用户名: 密码: 验证码:
人源NSD家族蛋白质的PHD5-C5HCH模块的结构与功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
NSD家族蛋白质的三个成员,NSD1, NSD2(WHSC1, MMSET)和NSD3(WHSC1L1),在生物体的发育过程中起重要的作用,并与多种人类遗传疾病和癌症相关。但是目前依旧缺乏这些蛋白质在生物体发育过程中起的作用和致病机理的研究。
     NSD家族三个成员的结构域排布与同源性相似,其典型特征是在蛋白质C末端包含了一段大概有700个氨基酸残基的高度相似的区域。该区域包含了一个SET酶活结构域,一个PWWP结构域,五个PHD锌指,和一个NSD家族特有的富含半胱氨酸和组氨酸的结构域(C5HCH结构域)。这个区域里面,SET酶活结构域是目前探索得较多的一个结构域,其酶活性质是H3K36特异性单甲基和二甲基转移酶。H3K36甲基化在各种生物过程中起着重要的作用,所产生效应的关键因素在于其在基因上的定位。鉴于这三个蛋白质的功能并不冗余,而且具体原因未明,探索NSD家族这些H3K36甲基转移酶的潜在结合组蛋白的结构域的功能是很重要的。这有助于了解NSD家族蛋白质如何被募集到基因组的指定位置,从而发挥功能,进而阐明NSD家族蛋白质突变的致病机理。
     我们利用多种体外相互作用实验方法阐明了NSD3C末端的PHD5-C5HCH模块特异识别包含着非修饰H3K4和三甲基H3K9的组蛋白H3N端小肽的机制。解析了PHD5-C5HCHNSD3的单体结构,及其和H31-7, H31-15,H31-15K9me3小肽的复合物结构。这些结构显示PHD5-C5HCH模块是一个串联的PHD-PHD-like模块,但是仅有PHD5识别组蛋白H3小肽。高分辨率的结构使得我们能够清楚的解析PHD5NSD3识别H3N端小肽的分子机制。序列比对显示,螯合二价锌离子和PHD5-C5HCH模块疏水核心的氨基酸在NSD家族蛋白质的三个成员里面都是十分保守的,这暗示NSD家族三个成员的PHD5-C5HCH模块在三级结构上是保守的。进一步的结构分析和突变实验显示,虽然这三个PHD5-C5HCH可能具有保守的三级结构,但是在组蛋白H3尾巴识别机制上却是有明显的差异。PHD-C5HCHNSD2识别非修饰H3K4,但是在H3K9的识别上倾向于非修饰K9状态,而NSD3则偏爱H3K9me3。PHD-C5HCHNSDI与组蛋白没有直接的相互作用。这些差异是由PHD5的组蛋白结合面上的少量氨基酸差异引起的。我们的结果揭示H3K36的甲基化可能与H3K4和H3K9的识别有所联系。同时,NSD家族的PHD5-C5HCH模块识别组蛋白H3能力的不同,可能会募集NSD家族蛋白质到基因组不同的位置,从而导致了NSD家族三个蛋白质功能上的多样性。
The NSD family of SET domain-containing histone methyl-transferases includes NSD1, NSD2(also known as WHSC1, Wolf-Hirschhorn syndrome candidate1or MMSET, multiple myeloma SET), and NSD3(also known as WHSC1L1, WHSC1like1). All three NSD proteins have been directly linked to multiple human diseases. Although highly relevant to human health and diseases, only a few details have been published regarding the mechanism of NSD family action.
     A striking feature of the three NSD proteins is that they are highly similar within the block of about700amino acids, which contains a catalytic SET domain with its pre-and post-domains, a PWWP domain, five PHD fingers, and an NSD-specific Cys-His rich domain (C5HCH). However, the similar domain architecture of the three NSD family members does not indicate a functional redundancy. The SET domains of the three NSD proteins have been confirmed to have highly specific H3K36mono-or dimethylase activities. H3K36methylation has been implicated in multiple biological processes, and the biological consequences of such modification are largely determined by the location of the gene where the methylated H3K36mark is placed. Because the NSD proteins also contain several histone Readers, one attractive possibility is that these Readers recruit the NSD H3K36methyltransferases to their specific gene sites, thus lead to distinct biological outcomes. Therefore, the molecular mechanishm of the Reader domains to recognize the chromatin is critical to undertand their biological impact and the rationale of functional redundancy of NSD proteins.
     Herein, we used several in vitro binding assays to identify the histone binding ability of the C-terminal PHD5-C5HCH module of NSD3. We demonstrate that the PHD5-C5HCH module of NSD3prefers to bind H3N-termianl peptide containing unmodified H3K4and trimethylated H3K9. We solved the high resolution crystal structures of PHD5-C5HCHNSD3in its apo and holo states with unmodified H3residues1-7(H31-7),1-15(H31-15), and1-15with lysine9trimethylated (H31-15K9me3), respectively. These structures reveal an integrated tandem PHD-PHD-like fold with H3peptide bound only on the surface of PHD5and provide the structural basis for the peptide recognition by PHD5of NSD3. Further mutagenesis and peptide binding assays show that PHD5-C5HCHNSD1does not bind to H3, and the PHD5-C5HCH module of NSD2(PHD5-C5HCHNSD2) prefers to bind to unmodified H3K4and H3K9. This is likely due to a minor sequence change at the H3binding surface. Our findings suggest that PHD5-C5HCHs of the NSD family are conserved in the overall structure but vary in H3recognition. These variable recognitions may play a role in the localization of these H3K36methyltransferases to different genome sites and are consistent with the distinct and non-redundant functions of NSD proteins. Our results also imply a link between the deposition of H3K36methylation and the recognition of H3K4and H3K9.
引文
Allfrey, V. G., R. Faulkner and A. E. Mirsky (1964). "Acetylation+Methylation of Histones+Their Possible Role in Regulation of Rna Synthesis." Proceedings of the National Academy of Sciences of the United States of America 51(5):786-&.
    Arita, K., S. Isogai, T. Oda, et al. (2012). "Recognition of modification status on a histone H3 tail by linked histone reader modules of the epigenetic regulator UHRF1." Proc Natl Acad Sci U S A 109(32):12950-12955.
    Bhaumik, S. R., E. Smith and A. Shilatifard (2007). "Covalent modifications of histones during development and disease pathogenesis." Nature Structural & Molecular Biology 14(11):1008-1016.
    Brownell, J. E. and C. D. Allis (1995). "An activity gel assay detects a single, catalytically active histone acetyltransferase subunit in Tetrahymena macronuclei." Proc Natl Acad Sci U S A 92(14): 6364-6368.
    Brownell, J. E., J. Zhou, T. Ranalli, et al. (1996). "Tetrahymena histone acetyltransferase A:a homolog to yeast Gcn5p linking histone acetylation to gene activation." Cell 84(6):843-851.
    Bycroft, M., A. Vezzoli, N. Bonadies, et al. (2010). "Molecular basis of histone H3K36me3 recognition by the PWWP domain of Brpfl." Nature Structural & Molecular Biology 17(5):617-619.
    Chignola, F., M. Gaetani, A. Rebane, et al. (2009). "The solution structure of the first PHD finger of autoimmune regulator in complex with non-modified histone H3 tail reveals the antagonistic role of H3R2 methylation." Nucleic Acids Res 37(9):2951-2961.
    Eustermann, S., J. C. Yang, M. J. Law, et al. (2011). "Combinatorial readout of histone H3 modifications specifies localization of ATRX to heterochromatin." Nature Structural & Molecular Biology 18(7):777-782.
    Fischle, W., B. S. Tseng, H. L. Dormann, et al. (2005). "Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation." Nature 438(7071):1116-1122.
    Iwase, S., B. Xiang, S. Ghosh, et al. (2011). "ATRX ADD domain links an atypical histone methylation recognition mechanism to human mental-retardation syndrome." Nature Structural & Molecular Biology 18(7):769-776.
    Kornberg, R. D. (1974). "Chromatin structure:a repeating unit of histones and DNA." Science 184(4139):868-871.
    Kornberg, R. D. and J.O. Thomas (1974). "Chromatin structure; oligomers of the histones." Science 184(4139):865-868.
    Kuo, A. J., J. Song, P. Cheung, et al. (2012). "The BAH domain of ORC1 links H4K20me2 to DNA replication licensing and Meier-Gorlin syndrome." Nature 484(7392):115-119.
    Lan, F., R. E. Collins, R. De Cegli, et al. (2007). "Recognition of unmethylated histone H3 lysine 4 links BHC80 to LSD1-mediated gene repression." Nature 448(7154):718-U714.
    Li, H. T., S. Ilin, W. K. Wang, et al. (2006). "Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF." Nature 442(7098):91-95.
    Li, Y. and H. Li (2012). "Many keys to push:diversifying the 'readership' of plant homeodomain fingers." Acta Biochim Biophys Sin (Shanghai) 44(1):28-39.
    Liu, L., S. Qin, J. Zhang, et al. (2012). "Solution structure of an atypical PHD finger in BRPF2 and its interaction with DNA." J Struct Biol.
    Luger, K., A. W. Mader, R. K. Richmond, et al. (1997). "Crystal structure of the nucleosome core particle at 2.8 A resolution." Nature 389(6648):251-260.
    Mansfield, R. E., C. A. Musselman, A. H. Kwan, et al. (2011). "Plant homeodomain (PHD) fingers of CHD4 are histone H3-binding modules with preference for unmodified H3K4 and methylated H3K9." Journal ofBiological Chemistry 286(13):11779-11791.
    Musselman, C. A., M. E. Lalonde, J. Cote, et al. (2012). "Perceiving the epigenetic landscape through histone readers." Nature Structural & Molecular Biology 19(12):1218-1227.
    Musselman, C. A., J. Ramirez, J. K. Sims, et al. (2012). "Bivalent recognition of nucleosomes by the tandem PHD fingers of the CHD4 ATPase is required for CHD4-mediated repression." Proc Natl Acad Sci U S A 109(3):787-792.
    Qin, S., L. Jin, J. Zhang, et al. (2011). "Recognition of unmodified histone H3 by the first PHD finger of bromodomain-PHD finger protein 2 provides insights into the regulation of histone acetyltransferases monocytic leukemic zinc-finger protein (MOZ) and MOZ-related factor (MORF)." Journal of Biological Chemistry 286(42):36944-36955.
    Qiu, Y., L. Liu, C. Zhao, et al. (2012). "Combinatorial readout of unmodified H3R2 and acetylated H3K14 by the tandem PHD finger of MOZ reveals a regulatory mechanism for HOXA9 transcription." Genes Dev 26(12):1376-1391.
    Rajakumara, E., Z. T. Wang, H. H. Ma, et al. (2011). "PHD Finger Recognition of Unmodified Histone H3R2 Links UHRF1 to Regulation of Euchromatic Gene Expression." Molecular Cell 43(2): 275-284.
    Ramon-Maiques, S., A. J. Kuo, D. Carney, et al. (2007). "The plant homeodomain finger of RAG2 recognizes histone H3 methylated at both lysine-4 and arginine-2." Proc Natl Acad Sci U S A 104(48):18993-18998.
    Ruthenburg, A. J., H. Li, T. A. Milne, et al. (2011). "Recognition of a mononucleosomal histone modification pattern by BPTF via multivalent interactions." Cell 145(5):692-706.
    Sanchez, R. and M. M. Zhou (2009). "The role of human bromodomains in chromatin biology and gene transcription." Current Opinion in Drug Discovery & Development 12(5):659-665.
    Sanchez, R. and M. M. Zhou (2011). "The PHD finger:a versatile epigenome reader." Trends in Biochemical Sciences 36(7):364-372.
    Strahl, B. D. and C. D. Allis (2000). "The language of covalent histone modifications." Nature 403(6765):41-45.
    Su, D., Q. Hu, Q. Li, et al. (2012). "Structural basis for recognition of H3K56-acetylated histone H3-H4 by the chaperone Rtt106." Nature 483(7387):104-107.
    Tripsianes, K., T. Madl, M. Machyna, et al. (2011). "Structural basis for dimethylarginine recognition by the Tudor domains of human SMN and SPF30 proteins." Nature Structural & Molecular Biology 18(12):1414-1420.
    Tsai, W. W., Z. X. Wang, T. T. Yiu, et al. (2010). "TRIM24 links a non-canonical histone signature to breast cancer." Nature 468(7326):927-U320.
    Verschure, P. J., A. E. Visser and M. G. Rots (2006). "Step out of the groove:epigenetic gene control systems and engineered transcription factors." Adv Genet 56:163-204.
    Wang, Z. and D. J. Patel (2011). "Combinatorial readout of dual histone modifications by paired chromatin-associated modules." Journal of Biological Chemistry 286(21):18363-18368.
    Watson, J. D. and F. H. Crick (1953). "Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid." Nature 171(4356):737-738.
    Xi, Q. R., Z. X. Wang, A. I. Zaromytidou, et al. (2011). "A Poised Chromatin Platform for TGF-beta Access to Master Regulators." Cell 147(7):1511-1524.
    Yang, Y. Z., Y. Lu, A. Espejo, et al. (2010). "TDRD3 Is an Effector Molecule for Arginine-Methylated Histone Marks." Molecular Cell 40(6):1016-1023.
    Zeng, L., Q. Zhang, S. Li, et al. (2010). "Mechanism and regulation of acetylated histone binding by the tandem PHD finger of DPF3b." Nature 466(7303):258-U138.
    Abed, J. A. and R. S. Jones (2012). "H3K36me3 key to Polycomb-mediated gene silencing in lineage specification." Nature Structural & Molecular Biology 19(12):1214-1215.
    Angrand, P. O., F. Apiou, A. F. Stewart, et al. (2001). "NSD3, a new SET domain-containing gene, maps to 8p12 and is amplified in human breast cancer cell lines." Genomics 74(1):79-88.
    Ballare, C., M. Lange, A. Lapinaite, et al. (2012). "Phf19 links methylated Lys36 of histone H3 to regulation of Polycomb activity." Nature Structural & Molecular Biology 19(12):1257-1265.
    Brien, G. L., G. Gambero, D. J. O'Connell, et al. (2012). "Polycomb PHF19 binds H3K36me3 and recruits PRC2 and demethylase NO66 to embryonic stem cell genes during differentiation." Nature Structural & Molecular Biology 19(12):1273-1281.
    Brinkman, A. B., T. Roelofsen, S. W. Pennings, et al. (2006). "Histone modification patterns associated with the human X chromosome." Embo Reports 7(6):628-634.
    Butler, J. S. and S. Y. Dent (2012). "Chromatin 'resetting' during transcription elongation:a central role for methylated H3K36." Nature Structural & Molecular Biology 19(9):863-864.
    Callebaut, I. and J. P. Mornon (2012). "The PWAPA cassette:Intimate association of a PHD-like finger and a winged-helix domain in proteins included in histone-modifying complexes." Biochimie 94(9): 2006-2012.
    Carrozza, M. J., B. Li, L. Florens, et al. (2005). "Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription." Cell 123(4):581-592.
    Carstens, R. P., E. J. Wagner and M. A. Garcia-Blanco (2000). "An intronic splicing silencer causes skipping of the Ⅲb exon of fibroblast growth factor receptor 2 through involvement of polypyrimidine tract binding protein." Molecular and Cellular Biology 20(19):7388-7400.
    Chambon, P., G. V. Rayasam, O. Wendling, et al. (2003). "NSD1 is essential for early post-implantation development and has a catalytically active SET domain." Embo Journal 22(12):3153-3163.
    Chen, Y., B. Wan, K. C. Wang, et al. (2011). "Crystal structure of the N-terminal region of human Ash2L shows a winged-helix motif involved in DNA binding." Embo Reports 12(8):797-803.
    Douglas, J., K. Coleman, K. Tatton-Brown, et al. (2005). "Evaluation of NSD2 and NSD3 in overgrowth syndromes." European Journal of Human Genetics 13(2):150-153.
    Douglas, J., S. Hanks, I. K. Temple, et al. (2003). "NSD1 mutations are the major cause of Sotos syndrome and occur in some cases of Weaver syndrome but are rare in other overgrowth phenotypes." Am J Hum Genet 72(1):132-143.
    Du, H. N., I. M. Fingerman and S. D. Briggs (2008). "Histone H3 K36 methylation is mediated by a trans-histone methylation pathway involving an interaction between Set2 and histone H4." Genes & Development 22(20):2786-2798.
    Fang, R., A. J. Barbera, Y. F. Xu, et al. (2010). "Human LSD2/KDMlb/AOF1 Regulates Gene Transcription by Modulating Intragenic H3K4me2 Methylation." Molecular Cell 39(2):222-233.
    Faravelli, F. (2005). "NSD1 mutations in Sotos syndrome." American Journal of Medical Genetics Part C-Seminars in Medical Genetics 137C(1):24-31.
    Fnu, S., E. A. Williamson, L. P. De Haro, et al. (2011). "Methylation of histone H3 lysine 36 enhances DNA repair by nonhomologous end-joining." Proc Natl Acad Sci U S A 108(2):540-545.
    Gelbart, M. E., E. Larschan, S. Peng, et al. (2009). "Drosophila MSL complex globally acetylates H4K16 on the male X chromosome for dosage compensation." Nature Structural & Molecular Biology 16(8):825-832.
    Ghannam, G., A. Takeda, T. Camarata, et al. (2004). "The oncogene Nup98-HOXA9 induces gene transcription in myeloid cells." Journal of Biological Chemistry 279(2):866-875.
    Howley, P. M., S. Rahman, M. E. Sowa, et al. (2011). "The Brd4 Extraterminal Domain Confers Transcription Activation Independent of pTEFb by Recruiting Multiple Proteins, Including NSD3." Molecular and Cellular Biology 31(13):2641-2652.
    Huang, N. W., E. vom Baur, J. M. Gamier, et al. (1998). "Two distinct nuclear receptor interaction domains in NSD1, a novel SET protein that exhibits characteristics of both corepressors and coactivators." Embo Journal 17(12):3398-3412.
    Jaju, R. J., C. Fidler, O. A. Haas, et al. (2001). "A novel gene, NSD1, is fused to NUP98 in the t(5;11)(q35;p15.5) in denovo childhood acute myeloid leukemia." Blood 98(4):1264-1267.
    Kamps, M. P., M. P. Pasillas and M. Shah (2011). "NSD1 PHD Domains Bind Methylated H3K4 and H3K9 Using Interactions Disrupted by Point Mutations in Human Sotos Syndrome." Human Mutation 32(3):292-298.
    Kamps, M. P., G. G. Wang, L. Cai, et al. (2007). "NUP98-NSD1 links H3K36 methylation to Hox-A gene activation and leukaemogenesis." Nature Cell Biology 9(7):804-U134.
    Kim, H. S., D. K. Rhee and Y. K. Jang (2008). "Methylations of histone H3 lysine 9 and lysine 36 are functionally linked to DNA replication checkpoint control in fission yeast." Biochem Biophys Res Commun 368(2):419-425.
    Kim, J. Y., H. J. Kee, N. W. Choe, et al. (2008). "Multiple-myeloma-related WHSC1/MMSET isoform RE-IIBP is a histone methyltransferase with transcriptional repression activity." Molecular and Cellular Biology 28(6):2023-2034.
    Kim, S. M., H. J. Kee, G. H. Eom, et al. (2006). "Characterization of a novel WHSC1-associated SET domain protein with H3K4 and H3K27 methyltransferase activity." Biochem Biophys Res Commun 345(1):318-323.
    Kolasinska-Zwierz, P., T. Down, I. Latorre, et al. (2009). "Differential chromatin marking of introns and expressed exons by H3K36me3." Nature Genetics 41(3):376-381.
    Kuo, A. J., P. Cheung, K. Chen, et al. (2011). "NSD2 Links Dimethylation of Histone H3 at Lysine 36 to Oncogenic Programming." Molecular Cell 44(4):609-620.
    Kurotaki, N., K. Imaizumi, N. Harada, et al. (2002). "Haploinsufficiency of NSD1 causes Sotos syndrome." Nature Genetics 30(4):365-366.
    Li, M., H. P. Phatnani, Z. Guan, et al. (2005). "Solution structure of the Set2-Rpbl interacting domain of human Set2 and its interaction with the hyperphosphorylated C-terminal domain of Rpbl." Proc Natl Acad Sci U S A 102(49):17636-17641.
    Li, Y., P. Trojer, C. F. Xu, et al. (2009). "The Target of the NSD Family of Histone Lysine Methyltransferases Depends on the Nature of the Substrate." Journal of Biological Chemistry 284(49):34283-34295.
    Lucio-Eterovic, A. K., M. M. Singh, J. E. Gardner, et al. (2010). "Role for the nuclear receptor-binding SET domain protein 1 (NSD1) methyltransferase in coordinating lysine 36 methylation at histone 3 with RNA polymerase II function." Proc Natl Acad Sci U S A 107(39):16952-16957.
    Luco, R. F., Q. Pan, K. Tominaga, et al. (2010). "Regulation of alternative splicing by histone modifications." Science 327(5968):996-1000.
    Marango, J., M. Shimoyama, H. Nishio, et al. (2008). "The MMSET protein is a histone methyltransferase with characteristics of a transcriptional corepressor." Blood 111(6):3145-3154.
    Mundlos, S., S. Turkmen, G. Gillessen-Kaesbach, et al. (2003). "Mutations in NSD1 are responsible for Sotos syndrome, but are not a frequent finding in other overgrowth phenotypes." European Journal of Human Genetics 11(11):858-865.
    Nielsen, A. L., P. Jorgensen, T. Lerouge, et al. (2004). "Nizpl, a novel multitype zinc finger protein that interacts with the NSD1 histone lysine methyltransferase through a unique C2HR motif." Molecular and Cellular Biology 24(12):5184-5196.
    Nielsen, A. L., Z. L. Zhou, R. Thomsen, et al. (2010). "The NSD3L histone methyltransferase regulates cell cycle and cell invasion in breast cancer cells." Biochemical and Biophysical Research Communications 398(3):565-570.
    Nimura, K., K. Ura, H. Shiratori, et al. (2009). "A histone H3 lysine 36 trimethyltransferase links Nkx2-5 to Wolf-Hirschhorn syndrome." Nature 460(7252):287-291.
    Pryde, F., D. Jain, A. Kerr, et al. (2009). "H3 k36 methylation helps determine the timing of cdc45 association with replication origins." Plos One 4(6):e5882.
    Qiao, Q., Y. Li, Z. Chen, et al. (2011). "The Structure of NSD1 Reveals an Autoregulatory Mechanism Underlying Histone H3K36 Methylation." Journal of Biological Chemistry 286(10):8361-8368.
    Sanders, S. L., M. Portoso, J. Mata, et al. (2004). "Methylation of histone H4 lysine 20 controls recruitment of Crb2 to sites of DNA damage." Cell 119(5):603-614.
    Schwartz, S., E. Meshorer and G. Ast (2009). "Chromatin organization marks exon-intron structure." Nature Structural & Molecular Biology 16(9):990-995.
    Sims, R. J.,3rd and D. Reinberg (2009). "Processing the H3K36me3 signature." Nature Genetics 41(3): 270-271.
    Smolle, M., S. Venkatesh, M. M. Gogol, et al. (2012). "Chromatin remodelers Iswl and Chdl maintain chromatin structure during transcription by preventing histone exchange." Nature Structural & Molecular Biology 19(9):884-892.
    Spies, N., C. B. Nielsen, R. A. Padgett, et al. (2009). "Biased chromatin signatures around polyadenylation sites and exons." Molecular Cell 36(2):245-254.
    Stec, I., T. J. Wright, C. J. B. van Ommen, et al. (1998). "WHSC1, a 90 kb SET domain-containing gene, expressed in early development and homologous to the Drosophila dysmorphy gene maps in the Wolf-Hirschhorn syndrome critical region and is fused to IgH in t(4;14) multiple myeloma (vol 7, pg 1071,1998)." Human Molecular Genetics 7(9):1527-1528.
    Vakoc, C. R., S. A. Mandat, B. A. Olenchock, et al. (2005). "Histone H3 lysine 9 methylation and HP1 gamma are associated with transcription elongation through mammalian chromatin." Molecular Cell 19(3):381-391.
    Venkatesh, S., M. Smolle, H. Li, et al. (2012). "Set2 methylation of histone H3 lysine 36 suppresses histone exchange on transcribed genes." Nature 489(7416):452-455.
    Vogel, C, M. Bashton, N. D. Kerrison, et al. (2004). "Structure, function and evolution of multidomain proteins." Curr Opin Struct Biol 14(2):208-216.
    Vojnic, E., B. Simon, B. D. Strahl, et al. (2006). "Structure and carboxyl-terminal domain (CTD) binding of the Set2 SRI domain that couples histone H3 Lys36 methylation to transcription." Journal of Biological Chemistry 281(1):13-15.
    Wagner, E. J. and P. B. Carpenter (2012). "Understanding the language of Lys36 methylation at histone H3." Nat Rev Mol Cell Biol 13(2):115-126.
    Wang, G. G., L. Cai, M. P. Pasillas, et al. (2007). "NUP98-NSD1 links H3K36 methylation to Hox-A gene activation and leukaemogenesis." Nat Cell Biol 9(7):804-812.
    Wright, T. J., D. O. Ricke, K. Denison, et al. (1997). "A transcript map of the newly defined 165 kb Wolf-Hirschhorn syndrome critical region." Human Molecular Genetics 6(2):317-324.
    Wu, H., H. Zeng, R. Lam, et al. (2011). "Structural and Histone Binding Ability Characterizations of Human PWWP Domains." Plos One 6(6).
    Yang, Z. Q., G. Liu, A. Bollig-Fischer, et al. (2010). "Transforming Properties of 8pll-12 Amplified Genes in Human Breast Cancer." Cancer Research 70(21):8487-8497.
    Yuan, W., M. Xu, C. Huang, et al. (2011). "H3K36 methylation antagonizes PRC2-mediated H3K27 methylation." Journal of Biological Chemistry 286(10):7983-7989.
    Battye, T. G., L. Kontogiannis, O. Johnson, et al. (2011). "iMOSFLM:a new graphical interface for diffraction-image processing with MOSFLM." Acta Crystallogr D Biol Crystallogr 67(Pt 4): 271-281.
    Delaglio, F., S. Grzesiek, G. W. Vuister, et al. (1995). "NMRPipe:a multidimensional spectral processing system based on UNIX pipes." J Biomol NMR 6(3):277-293.
    Emsley, P., B. Lohkamp, W. G. Scott, et al. (2010). "Features and development of Coot." Acta Crystallogr D Biol Crystallogr 66(Pt 4):486-501.
    Evans, P. (2006). "Scaling and assessment of data quality." Acta Crystallogr D Biol Crystallogr 62(Pt 1): 72-82.
    Langer, G., S. X. Cohen, V. S. Lamzin, et al. (2008). "Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7." Nat Protoc 3(7):1171-1179.
    Laskowski, R. A., M. W. Macarthur, D. S. Moss, et al. (1993). "Procheck-a Program to Check the Stereochemical Quality of Protein Structures." Journal of Applied Crystallography 26:283-291.
    Laskowski, R. A., J. A. C. Rullmann, M. W. MacArthur, et al. (1996). "AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR." J Biomol NMR 8(4): 477-486.
    Murshudov, G. N., A. A. Vagin and E. J. Dodson (1997). "Refinement of macromolecular structures by the maximum-likelihood method." Acta Crystallogr D Biol Crystallogr 53(Pt 3):240-255.
    Sheldrick, G. M. (2008). "A short history of SHELX." Acta Crystallogr A 64(Pt 1):112-122.
    Winn, M. D., C. C. Ballard, K. D. Cowtan, et al. (2011). "Overview of the CCP4 suite and current developments." Acta Crystallogr D Biol Crystallogr 67(Pt 4):235-242.
    Angrand, P. O., F. Apiou, A. F. Stewart, et al. (2001). "NSD3, a new SET domain-containing gene, maps to 8p12 and is amplified in human breast cancer cell lines." Genomics 74(1):79-88.
    Brinkman, A. B., T. Roelofsen, S. W. Pennings, et al. (2006). "Histone modification patterns associated with the human X chromosome." Embo Reports 7(6):628-634.
    Carrozza, M. J., B. Li, L. Florens, et al. (2005). "Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription." Cell 123(4):581-592.
    Chignola, F., M. Gaetani, A. Rebane, et al. (2009). "The solution structure of the first PHD finger of autoimmune regulator in complex with non-modified histone H3 tail reveals the antagonistic role of H3R2 methylation." Nucleic Acids Res 37(9):2951-2961.
    Cock, P. J., T. Antao, J. T. Chang, et al. (2009). "Biopython:freely available Python tools for computational molecular biology and bioinformatics." Bioinformatics 25(11):1422-1423.
    Cortes-Saladelafont, E., K. Arias-Saez, D. Esteban-Oliva, et al. (2011). "Sotos syndrome:a novel nonsense mutation in nsdl gene, presenting with neonatal cutis taxa." Anales De Pediatria 75(2): 129-133.
    Douglas, J., K. Coleman, K. Tatton-Brown, et al. (2005). "Evaluation of NSD2 and NSD3 in overgrowth syndromes." European Journal of Human Genetics 13(2):150-153.
    Drobak, B. K. and B. Heras (2002). "Nuclear phosphoinositides could bring FYVE alive." Trends in Plant Science 7(3):132-138.
    Eustermann, S., J. C. Yang, M. J. Law, et al. (2011). "Combinatorial readout of histone H3 modifications specifies localization of ATRX to heterochromatin." Nature Structural & Molecular Biology 18(7):777-782.
    Fang, R., A. J. Barbera, Y. F. Xu, et al. (2010). "Human LSD2/KDMlb/AOF1 Regulates Gene Transcription by Modulating Intragenic H3K4me2 Methylation." Molecular Cell 39(2):222-233.
    Faravelli, F. (2005). "NSD1 mutations in Sotos syndrome." American Journal of Medical Genetics Part C-Seminars in Medical Genetics 137C(1):24-31.
    Finn, R. D., J. Mistry, J. Tate, et al. (2010). "The Pfam protein families database." Nucleic Acids Res 38(Database issue):D211-222.
    Fu, F. and D. F. Voytas (2013). "Zinc Finger Database (ZiFDB) v2.0:a comprehensive database of C2H2 zinc fingers and engineered zinc finger arrays." Nucleic Acids Res 41(D1):D452-455.
    Hayakawa, A., S. J. Hayes, D. C. Lawe, et al. (2004). "Structural basis for endosomal targeting by FYVE domains." Journal of Biological Chemistry 279(7):5958-5966.
    Holm, L. and P. Rosenstrom (2010). "Dali server:conservation mapping in 3D." Nucleic Acids Res 38(Web Server issue):W545-549.
    Hu, L., Z. Li, P. Wang, et al. (2011). "Crystal structure of PHD domain of UHRF1 and insights into recognition of unmodified histone H3 arginine residue 2." Cell Res 21(9):1374-1378.
    Iwase, S., B. Xiang, S. Ghosh, et al. (2011). "ATRX ADD domain links an atypical histone methylation recognition mechanism to human mental-retardation syndrome." Nature Structural & Molecular Biology 18(7):769-776.
    Jaju, R. J., C. Fidler, O. A. Haas, et al. (2001). "A novel gene, NSD1, is fused to NUP98 in the t(5;11)(q35;p15.5) in de novo childhood acute myeloid leukemia." Blood 98(4):1264-1267.
    Kamps, M. P., M. P. Pasillas and M. Shah (2011). "NSD1 PHD Domains Bind Methylated H3K4 and H3K9 Using Interactions Disrupted by Point Mutations in Human Sotos Syndrome." Human Mutation 32(3):292-298.
    Kizer, K. O., H. P. Phatnani, Y. Shibata, et al. (2005). "A novel domain in Set2 mediates RNA polymerase Ⅱ interaction and couples histone H3K36 methylation with transcript elongation." Molecular and Cellular Biology 25(8):3305-3316.
    Kurotaki, N., K. Imaizumi, N. Harada, et al. (2002). "Haploinsufficiency of NSD1 causes Sotos syndrome." Nature Genetics 30(4):365-366.
    Lallous, N., P. Legrand, A. G. McEwen, et al. (2011). "The PHD finger of human UHRF1 reveals a new subgroup of unmethylated histone H3 tail readers." Plos One 6(11):e27599.
    Lan, F., R. E. Collins, R. De Cegli, et al. (2007). "Recognition of unmethylated histone H3 lysine 4 links BHC80 to LSD1-mediated gene repression." Nature 448(7154):718-U714.
    Letunic, I., T. Doerks and P. Bork (2012). "SMART 7:recent updates to the protein domain annotation resource." Nucleic Acids Res 40(Database issue):D302-305.
    Li, Y. and H. Li (2012). "Many keys to push:diversifying the 'readership' of plant homeodomain fingers." Acta Biochim Biophys Sin (Shanghai) 44(1):28-39.
    Mansfield, R. E., C. A. Musselman, A. H. Kwan, et al. (2011). "Plant homeodomain (PHD) fingers of CHD4 are histone H3-binding modules with preference for unmodified H3K4 and methylated H3K9." Journal of Biological Chemistry 286(13):11779-11791.
    Misra, S. and J. H. Hurley (1999). "Crystal structure of a phosphatidylinositol 3-phosphate-specific membrane-targeting motif, the FYVE domain of Vps27p." Cell 97(5):657-666.
    Musselman, C. A., R. E. Mansfield, A. L. Garske, et al. (2009). "Binding of the CHD4 PHD2 finger to histone H3 is modulated by covalent modifications." Biochem J 423(2):179-187.
    Musselman, C. A., J. Ramirez, J. K. Sims, et al. (2012). "Bivalent recognition of nucleosomes by the tandem PHD fingers of the CHD4 ATPase is required for CHD4-mediated repression." Proc Natl Acad Sci U S A 109(3):787-792.
    Nielsen, A. L., P. Jorgensen, T. Lerouge, et al. (2004). "Nizpl, a novel multitype zinc finger protein that interacts with the NSD1 histone lysine methyltransferase through a unique C2HR motif." Molecular and Cellular Biology 24(12):5184-5196.
    Nimura, K., K. Ura, H. Shiratori, et al. (2009). "A histone H3 lysine 36 trimethyltransferase links Nkx2-5 to Wolf-Hirschhorn syndrome." Nature 460(7252):287-291.
    Qiao, Q., Y. Li, Z. Chen, et al. (2011). "The Structure of NSD1 Reveals an Autoregulatory Mechanism Underlying Histone H3K36 Methylation." Journal of Biological Chemistry 286(10):8361-8368.
    Qin, S., L. Jin, J. Zhang, et al. (2011). "Recognition of unmodified histone H3 by the first PHD finger of bromodomain-PHD finger protein 2 provides insights into the regulation of histone acetyltransferases monocytic leukemic zinc-finger protein (MOZ) and MOZ-related factor (MORF)." Journal of Biological Chemistry 286(42):36944-36955.
    Qiu, Y., L. Liu, C. Zhao, et al. (2012). "Combinatorial readout of unmodified H3R2 and acetylated H3K14 by the tandem PHD finger of MOZ reveals a regulatory mechanism for HOXA9 transcription." Genes Dev 26(12):1376-1391.
    Rajakumara, E., Z. T. Wang, H. H. Ma, et al. (2011). "PHD Finger Recognition of Unmodified Histone H3R2 Links UHRF1 to Regulation of Euchromatic Gene Expression." Molecular Cell 43(2): 275-284.
    Rechtsteiner, A., S. Ercan, T. Takasaki, et al. (2010). "The histone H3K36 methyltransferase MES-4 acts epigenetically to transmit the memory of germline gene expression to progeny." PLoS Genet 6(9).
    Sanchez, R. and M. M. Zhou (2011). "The PHD finger:a versatile epigenome reader." Trends in Biochemical Sciences 36(7):364-372.
    Tsai, W. W., Z. X. Wang, T. T. Yiu, et al. (2010). "TRIM24 links a non-canonical histone signature to breast cancer." Nature 468(7326):927-U320.
    Vakoc, C. R., S. A. Mandat, B. A. Olenchock, et al. (2005). "Histone H3 lysine 9 methylation and HP1 gamma are associated with transcription elongation through mammalian chromatin." Molecular Cell 19(3):381-391.
    Wang, G. G., L. Cai, M. P. Pasillas, et al. (2007). "NUP98-NSD1 links H3K36 methylation to Hox-A gene activation and leukaemogenesis." Nat Cell Biol 9(7):804-812.
    Xi, Q. R., Z. X. Wang, A. I. Zaromytidou, et al. (2011). "A Poised Chromatin Platform for TGF-beta Access to Master Regulators." Cell 147(7):1511-1524.
    Zeng, L., Q. Zhang, S. Li, et al. (2010). "Mechanism and regulation of acetylated histone binding by the tandem PHD finger of DPF3b." Nature 466(7303):258-U138.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700