix-destabilizing activity. Biochim Biophys Acta, 654,256-267.
    Kawai, T., Lal, A., Yang, X.L., et al. (2006). Translational control of cytochrome c by RNA-binding proteins TIA-1 and HuR. Mol Cell Biol,26,3295-3307.
    Kedersha, N., Stoecklin, G., Ayodele, M., et al. (2005a). Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J Cell Biol,169,871-884.
    Kedersha, N., Stoecklin, G., Ayodele, M., et al. (2005b). Stress granules and processing bodies are dynamically linked sites of mRNP remodeling (vol 169, pg 871,2005). J Cell Biol, 170,847-847.
    Keene, J.D.& Tenenbaum, S.A. (2002). Eukaryotic mRNPs may represent posttranscriptional operons. Mol Cell,9,1161-1167.
    Kim, C.I., Lee, S.H., Seong, G.J., et al. (2006). Nuclear translocation and overexpression of GAPDH by the hyper-pressure in retinal ganglion cell. Biochem Biophys Res Commun, 341,1237-1243.
    Kim, H.S., Wilce, M.C.J., Yoga, Y.M.K., et al. (2011). Different modes of interaction by TIAR and HuR with target RNA and DNA. Nucleic Acids Res,39,1117-1130.
    Koshy, B., Matilla, T., Burright, E.N., et al. (1996). Spinocerebellar ataxia type-1 and spinobulbar muscular atrophy gene products interact with glyceraldehyde-3-phosphate dehydrogenase. Hum Mol Genet,5,1311-1318.
    Kusner, L.L., Sarthy, V.P.& Mohr, S. (2004). Nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase:a role in high glucose-induced apoptosis in retinal Muller cells. Invest Ophthalmol Vis Sci,45,1553-1561.
    Kuwano, Y., Kim, H.H., Abdelmohsen, K., et al. (2008). MKP-1 mRNA stabilization and translational control by RNA-Binding proteins HuR and NF90. Mol Cell Biol, 28,4562-4575.
    Lal, A., Mazan-Mamczarz, K., Kawai, T., et al. (2004). Concurrent versus individual binding of HuR and AUF1 to common labile target mRNAs. Embo J,23,3092-3102.
    Laschet, J.J., Minier, F., Kurcewicz, I., et al. (2004). Glyceraldehyde-3-phosphate dehydrogenase is a GABA(A) receptor kinase linking glycolysis to neuronal inhibition. J Neurosci, 24,7614-7622.
    Laskowski, R.A., Rullmann, J.A.C., MacArthur, M.W., et al. (1996). AQUA and PROCHECK-NMR:Programs for checking the quality of protein structures solved by NMR. J Biomol Nmr,8,477-486.
    Lazarova, D.L., Spengler, B.A., Biedler, J.L., et al. (1999). HuD, a neuronal-specific RNA-binding protein, is a putative regulator of N-myc pre-mRNA processing/stability in malignant human neuroblasts. Oncogene,18,2703-2710.
    Lee, M.N., Ha, S.H., Kim, J., et al. (2009). Glycolytic Flux Signals to mTOR through Glyceraldehyde-3-Phosphate Dehydrogenase-Mediated Regulation of Rheb. Mol Cell Biol,29,3991-4001.
    Lejeune, F., Ranganathan, A.C.& Maquat, L.E. (2004). eIF4G is required for the pioneer round of translation in mammalian cells. Nat Struct Mol Biol,11,992-1000.
    Liao, B.S., Hu, Y.& Brewer, G. (2007). Competitive binding of AUF1 and TIAR to MYC mRNA controls its translation. Nat Struct Mol Biol,14,511-518.
    Lin, E.Y., Nguyen, A.V., Russell, R.G., et al. (2001). Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med,193,727-739.
    Lipton, S.A., Choi, Y.B., Takahashi, H., et al. (2002). Cysteine regulation of protein function-as exemplified by NMDA-receptor modulation. Trends Neurosci,25,474-480.
    Liu, H.D., Rodgers, N.D., Jiao, X., et al. (2002). The scavenger mRNA decapping enzyme DcpS is a member of the HIT family of pyrophosphatases. Embo J,21,4699-4708.
    Loflin, P., Chen, C.Y.A.& Shyu, A.B. (1999). Unraveling a cytoplasmic role for hnRNP D in the in vivo mRNA destabilization directed by the AU-rich element. Gene Dev,13,1884-1897.
    Ma, W.J.& Furneaux, H. (1997). Localization of the human HuR gene to chromosome 19p13.2. Hum Genet,99,32-33.
    Maitra, S., Chou, C.F., Luber, C.A., et al. (2008). The AU-rich element mRNA decay-promoting activity of BRF1 is regulated by mitogen-activated protein kinase-activated protein kinase 2. Rna,14,950-959.
    Mandel, S., Weinreb, O., Amit, T., et al. (2005). Mechanism of neuroprotective action of the anti-Parkinson drug rasagiline and its derivatives. Brain Res Brain Res Rev,48,379-387.
    Mansur, N.R., Meyersiegler, K., Wurzer, J.C., et al. (1993). Cell-Cycle Regulation of the Glyceraldehyde-3-Phosphate Dehydrogenase/Uracil DNA Glycosylase Gene in Normal Human-Cells. Nucleic Acids Res,21,993-998.
    Maquat, L.E., Tarn, W.Y.& Isken, O. (2010). The Pioneer Round of Translation:Features and Functions. Cell,142,368-374.
    Maruyama, W., Oya-Ito, T., Shamoto-Nagai, M., et al. (2002). Glyceraldehyde-3-phospate dehydrogenase is translocated into nuclei through Golgi apparatus during apoptosis induced by 6-hydroxydopamine in human dopaminergic SH-SY5Y cells. Neurosci Lett, 321,29-32.
    Masuda, K., Abdelmohsen, K., Kim, M.M., et al. (2011). Global dissociation of HuR-mRNA complexes promotes cell survival after ionizing radiation. Embo J,30,1040-1053.
    Matsushita, K., Takeuchi, O., Standley, D.M., et al. (2009). Zc3h12a is an RNase essential for controlling immune responses by regulating mRNA decay. Nature,458,1185-U1124.
    Mazzola, J.L.& Sirover, M.A. (2002). Alteration of nuclear glyceraldehyde-3-phosphate dehydrogenase structure in Huntington's disease fibroblasts. Brain Res Mol Brain Res, 100,95-101.
    Mazzola, J.L.& Sirover, M.A. (2003). Subcellular alteration of glyceraldehyde-3-phosphate dehydrogenase in Alzheimer's disease fibroblasts. J Neurosci Res,71,279-285.
    Mitsuzawa, H., Kimura, M., Kanda, E., et al. (2005). Glyceraldehyde-3-phosphate dehydrogenase and actin associate with RNA polymerase II and interact with its Rpb7 subunit. Febs Lett, 579,48-52.
    Mukherjee, S., Dutta, D., Saha, B., et al. (2010). Crystal Structure of Glyceraldehyde-3-Phosphate Dehydrogenase 1 from Methicillin-Resistant Staphylococcus aureus MRSA252 Provides Novel Insights into Substrate Binding and Catalytic Mechanism. J Mol Biol, 401,949-968.
    Murshudov, G.N., Vagin, A.A.& Dodson, E.J. (1997). Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D,53,240-255.
    Nagy, E., Henics, T., Eckert, M., et al. (2000). Identification of the NAD(+)-binding fold of glyceraldehyde-3-phosphate dehydrogenase as a novel RNA-binding domain. Biochem Bioph Res Co,275,253-260.
    Nagy, E.& Rigby, W.F.C. (1995). Glyceraldehyde-3-Phosphate Dehydrogenase Selectively Binds Au-Rich Rna in the Nad(+)-Binding Region (Rossmann Fold). J Biol Chem, 270,2755-2763.
    Nakajima, H., Amano, W., Fujita, A., et al. (2007). The active site cysteine of the proapoptotic protein glyceraldehyde-3-phosphate dehydrogenase is essential in oxidative stress-induced aggregation and cell death. J Biol Chem,282.
    Nakajima, H., Amano, W., Kubo, T., et al. (2009). Glyceraldehyde-3-phosphate Dehydrogenase Aggregate Formation Participates in Oxidative Stress-induced Cell Death. J Biol Chem, 284,34331-34341.
    Olanow, C.W. (2006). Rationale for considering that propargylamines might be neuroprotective in Parkinson's disease. Neurology,66,S69-79.
    Osley, M.A.& Hereford, L.M. (1981). Yeast Histone Genes Show Dosage Compensation. Cell, 24,377-384.
    Ostareck-Lederer, A., Ostareck, D.H., Cans, C, et al. (2002). c-Src-mediated phosphorylation of hnRNP K drives translational activation of specifically silenced mRNAs. Mol Cell Biol, 22,4535-4543.
    Otwinowski, Z.& Minor, W. (1997). Processing of X-ray diffraction data collected in oscillation mode. Method Enzymol,276,307-326.
    Pan, Y.X., Chen, H.& Kilberg, M.S. (2005). Interaction of RNA-binding proteins HuR and AUF1 with the human ATF3 mRNA 3'-untranslated region regulates its amino acid limitation-induced stabilization. J Biol Chem,280,34609-34616.
    Park, J., Han, D., Kim, K., et al. (2009). O-GlcNAcylation disrupts glyceraldehyde-3-phosphate dehydrogenase homo-tetramer formation and mediates its nuclear translocation. Biochim Biophys Acta,1794,254-262.
    Park, S.M., Myszka, D.G., Yu, M., et al. (2000). HuD RNA recognition motifs play distinct roles in the formation of a stable complex with AU-rich RNA. Mol Cell Biol,20,4765-4772.
    Parker, R.& Sheth, U. (2007). P bodies and the control of mRNA translation and degradation. Mol Cell,25,635-646.
    Paterson, I. A.& Tatton, W.G. (1998). Antiapoptotic actions of monoamine oxidase B inhibitors. Adv Pharmacol,42,312-315.
    Peng, S.S.Y., Chen, C.Y.A., Xu, N.H., et al. (1998). RNA stabilization by the AU-rich element binding protein, HuR, an ELAV protein. Embo J,17,3461-3470.
    Piecyk, M., Wax, S., Beck, A.R.P., et al. (2000). TIA-1 is a translational silencer that selectively regulates the expression of TNF-alpha. Embo J,19,4154-4163.
    Pisarev, A.V., Hellen, C.U.T.& Pestova, T.V. (2007). Recycling of eukaryotic posttermination ribosomal complexes. Cell,131,286-299.
    Pullmann, R., Kim, H.H., Abdelmohsen, K., et al. (2007). Analysis of turnover and translation regulatory RNA-Binding protein expression through binding to cognate mRNAs. Mol Cell Biol,27,6265-6278.
    Raje, C.I., Kumar, S., Harle, A., et al. (2007). The macrophage cell surface glyceraldehyde-3-phosphate dehydrogenase is a novel transferrin receptor. J Biol Chem, 282,3252-3261.
    Ray, P.S., Jia, J., Yao, P., et al. (2009). A stress-responsive RNA switch regulates VEGFA expression. Nature,457,915-919.
    Reimann, I., Huth, A., Thiele, H., et al. (2002). Suppression of 15-lipoxygenase synthesis by hnRNP E1 is dependent on repetitive nature of LOX mRNA 3'-UTR control element DICE. J Mol Biol,315,965-974.
    Revillion, F., Pawlowski, V, Hornez, L., et al. (2000). Glyceraldehyde-3-phosphate dehydrogenase gene expression in human breast cancer. Eur J Cancer,36,1038-1042.
    Rodriguez-Pascual, F., Redondo-Horcajo, M., Magan-Marchal, N., et al. (2008). Glyceraldehyde-3-Phosphate Dehydrogenase Regulates Endothelin-1 Expression by a Novel, Redox-Sensitive Mechanism Involving mRNA Stability. Mol Cell Biol, 28,7139-7155.
    Ronai, Z. (1993). Glycolytic-Enzymes as DNA-Binding Proteins. Int J Biochem,25,1073-1076.
    Sarkar, B., Lu, J.Y.& Schneider, R.J. (2003). Nuclear import and export functions in the different isoforms of the AUF1/heterogeneous nuclear ribonucleoprotein protein family. J Biol Chem,278,20700-20707.
    Sawa, A., Khan, A.A., Hester, L.D., et al. (1997). Glyceraldehyde-3-phosphate dehydrogenase: nuclear translocation participates in neuronal and nonneuronal cell death. Proc Natl Acad Sci U S A,94,11669-11674.
    Sawicka, K., Bushell, M., Spriggs, K.A., et al. (2008). Polypyrimidine-tract-binding protein:a multifunctional RNA-binding protein. Biochem Soc T,36,641-647.
    Schek, N., Hall, B.L.& Finn, O.J. (1988). Increased Glyceraldehyde-3-Phosphate Dehydrogenase Gene-Expression in Human Pancreatic Adenocarcinoma. Cancer Res,48,6354-6359.
    Sen, N., Hara, M.R., Ahmad, A.S., et al. (2009). GOSPEL:A Neuroprotective Protein that Binds to GAPDH upon S-Nitrosylation (vol 63, pg 81,2009). Neuron,63,709-709.
    Sen, N., Hara, M.R., Kornberg, M.D., et al. (2008). Nitric oxide-induced nuclear GAPDH activates p300/CBP and mediates apoptosis. Nat Cell Biol,10,866-873.
    Sengupta, S., Jang, B.C., Wu, M.T., et al. (2003). The RNA-binding protein HuR regulates the expression of cyclooxygenase-2. J Biol Chem,278,25227-25233.
    Shashidharan, P., Chalmers-Redman, R.M.E., Carlile, G.W., et al. (1999). Nuclear translocation of GAPDH-GFP fusion protein during apoptosis. Neuroreport,10,1149-1153.
    Shi, L.F., Zhao, G.H., Qiu, D.M., et al. (2005). NF90 regulates cell cycle exit and terminal myogenic differentiation by direct binding to the 3'-untranslated region of MyoD and p21(WAF1/CIP1)mRNAs.J Biol Chem,280,18981-18989.
    Shim, J., Lim, H., Yates, J.R., et al. (2002). Nuclear export of NF90 is required for interleukin-2 mRNA stabilization. Mol Cell,10,1331-1344.
    Shiozawa, M., Fukutani, Y., Arai, N., et al. (2003). Glyceraldehyde 3-phosphate dehydrogenase and endothelin-1 immunoreactivity is associated with cerebral white matter damage in dentatorubral-pallidoluysian atrophy. Neuropathology,23,36-43.
    Singh, P., Salih, M., Leddy, J.J., et al. (2004). The muscle-specific calmodulin-dependent protein kinase assembles with the glycolytic enzyme complex at the sarcoplasmic reticulum and modulates the activity of glyceraldehyde-3-phosphate dehydrogenase in a Ca2+/calmodulin-dependent manner. J Biol Chem,279,35176-35182.
    Sirover, M.A. (1999). New insights into an old protein:the functional diversity of mammalian glyceraldehyde-3-phosphate dehydrogenase. Bba-Protein Struct M,1432,159-184.
    Skarzynski, T.& Wonacott, A.J. (1988). Coenzyme-induced conformational changes in glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus. J Mol Biol, 203,1097-1118.
    Storoni, L.C., McCoy, A.J.& Read, R.J. (2004). Likelihood-enhanced fast rotation functions. Acta Crystallogr D,60,432-438.
    Sunaga, K., Takahashi, H., Chuang, D.M., et al. (1995). Glyceraldehyde-3-Phosphate Dehydrogenase Is over-Expressed during Apoptotic Death of Neuronal Cultures and Is Recognized by a Monoclonal-Antibody against Amyloid Plaques from Alzheimers Brain. Neurosci Lett,200,133-136.
    Sundararaj, K.P., Wood, R.E., Ponnusamy, S., et al. (2004). Rapid shortening of telomere length in response to ceramide involves the inhibition of telomere binding activity of nuclear glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem,279,6152-6162.
    Sureban, S.M., Munnu, N., Rodriguez, P., et al. (2007). Functional antagonism between RNA binding proteins HuR and CUGBP2 determines the fate of COX-2 mRNA translation. Gastroenterology,132,1055-1065.
    Tabakman, R., Lecht, S.& Lazarovici, P. (2004). Neuroprotection by monoamine oxidase B inhibitors:a therapeutic strategy for Parkinson's disease? Bioessays,26,80-90.
    Tajima, H., Tsuchiya, K., Yamada, M., et al. (1999). Over-expression of GAPDH induces apoptosis in COS-7 cells transfected with cloned GAPDH cDNAs. Neuroreport, 10,2029-2033.
    Tanaka, R., Mochizuki, H., Suzuki, A., et al. (2002). Induction of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expression in rat brain after focal ischemia/reperfusion. J Cereb Blood Flow Metab,22,280-288.
    Tange, T.O., Shibuya, T., Jurica, M.S., et al. (2005). Biochemical analysis of the EJC reveals two new factors and a stable tetrameric protein core. Rna,11,1869-1883.
    Tarze, A., Deniaud, A., Le Bras, M., et al. (2007). GAPDH, a novel regulator of the pro-apoptotic mitochondrial membrane permeabilization. Oncogene,26,2606-2620.
    Tatton, N.A. (2000). Increased caspase 3 and Bax immunoreactivity accompany nuclear GAPDH translocation and neuronal apoptosis in Parkinson's disease. Exp Neurol,166,29-43.
    Tatton, W., Chalmers-Redman, R.& Tatton, N. (2003). Neuroprotection by deprenyl and other propargylamines:glyceraldehyde-3-phosphate dehydrogenase rather than monoamine oxidase B. J Neural Transm,110,509-515.
    Tenenbaum, S.A., Carson, C.C., Atasoy, U., et al. (2003). Genome-wide regulatory analysis using en masse nuclear run-ons and ribonomic profiling with autoimmune sera. Gene, 317,79-87.
    Tisdale, E.J.& Artalejo, C.R. (2007). A GAPDH mutant defective in Src-dependent tyrosine phosphorylation impedes Rab2-mediated events. Traffic,8,733-741.
    Tisdale, E.J., Kelly, C.& Artalejo, C.R. (2004). Glyceraldehyde-3-phosphate dehydrogenase interacts with Rab2 and plays an essential role in endoplasmic reticulum to Golgi transport exclusive of its glycolytic activity. J Biol Chem,279,54046-54052.
    Toba, G.& White, K. (2008). The third RNA recognition motif of Drosophila ELAV protein has a role in multimerization. Nucleic Acids Res,36,1390-1399.
    Tokunaga, K., Nakamura, Y, Sakata, K., et al. (1987). Enhanced Expression of a Glyceraldehyde-3-Phosphate Dehydrogenase Gene in Human-Lung Cancers. Cancer Res, 47,5616-5619.
    Tsuchiya, K., Tajima, H., Yamada, M., et al. (2004). Disclosure of a pro-apoptotic glyceraldehyde-3-phosphate dehydrogenase promoter:anti-dementia drugs depress its activation in apoptosis. Life Sci,74,3245-3258.
    Vagin, A.& Teplyakov, A. (1997). MOLREP:an automated program for molecular replacement. J Appl Crystallogr,30,1022-1025.
    van Hoof, A., Frischmeyer, P.A., Dietz, H.C., et al. (2002). Exosome-mediated recognition and degradation of mRNAs lacking a termination codon. Science,295,2262-2264.
    Vedia, L.M., Mcdonald, B., Reep, B., et al. (1992). Nitric Oxide-Induced S-Nitrosylation of Glyceraldehyde-3-Phosphate Dehydrogenase Inhibits Enzymatic-Activity and Increases Endogenous Adp-Ribosylation. J Biol Chem,267,24929-24932.
    Verdier, Y., Foldi, I., Sergeant, N., et al. (2008). Characterization of the interaction between Abeta 1-42 and glyceraldehyde phosphodehydrogenase. J Pept Sci,14,755-762.
    Vlasova, I.A.& Bohjanen, P.R. (2008). Posttranscriptional regulation of gene networks by GU-rich elements and CELF proteins. Rna Biol,5,201-207.
    Vlasova, I.A., Tahoe, N.M., Fan, D., et al. (2008). Conserved GU-rich elements mediate mRNA decay by binding to CUG-binding protein 1. Mol Cell,29,263-270.
    Vumbaca, F., Phoenix, K.N., Rodriguez-Pinto, D., et al. (2008). Double-stranded RNA-binding protein regulates vascular endothelial growth factor mRNA stability, translation, and breast cancer angiogenesis. Mol Cell Biol,28,772-783.
    Waldmeier, P.C., Boulton, A.A., Cools, A.R., et al. (2000). Neurorescuing effects of the GAPDH ligand CGP 3466B. J Neural Transm Suppl,197-214.
    Walter, T.S., Meier, C., Assenberg, R., et al. (2006). Lysine methylation as a routine rescue strategy for protein crystallization. Structure,14,1617-1622.
    Wang, W.G., Furneaux, H., Cheng, H.M., et al. (2000). HuR regulates p21 mRNA stabilization by UV light. Mol Cell Biol,20,760-769.
    Wang, X.Q.& Hall, T.M.T. (2001). Structural basis for recognition of AU-rich element RNA by the HuD protein. Nat Struct Biol,8,141-145.
    Wuttke, D.S., Foster, M.P., Case, D.A., et al. (1997). Solution structure of the first three zinc fingers of TFIIIA bound to the cognate DNA sequence:determinants of affinity and sequence specificity. J Mol Biol,273,183-206.
    Xing, C., LaPorte, J.R., Barbay, J.K., et al. (2004). Identification of GAPDH as a protein target of the saframycin antiproliferative agents. Proc Natl Acad Sci U S A,101,5862-5866.
    Yang, F., Peng, Y., Murray, E.L., et al. (2006a). Polysome-bound endonuclease PMR1 is targeted to stress granules via stress-specific binding to TIA-1. Mol Cell Biol,26,8803-8813.
    Yang, X.C., Purdy, M., Marzluff, W.F., et al. (2006b). Characterization of 3'hExo, a 3 exonuclease specifically interacting with the 3'end of histone mRNA. J Biol Chem. 281,30447-30454.
    Youdim, M.B., Maruyama, W.& Naoi, M. (2005). Neuropharmacological, neuroprotective and amyloid precursor processing properties of selective MAO-B inhibitor antiparkinsonian drug, rasagiline. Drugs Today (Bare),41,369-391.
    Young, L.E., Sanduja, S., Bemis-Standoli, K., et al. (2009). The mRNA Binding Proteins HuR and Tristetraprolin Regulate Cyclooxygenase 2 Expression During Colon Carcinogenesis. Gastroenterology,136,1669-1679.
    Yu, T.X., Wang, P.Y., Rao, J.N., et al. (2011). Chk2-dependent HuR phosphorylation regulates occludin mRNA translation and epithelial barrier function. Nucleic Acids Res, 39,8472-8487.
    Yuan, Z., Sanders, A.J., Ye, L., et al. (2010). HuR, a key post-transcriptional regulator, and its implication in progression of breast cancer. Histol Histopathol,25,1331-1340.
    Yun, M., Park, C.G., Kim, J.Y., et al. (2000). Structural analysis of glyceraldehyde 3-phosphate dehydrogenase from Escherichia coli:Direct evidence of substrate binding and cofactor-induced conformational changes. Biochemistry-Us,39,10702-10710.
    Zhang, J.& Snyder, S.H. (1992). Nitric oxide stimulates auto-ADP-ribosylation of glyceraldehyde-3-phosphate dehydrogenase. Proc Natl Acad Sci U S A,89,9382-9385.
    Zheng, D.H., Ezzeddine, N., Chen, C.Y.A., et al. (2008). Deadenylation is prerequisite for P-body formation and mRNA decay in mammalian cells. J Cell Biol,182,89-101.
    Zheng, L., Roeder, R.G.& Luo, Y. (2003). S phase activation of the histone H2B promoter by OCA-S, a coactivator complex that contains GAPDH as a key component. Cell, 114,255-266.
    Zhong, H.& Simons, J.W. (1999). Direct comparison of GAPDH, beta-actin, cyclophilin, and 28S rRNA as internal standards for quantifying RNA levels under hypoxia. Biochem Bioph Res Co,259,523-526.
    Zhou, Y., Yi, X., Stoffer, J.B., et al. (2008). The multifunctional protein glyceraldehyde-3-phosphate dehydrogenase is both regulated and controls colony-stimulating factor-1 messenger RNA stability in ovarian cancer. Mol Cancer Res, 6,1375-1384.
    Zhu, P., Jiang, W., Cao, L.H., et al. (2010). IL-2 mRNA Stabilization upon PMA Stimulation Is Dependent on NF90-Ser(647) Phosphorylation by Protein Kinase C beta I. J Immunol, 185,5140-5149.
    Zubiaga, A.M., Belasco, J.G.& Greenberg, M.E. (1995). The Nonamer Uuauuuauu Is the Key Au-Rich Sequence Motif That Mediates Messenger-Rna Degradation. Mol Cell Biol, 15,2219-2230.
    Andrade, J., Pearce, ST., Zhao, H., et al. (2004). Interactions among p22, glyceraldehyde-3-phosphate dehydrogenase and microtubules. Biochem J,384,327-336.
    Azam, S., Jouvet, N., Jilani, A., et al. (2008). Human Glyceraldehyde-3-phosphate Dehydrogenase Plays a Direct Role in Reactivating Oxidized Forms of the DN A Repair Enzyme APE1. J Biol Chem,283,30632-30641.
    Baba, T., Kobayashi, H., Kawasaki, H., et al. (2010). Glyceraldehyde-3-phosphate dehydrogenase interacts with phosphorylated Akt resulting from increased blood glucose in rat cardiac muscle. Febs Lett,584,2796-2800.
    Bae, B.I., Hara, M.R., Cascio, M.B., et al. (2006). Mutant huntingtin:nuclear translocation and cytotoxicity mediated by GAPDH. Proc Natl Acad Sci U S A,103,3405-3409.
    Bonafe, N., Gilmore-Hebert, M., Folk, N.L., et al. (2005). Glyceraldehyde-3-phosphate dehydrogenase binds to the AU-rich 3'untranslated region of colony-stimulating factor-1 (CSF-1) messenger RNA in human ovarian cancer cells:Possible role in CSF-1 posttranscriptional regulation and tumor phenotype. Cancer Res,65,3762-3771.
    Brown, V.M., Krynetski, E.Y., Krynetskaia, N.F., et al. (2004). A novel CRM1-mediated nuclear export signal governs nuclear accumulation of glyceraldehyde-3-phosphate dehydrogenase following genotoxic stress. J Biol Chem,279,5984-5992.
    Burke, J.R., Enghild, J.J., Martin, M.E., et al. (1996). Huntingtin and DRPLA proteins selectively interact with the enzyme GAPDH. Nat Med,2,347-350.
    Campanella, M.E., Chu, H.& Low, P.S. (2005). Assembly and regulation of a glycolytic enzyme complex on the human erythrocyte membrane. Proc Natl Acad Sci U S A,102,2402-2407.
    Carlile, G.W., Tatton, W.G.& Borden, K.L.B. (1998). Demonstration of a RNA-dependent nuclear interaction between the promyelocytic leukaemia protein and glyceraldehyde-3-phosphate dehydrogenase. Biochem J,335,691-696.
    Carujo, S., Estanyol, J.M., Ejarque, A., et al. (2006). Glyceraldehyde 3-phosphate dehydrogenase is a SET-binding protein and regulates cyclin B-cdkl activity. Oncogene,25,4033-4042.
    Chen, R.W., Saunders, P.A., Wei, H.F., et al. (1999). Involvement of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and p53 in neuronal apoptosis:Evidence that GAPDH is upregulated by p53. J Neurosci,19,9654-9662.
    Choi, Y.B., Tenneti, L., Le, D.A., et al. (2000). Molecular basis of NMDA receptor-coupled ion channel modulation by S-nitrosylation. Nat Neurosci,3,15-21.
    Chuang, D.M., Hough, C.& Senatorov, V.V. (2005). Glyceraldehyde-3-phosphate dehydrogenase, apoptosis and neurodegenerative diseases. Annu Rev Pharmacol,45,269-+.
    Colell, A., Ricci, J.E., Tait, S., et al. (2007). GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation (vol 129, pg 983, 2007). Cell,130,385-385.
    Cumming, R.C.& Schubert, D. (2005). Amyloid-beta induces disulfide bonding and aggregation of GAPDH in Alzheimer's disease. Faseb J,19,2060-2062.
    Dai, R.P., Yu, F.X., Goh, S.R., et al. (2008). Histone 2B (H2B) expression is confined to a proper NAD(+)/NADH redox status. J Biol Chem,283,26894-26901.
    Dastoor, Z.& Dreyer, J.L. (2001). Potential role of nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase in apoptosis and oxidative stress. J Cell Sci, 114,1643-1653.
    Demarse, N.A., Ponnusamy, S., Spicer, E.K., et al. (2009). Direct Binding of Glyceraldehyde 3-Phosphate Dehydrogenase to Telomeric DNA Protects Telomeres against Chemotherapy-Induced Rapid Degradation. J Mol Biol,394,789-803.
    Du, X.L., Matsumura, T., Edelstein, D., et al. (2003). Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells. J Clin Invest,112,1049-1057.
    Duee, E., Olivier-Deyris, L., Fanchon, E., et al. (1996). Comparison of the structures of wild-type and a N313T mutant of Escherichia coli glyceraldehyde 3-phosphate dehydrogenases: implication for NAD binding and cooperativity. J Mol Biol,257,814-838.
    Emsley, P.& Cowtan, K. (2004). Coot:model-building tools for molecular graphics. Acta Crystallogr D,60,2126-2132.
    Foster, M.W., Hess, D.T.& Stamler, J.S. (2009). Protein S-nitrosylation in health and disease:a current perspective. Trends Mol Med,15,391-404.
    Graven, K.K., Troxler, R.F., Kornfeld, H., et al. (1994). Regulation of Endothelial-Cell Glyceraldehyde-3-Phosphate Dehydrogenase Expression by Hypoxia. J Biol Chem, 269,24446-24453.
    Hara, M.R., Agrawal, N., Kim, S.F., et al. (2005). S-nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siahl binding. Nat Cell Biol,7,665-U640.
    Hara, M.R., Thomas, B., Cascio, M.B., et al. (2006). Neuroprotection by pharmacologic blockade of the GAPDH death cascade. Proc Natl Acad Sci U S A,103,3887-3889.
    Harada, N., Yasunaga, R., Higashimura, Y., et al. (2007). Glyceraldehyde-3-phosphate dehydrogenase enhances transcriptional activity of androgen receptor in prostate cancer cells. J Biol Chem,282,22651-22661.
    Huang, J.S., Hao, L.J., Xiong, N., et al. (2009). Involvement of glyceraldehyde-3-phosphate dehydrogenase in rotenone-induced cell apoptosis:Relevance to protein misfolding and aggregation. Brain Res,1279,1-8.
    Ishitani, R.& Chuang, D.M. (1996). Glyceraldehyde-3-phosphate dehydrogenase antisense oligodeoxynucleotides protect against cytosine arabinonucleoside-induced apoptosis in cultured cerebellar neurons. P Natl Acad Sci USA,93,9937-9941.
    Ishitani, R., Kimura, M., Sunaga, K., et al. (1996a). An antisense oligodeoxynucleotide to glyceraldehyde-3-phosphate dehydrogenase blocks age-induced apoptosis of mature cerebrocortical neurons in culture. J Pharmacol Exp Ther,278,447-454.
    Ishitani, R., Sunaga, K., Hirano, A., et al. (1996b). Evidence that glyceraldehyde-3-phosphate dehydrogenase is involved in age-induced apoptosis in mature cerebellar neurons in culture. J Neurochem,66,928-935.
    Ishitani, R., Tanaka, M., Sunaga, K., et al. (1998). Nuclear localization of overexpressed glyceraldehyde-3-phosphate dehydrogenase in cultured cerebellar neurons undergoing apoptosis. Mol Pharmacol,53,701-707.
    Jang, M., Kang, H.J., Lee, S.Y., et al. (2009). Glyceraldehyde-3-phosphate, a glycolytic intermediate, plays a key role in controlling cell fate via inhibition of caspase activity. Mol Cells,28,559-563.
    Karpel, R.L.& Burchard, A.C. (1981). A basic isozyme of yeast glyceraldehyde-3-phosphate dehydrogenase with nucleic acid helix-destabilizing activity. Biochim Biophys Acta, 654,256-267.
    Kim, C.I., Lee, S.H., Seong, G.J., et al. (2006). Nuclear translocation and overexpression of GAPDH by the hyper-pressure in retinal ganglion cell. Biochem Biophys Res Commun, 341,1237-1243.
    Koshy, B., Matilla, T., Burright, E.N., et al. (1996). Spinocerebellar ataxia type-1 and spinobulbar muscular atrophy gene products interact with glyceraldehyde-3-phosphate dehydrogenase. Hum Mol Genet,5,1311-1318.
    Kusner, L.L., Sarthy, V.P.& Mohr, S. (2004). Nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase:a role in high glucose-induced apoptosis in retinal Muller cells. Invest Ophthalmol Vis Sci,45,1553-1561.
    Laschet, J.J., Minier, F., Kurcewicz, I., et al. (2004). Glyceraldehyde-3-phosphate dehydrogenase is a GABA(A) receptor kinase linking glycolysis to neuronal inhibition. J Neurosci, 24,7614-7622.
    Laskowski, R.A., Rullmann, J.A.C., MacArthur, M.W., et al. (1996). AQUA and PROCHECK-NMR:Programs for checking the quality of protein structures solved by NMR. J Biomol Nmr,8,477-486.
    Lee, M.N., Ha, S.H., Kim, J., et al. (2009). Glycolytic Flux Signals to mTOR through Glyceraldehyde-3-Phosphate Dehydrogenase-Mediated Regulation of Rheb. Mol Cell Biol,29,3991-4001.
    Lin, E.Y., Nguyen, A.V., Russell, R.G.& Pollard, J.W. (2001). Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med,193,727-739.
    -Lipton, S.A., Choi, Y.B., Takahashi, H., et al. (2002). Cysteine regulation of protein function-as exemplified by NMDA-receptor modulation. Trends Neurosci,25,474-480.
    Mandel, S., Weinreb, O., Amit, T.& Youdim, M.B. (2005). Mechanism of neuroprotective action of the anti-Parkinson drug rasagiline and its derivatives. Brain Res Brain Res Rev, 48,379-387.
    Mansur, N.R., Meyersiegler, K., Wurzer, J.C.& Sirover, M.A. (1993). Cell-Cycle Regulation of the Glyceraldehyde-3-Phosphate Dehydrogenase/Uracil DNA Glycosylase Gene in Normal Human-Cells. Nucleic Acids Res,21,993-998.
    Maruyama, W., Oya-Ito, T., Shamoto-Nagai, M., et al. (2002). Glyceraldehyde-3-phospate dehydrogenase is translocated into nuclei through Golgi apparatus during apoptosis induced by 6-hydroxydopamine in human dopaminergic SH-SY5Y cells. Neurosci Lett, 321,29-32.
    Mazzola, J.L.& Sirover, M.A. (2002). Alteration of nuclear glyceraldehyde-3-phosphate dehydrogenase structure in Huntington's disease fibroblasts. Brain Res Mol Brain Res, 100,95-101.
    Mazzola, J.L.& Sirover, M.A. (2003). Subcellular alteration of glyceraldehyde-3-phosphate dehydrogenase in Alzheimer's disease fibroblasts. J Neurosci Res,71,279-285.
    Mitsuzawa, H., Kimura, M., Kanda, E.& Ishihama, A. (2005). Glyceraldehyde-3-phosphate dehydrogenase and actin associate with RNA polymerase II and interact with its Rpb7 subunit. Febs Lett,579,48-52.
    Mukherjee, S., Dutta, D., Saha, B.& Das, A.K. (2010). Crystal Structure of Glyceraldehyde-3-Phosphate Dehydrogenase 1 from Methicillin-Resistant Staphylococcus aureus MRSA252 Provides Novel Insights into Substrate Binding and Catalytic Mechanism. J Mol Biol,401,949-968.
    Murshudov, G.N., Vagin, A.A.& Dodson, E.J. (1997). Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D,53,240-255.
    Nagy, E., Henics, T., Eckert, M., et al. (2000). Identification of the NAD(+)-binding fold of glyceraldehyde-3-phosphate dehydrogenase as a novel RNA-binding domain. Biochem Bioph Res Co,275,253-260.
    Nagy, E.& Rigby, W.F.C. (1995). Glyceraldehyde-3-Phosphate Dehydrogenase Selectively Binds Au-Rich Rna in the Nad(+)-Binding Region (Rossmann Fold). Journal of Biological Chemistry,270,2755-2763.
    Nakajima, H., Amano, W., Fujita, A., et al. (2007). The active site cysteine of the proapoptotic protein glyceraldehyde-3-phosphate dehydrogenase is essential in oxidative stress-induced aggregation and cell death. J Biol Chem,282.
    Nakajima, H., Amano, W., Kubo, T., et al. (2009). Glyceraldehyde-3-phosphate Dehydrogenase Aggregate Formation Participates in Oxidative Stress-induced Cell Death. J Biol Chem, 284,34331-34341.
    Olanow, C.W. (2006). Rationale for considering that propargylamines might be neuroprotective in Parkinson's disease. Neurology,66,S69-79.
    Otwinowski, Z.& Minor, W. (1997). Processing of X-ray diffraction data collected in oscillation mode. Macromolecular Crystallography, Pt A,276,307-326.
    Park, J., Han, D., Kim, K., et al. (2009). O-GlcNAcylation disrupts glyceraldehyde-3-phosphate dehydrogenase homo-tetramer formation and mediates its nuclear translation. Biochim Biophys Acta,1794,254-262.
    Paterson, I.A.& Tatton, W.G. (1998). Antiapoptotic actions of monoamine oxidase B inhibitors. Adv Pharmacol,42,312-315.
    Raje, C.I., Kumar, S., Harle, A., et al. (2007). The macrophage cell surface glyceraldehyde-3-phosphate dehydrogenase is a novel transferrin receptor. J Biol Chem, 282,3252-3261.
    Revillion, F., Pawlowski, V, Hornez, L.& Peyrat, J.P. (2000). Glyceraldehyde-3-phosphate dehydrogenase gene expression in human breast cancer. Eur J Cancer,36,1038-1042.
    Rodriguez-Pascual, F., Redondo-Horcajo, M., Magan-Marchal, N., et al. (2008). Glyceraldehyde-3-Phosphate Dehydrogenase Regulates Endothelin-1 Expression by a Novel, Redox-Sensitive Mechanism Involving mRNA Stability. Mol Cell Biol, 28,7139-7155.
    Ronai, Z. (1993). Glycolytic-Enzymes as DNA-Binding Proteins. Int J Biochem,25,1073-1076.
    Sawa, A., Khan, A.A., Hester, L.D.& Snyder, S.H. (1997). Glyceraldehyde-3-phosphate dehydrogenase:nuclear translocation participates in neuronal and nonneuronal cell death. Proc Natl Acad Sci U S A,94,11669-11674.
    Schek, N., Hall, B.L.& Finn, O.J. (1988). Increased Glyceraldehyde-3-Phosphate Dehydrogenase Gene-Expression in Human Pancreatic Adenocarcinoma. Cancer Res,48,6354-6359.
    Sen, N., Hara, M.R., Ahmad, A.S., et al. (2009). GOSPEL:A Neuroprotective Protein that Binds to GAPDH upon S-Nitrosylation (vol 63, pg 81,2009). Neuron,63,709-709.
    Sen, N., Hara, M.R., Kornberg, M.D., Cascio, M.B., et al. (2008). Nitric oxide-induced nuclear GAPDH activates p300/CBP and mediates apoptosis. Nat Cell Biol,10,866-873.
    Shashidharan, P., Chalmers-Redman, R.M.E., Carlile, G.W., et al. (1999). Nuclear translocation of GAPDH-GFP fusion protein during apoptosis. Neuroreport,10,1149-1153.
    Shiozawa, M., Fukutani, Y., Arai, N., et al. (2003). Glyceraldehyde 3-phosphate dehydrogenase and endothelin-1 immunoreactivity is associated with cerebral white matter damage in dentatorubral-pallidoluysian atrophy. Neuropathology,23,36-43.
    Singh, P., Salih, M.. Leddy, J.J.& Tuana, B.S. (2004). The muscle-specific calmodulin-dependent protein kinase assembles with the glycolytic enzyme complex at the sarcoplasmic reticulum and modulates the activity of glyceraldehyde-3-phosphate dehydrogenase in a Ca2+/calmodulin-dependent manner. J Biol Chem,279,35176-35182.
    Sirover, M.A. (1999). New insights into an old protein:the functional diversity of mammalian glyceraldehyde-3-phosphate dehydrogenase. Bba-Protein Struct M,1432,159-184.
    Skarzynski, T.& Wonacott, A.J. (1988). Coenzyme-induced conformational changes in glyceraldehyde-3-phosphate dehydrogenase from Bacillus stearothermophilus. J Mol Biol, 203,1097-1118.
    Sunaga, K., Takahashi, H., Chuang, D.M.& Ishitani, R. (1995). Glyceraldehyde-3-Phosphate Dehydrogenase Is over-Expressed during Apoptotic Death of Neuronal Cultures and Is Recognized by a Monoclonal-Antibody against Amyloid Plaques from Alzheimers Brain. Neurosci Lett,200,133-136.
    Sundararaj, K.P., Wood, R.E., Ponnusamy, S., et al. (2004). Rapid shortening of telomere length in response to ceramide involves the inhibition of telomere binding activity of nuclear glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem,279,6152-6162.
    Tabakman, R., Lecht, S.& Lazarovici, P. (2004). Neuroprotection by monoamine oxidase B inhibitors:a therapeutic strategy for Parkinson's disease? Bioessays,26,80-90.
    Tajima, H., Tsuchiya, K., Yamada, M., et al. (1999). Over-expression of GAPDH induces apoptosis in COS-7 cells transfected with cloned GAPDH cDNAs. Neuroreport, 10,2029-2033.
    Tanaka, R., Mochizuki, H., Suzuki, A., et al. (2002). Induction of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expression in rat brain after focal ischemia/reperfusion. J Cereb Blood Flow Metab,22,280-288.
    Tarze, A., Deniaud, A., Le Bras, M., et al. (2007). GAPDH, a novel regulator of the pro-apoptotic mitochondrial membrane permeabilization. Oncogene,26,2606-2620.
    Tatton, N.A. (2000). Increased caspase 3 and Bax immunoreactivity accompany nuclear GAPDH translocation and neuronal apoptosis in Parkinson's disease. Exp Neurol,166,29-43.
    Tatton, W., Chalmers-Redman, R.& Tatton, N. (2003). Neuroprotection by deprenyl and other propargylamines:glyceraldehyde-3-phosphate dehydrogenase rather than monoamine oxidase B. J Neural Transm,110,509-515.
    Tisdale, E.J.& Artalejo, C.R. (2007). A GAPDH mutant defective in Src-dependent tyrosine phosphorylation impedes Rab2-mediated events. Traffic,8,733-741.
    Tisdale, E.J., Kelly, C.& Artalejo, C.R. (2004). Glyceraldehyde-3-phosphate dehydrogenase interacts with Rab2 and plays an essential role in endoplasmic reticulum to Golgi transport exclusive of its glycolytic activity. J Biol Chem,279,54046-54052.
    Tokunaga, K., Nakamura, Y., Sakata, K., et al. (1987). Enhanced Expression of a Glyceraldehyde-3-Phosphate Dehydrogenase Gene in Human-Lung Cancers. Cancer Res, 47,5616-5619.
    Tsuchiya, K., Tajima, H., Yamada, M., et al. (2004). Disclosure of a pro-apoptotic glyceraldehyde-3-phosphate dehydrogenase promoter:anti-dementia drugs depress its activation in apoptosis. Life Sci,74,3245-3258.
    Vagin, A.& Teplyakov, A. (1997). MOLREP:an automated program for molecular replacement. J Appl Crystallogr,30,1022-1025.
    Vedia, L.M., Mcdonald, B., Reep, B., et al. (1992). Nitric Oxide-Induced S-Nitrosylation of Glyceraldehyde-3-Phosphate Dehydrogenase Inhibits Enzymatic-Activity and Increases Endogenous Adp-Ribosylation. J Biol Chem,267,24929-24932.
    Verdier, Y, Foldi, I., Sergeant, N., et al. (2008). Characterization of the interaction between Abeta 1-42 and glyceraldehyde phosphodehydrogenase. J Pept Sci,14,755-762.
    Waldmeier, P.C., Boulton, A.A., Cools, A.R., et al. (2000). Neurorescuing effects of the GAPDH ligand CGP 3466B. J Neural Transm Suppl,197-214.
    Xing, C., LaPorte, J.R., Barbay, J.K.& Myers, A.G. (2004). Identification of GAPDH as a protein target of the saframycin antiproliferative agents. Proc Natl Acad Sci U S A, 101,5862-5866.
    Youdim, M.B., Maruyama, W.& Naoi, M. (2005). Neuropharmacological, neuroprotective and amyloid precursor processing properties of selective MAO-B inhibitor antiparkinsonian drug, rasagiline. Drugs Today (Barc),41,369-391.
    Yun, M., Park, C.G., Kim, J.Y.& Park, H.W. (2000). Structural analysis of glyceraldehyde 3-phosphate dehydrogenase from Escherichia coli:Direct evidence of substrate binding and cofactor-induced conformational changes. Biochemistry-Us,39,10702-10710.
    Zhang, J.& Snyder, S.H. (1992). Nitric oxide stimulates auto-ADP-ribosylation of glyceraldehyde-3-phosphate dehydrogenase. Proc Natl Acad Sci U S A,89,9382-9385.
    Zheng, L., Roeder, R.G.& Luo, Y. (2003). S phase activation of the histone H2B promoter by OCA-S, a coactivator complex that contains GAPDH as a key component. Cell, 114,255-266.
    Zhong, H.& Simons, J.W. (1999). Direct comparison of GAPDH, beta-actin, cyclophilin, and 28S rRNA as internal standards for quantifying RNA levels under hypoxia. Biochem Bioph Res Co,259,523-526.
    Zhou. Y., Yi, X., Stoffer, J.B., et al. (2008). The multifunctional protein glyceraldehyde-3-phosphate dehydrogenase is both regulated and controls colony-stimulating factor-1 messenger RNA stability in ovarian cancer. Mol Cancer Res, 6,1375-1384.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700