用户名: 密码: 验证码:
M_3Si_6O_(12)N_2:RE(M=Sr,Ba)绿色荧光粉的制备及荧光性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白光LED(light-emitting diodes)作为固态照明的重要组成部分,因其具有效率高、寿命长、环境友好等优点,被认为是新一代的绿色照明光源。实现白光LED最常用的方式是采用GaN蓝光芯片配合黄色荧光粉(Y3Al5O12:Ce3+),由于这种方式合成的白光LED光谱中缺少红色和绿色部分导致显色指数较低、色温偏高,需要添加红色和绿色荧光粉,以满足新型白光LED的要求。传统基质红色和绿色荧光粉无法满足新型白光LED的要求,这就促使人们寻找新的基质材料。氮化物/氮氧化物基质荧光粉因其优异的荧光性能和高的稳定性,己在新型白光LED中得到广泛的应用。氮化物红色荧光粉如Sr2Si5N8:Eu2+和(Ca,Sr)AlSiN3:Eu2+已经实现商品化;氮氧化物绿色荧光粉仍然面临较多的问题:如层状结构的MSi202N2:Eu2+温度特性差,β-sialon:Eu2+的合成条件比较苛刻。因此,亟需开发一种发光效率高、稳定性好、易于制备的氮化物/氮氧化物绿色荧光粉。Ba3Si6O12N2:Eu2+荧光粉具备高稳定性和优异发光性能,但目前关于该荧光粉的报道比较少,研究还处于初级阶段,尤其在制备工艺、发光性能、光谱调谐性能等方面还有待于进一步的研究。
     本论文采用高温固相法合成了(Ba,Sr)3Si6O12N2:Eu2+绿色荧光粉,以提高荧光粉的发光性能为目的,在制备工艺优化的基础上,研究了其光谱调谐性能。依据晶体场效应、质心位移以及斯托克斯位移效应等基本理论,研究了激活剂浓度、碱土金属阳离子替换、氮/氧比例调节、共激活剂掺杂对荧光粉光谱调谐作用。
     荧光材料制备工艺对其物相结构和发光性能有重要的影响。本论文比较了不同Ba源对荧光粉结构及荧光性能的影响,发现选用BaCO3为反应原料,在1300℃的反应温度、8h的保温时间及氨分解气氛(N2:H2=1:3)条件下合成了具有Ba3Si6O12N2结构的荧光粉,且发光强度较高。二次焙烧能够提高荧光粉的发光性能;同时添加不同助熔剂也可提高荧光粉的荧光性能,其中BaF2和BaCl2的效果最显著,助熔剂BaF2含量为2wt%时荧光粉的发光强度最高。
     反应原料中加入过量Si3N4有助于合成纯Ba3Si6O12N2相。通过对合成样品的物相分析,解释了过量Si3N4合成纯相的原因及反应机理。结果发现:Ba3Si6O12N2相的合成过程首先是由Si02和BaCO3在低温合成偏硅酸盐相,再由偏硅酸盐相和Si3N4原料合成目标相。然而,低温条件合成的偏硅酸盐相并不是预想的Ba2Si3O8,而是Ba5Si8O21(?)目;中间产物的改变导致反应历程的改变以及Si3N4原料消耗量的增加。
     系统研究了Eu2’离子激活Ba3Si6O12N2荧光粉的结构及荧光性能。研究发现,该荧光粉可在300-500nm区域高效激发,并能实现470—560nm黄绿光区域的发射,峰值波长为525nm,半高宽为70nm:激活剂Eu2+离子进入晶格后只占据Ba2位置。Ba3Si6O12N2:Eu2+具有优异的温度特性,200℃时发光强度约为室温的65%,明显优于正硅酸盐绿粉。随着激活剂Eu2+掺杂浓度增加晶体场强度逐渐增强,4f65d1-4f7的跃迁能最逐渐降低,发射波长发生红移,实现了发射峰值波长由520到530nm的调节。同时还发现,随着Eu2+离子浓度的增加Ba3-xSi6O12N2:xEu2+荧光粉的发光强度先增加后降低,激活剂Eu2+的猝灭浓度为x=0.3,是由电偶极子-偶极子交互作用引起的。
     碱土金属阳离子替换可调节荧光粉晶体结构、改变晶体场强度,进而改善荧光粉的光色性能。合成了(Ba3-xSrx)Si6O12N2:Eu2+系列荧光粉,发现Sr在Ba3Si6O12N2中为有限固溶。随Sr含量的增加导致晶体场劈裂加剧以及斯托克斯位移增加,导致发射峰值波长由527nm红移至543nm;同时由于Sr的掺入导致更多的5d激发态电子经无辐射跃迁弛豫到基态,引起发光强度逐渐降低。采用(Ba,Sr)3Si6O12N2:Eu2+配合蓝光芯片合成的白光LED的色坐标可从(0.2262,0.4181)变化到(0.2650,0.3092),荧光粉半高宽的增加可使显色指数可由49.7增加到59.5。
     氮氧化物荧光材料中氮氧元素调节对荧光性能有重要的影响。根据XRD谱图以及氮氧含量分析,Ba3Si6O12-δN2+2δ/3:Eu2+荧光粉在-0.6≤δ≤1.8区间可以保持Ba3Si6O12N2(?)晶体结构,且随着N/O比例的增加晶胞逐渐膨胀。随着δ值由-0.6增加到1.8,在N元素引起的晶格膨胀效应和电荷增强效应的共同作用下,Eu2+猝灭浓度随δ值增加先降低后升高,δ=0时猝灭浓度最低;Eu2+离子的浓度猝灭的机理均是电偶极子-偶极子交互作用。同时还发现随着δ值的增加荧光粉的发光强度先升高后降低,δ=0时发光强度最高;随着δ值增加引起晶格膨胀,导致荧光粉的发射波长整体发生蓝移。随着δ值增加荧光粉色坐标变化较大,可由(0.2888,0.6263)变化到(0.3085,0.6192),同时色温由6241K降低到6098K。
     荧光粉中激活剂的共掺杂常伴随着能量传递过程,是改善荧光粉发光性能的常用手段。合成了Ba3-x-ySi6O12N2:xEu2+,yCe3+荧光粉,发现体系中存在Ce3+向Eu2+能量传递的现象;低浓度时Ce3+向Eu2+离子传递能量使得Eu2+的发射增强:随着浓度增加Ce3+离子之间的能量传递占据主导并减少了传递给Eu2+离子的能量,降低了Eu2+离子的发射强度,Ce3+离子的临界浓度为y=0.6。同时发现Ce3+离子的掺入导致晶胞收缩(RCe3+<REu2+)晶体场增强,引起发射峰值波长红移。合成了Mn2+和Eu2+共激活的Ba3Si6O12N2荧光粉,研究发现随着Mn2+掺杂量的增加Eu2+的发光强度降低,证实了Eu2+(?)向Mn2+存在能量传递现象,且传递速率与Mn2+含量呈非线性关系,经分析表明Eu2+和Mn2+能量传递机理是电偶极子-偶极子跃迁。
White light-emitting diodes (LED), known as a pivotal component of solid-state lighting (SSL), have considered being the new-generation lighting source because of high luminous efficiency, long lifetime, and low pollution. Typically, the common approach to making white LED is combining blue LED chip and yellow-emitting phosphor (Y3Al5O12:Ce3+), which leading to the low colour rendering index (CRI) and high correlated colour temperature (CCT) due to lack of red and green light in the light spectrum. The red and green phosphors should be added to fulfill the novel white LED symbolized by high CRI and low CCT. The fact that presently used red and green phosphors is insufficient for novel white LED, which boosted investigations of new multinary phosphors. Nitride/oxynitride phosphors have demonstrated outstanding photoluminescent properties and high stability, which resulting in the extensive applications in white LED.(Ca,Sr)AlSiN3:Eu2+and Sr2Si5N8:Eu2+for red phosphor have been commercialized; green phosphors confront some problems:layered MSi2O2N2:Eu2+has strong thermal quenching, and the synthesis of β-sialon:Eu2+is not facile. It is thus necessary to develop highly efficient green oxynitride/nitride phosphors that are suitable for white LED. The oxynitride Ba3Si6O12N2:Eu2+phosphor with high stability and excellent luminescent property has been developed in2008. However, the research of this oxynitride phosphor is on its primary state, and the preparation techniques, luminescent properties and spectral tuning properties need to be further researched.
     In this paper, Eu2+-activated (Ba,Sr)3Si6O12N2phosphors were synthesized via the solid-state reaction. The spectral tuning properties have been investigated on the basis of optimized preparation techniques for the destination of improving luminescent property. The activator-doping, alkaline metal cation substitution, anion substitution of N/O and co-activator-doping in oxynitride host are discussed according to fundamental theories of spectrum tuning such as crystal field effect, centroid shift and Stokes shift.
     It is believed that the preparation technique plays an important role on the crystal structure and luminescence properties. The phosphor with pure Ba3Si6O12N2phase and higher luminous intensity could be obtained while choosing the BaCO3as Ba source, and calcining raw material mixture at1300℃for8h under N2/H2atmosphere. The twice firing can enhance the emission intensity of phosphors, and the introduction of fluxes will promote the luminescence property, especially BaF2and BaCl2flux. It is discovered that the luminescent intensity will reach the peak while adding2wt%BaF2flux.
     It is found that excesses in Si3N4raw material will be conducive to the formation of pure Ba3Si6O12N2phase. Phase analysis results for those phosphors which synthesized through variational Si3N4content in raw mixture and different calcination temperature, disclose the excess Si3N4dependence of pure phase and the reaction mechanism. The results show the SiO2and BaCO3raw material would generate the metasilicate phase at relatively low temperature, and then this synthetic metasilicate phase would react with Si3N4to form the pure Ba3Si6O12N2phase. However, this intermediate metasilicate phase is proved to be Ba5Si8O21rather than the preconceived Ba2Si3O8phase, which leads to the changes in the following steps and more Si3N4consumptions.
     The crystal structure and luminescent properties of this Eu2+-doped Ba3Si6O12N2phosphor have been systematic investigated. It is revealed a broad excitation spectrum extending from250to500nm along with a green-emitting band of470-560nm with peak wavelength of525nm and full-width at half-maximum (FWHM) of70nm from photoluminesccnce(PL) and photoluminescence excitation (PLE) spectra. The activator Hit2+ion would locate at the site of Ba2in the lattice. Ba3Si6O12N2:Eu2+phosphor shows excellent thermal stability, and still64%of the emission intensity remains when heated up to200°C, which is clearly better than commercial silicate green phosphors. It is found that the emission band shifts toward high energy due to reduction of crystal field strength caused by lattice expansion. It is revealed that the activator is a key component in luminescent material. The crystal field strength will be boost as the increasing of Eu2+concentration, and then lower the4f65d1-4f7transfer energy, which leads to the red shift of emission wavelength from520nm to530nm. Meanwhile, the relationship between emission intensity and Eu2+concentration reveals a parabola curve, and the quenching concentration is x=0.3in Ba3-xSi6O12N2:xEu2+phosphor. The electric dipole-dipole interaction is assumed to be the mechanism of concentration related quenching.
     The alkaline earth cation substitution will improve photoluminescent properties of phosphors by adjusting crystal structure and changing crystal field strength. High efficiency green-emitting solid solution (Ba3-xSrx)Si6O12N2:Eu2+phosphors were produced, and the Limited solid solubility of Sr in Ba3Si6O12N2has been discovered. All emission spectra show a tendency of redshift while increasing the Sr/Ba ratio because of large crystal field splitting and Stokes shift. The x value dependence of emission intensity is discovered, which is explained by the enhanced probability of excited electron via nonradiative transition. In addition, white LED with chromaticity coordinates of (0.2262,0.4181) to (0.2650,0.3092) and CRI of49.7to59.5due to the broaden FWHM, are fabricated by packing blue chips and as-synthesized phosphors.
     The adjustments of N and O contents in oxynitride luminescent material have significant impacts on photoluminescent property. The XRD patterns and N/O automatic analyzer results show that the N/O substitution becomes available in Ba3Si6O12N2lattice for this Eu2+doped Ba3Si6O12-δN2+2δ/3phosphors in the range of δ=-0.6-1.8. The lattice expansion has been proved due to the N/O substitution according to the XRD patterns. The quneching concentration displays a parabola with a valley value of0.3as the δ value increasing from-0.6to1.8due to the combined impacts of N induced lattice expansion and charge enhancement. All the quenching mechanisms can ascribe to the electric dipole-dipole interaction on the basis of PL and PLE spectra. The8value dependence of luminescent intensity reveals a parabola curve with the peak of δ=0, and the blue shift of emission wavelength has been testified because the lattice expansion by substituting more O with N. The chromaticity coordinates shift from green (0.2756,0.6167) to yellow-green (0.3507,0.6067), and the colour temperature decreased from6241K to6098K in Ba3Si6O12-δN2+2δ/3:Eu2+phosphors.
     The activator co-doping in phosphors is affirmed to be a common approach to improve luminescent properties due to the energy transfer process of different activators. The Ba3+x-ySi6O12N2:xEu2+,yCe3+phosphors have been prepared, and the energy transfer from Ce3+ions to Eu2+ions have been demonstrated. The emission intensity of Eu2+will be enhanced due to the energy transfer from Ce3+to Eu2+at lower Ce3+ion doped phosphors, and then the emission intensity begin to diminish while doping more Ce3+ions for the domination of energy transfer between Ce3+ions. The critical concentration of Ce3+is confirmed to be y=0.6in Ba2.7-ySi6O12N2:0.3Eu2+,yCe3+phosphors. The Ce3+ion dependence of emission spectrum redshift is discovered, which is explained by the crystal field enhancement caused by the lattice shrink due to the Ce3'ion substitution. The Ba3Si6O12N2:Eu2+,Mn2+phosphors have been synthesized, and the energy transfer from Eu2+to Mn2+is found because of the decreased luminescent intensity by adding more Mn2+ion in Ba3Si6O12N2:Eu2+. The nonlinear relationship between energy transfer efficiency and Mn2+concentration has been verified, and the energy transfer mechanism from Eu2+to Mn2+is assumed to be the dipole-dipole transition.
引文
[1]Schnick W.. Shine a light with nitrides[J]. Phys. status solidi-R.,2009,3(7-8):113-114.
    [2]Round H. J.. A note on carborundum[J]. Electrical World,1907,49:309-310.
    [3]Destriau G.. Electroluminescence in ZnS[J]. J. Chim. Phys.1936,33:587-590.
    [4]Holonyak N., Bevacqua S. F.. Cohrent (visible) light emission from Ga(As1-xPx) junctions[J]. Appl. phys. Lett.,1962,1(4):82-83.
    [5]Sugawara H., Ishikawa M., Hatakoshi G. High-efficiency InGaAlP/GaAs visible light-emitting diodes[J]. Appl. Phys. Lett.,1991,58(10):1010-1012.
    [6]Goldenberg B. L., Zook J. D., Ulmer R. J., Ultraviolet and violet light-emitting GaN diodes grown by low-pressure metalorganic chemical vapor deposition[J]. Appl. Phys. Lett.,1993,64(4):381-383.
    [7]Amano H., Sawaki N., Akasaki I., et al. Metalorganic vapor phase epitaxial growth of a high quality GaN film using an A1N buffer layer[J]. Appl.Phys. Lett.,1986,48: 353-355.
    [8]Amano, H., Kito M., Hiramatsu K., et al. P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI)[J]. Jap. J. Appl. Phys.,1989,28: 2112-2114.
    [9]Dupuis R. D., Krames M. R.. History, development, and applications of high-brightness visible light-emitting diodes[J]. IEEE J. Lightwave Techn.,2008,26 (9):1154-1171.
    [10]Krames M. R., Steigerwald D. A., Kish F. A., et al. Ill-nitride light-emitting device with increased light generating capability[P]. United States Patent: US6486499B1, 2002-06-13.
    [11]Sato H., Chung R. B., Hirasawa H., et al. Optical properties of yellow light-emitting diodes grown on semipolar (11-22) bulk GaN substrates[J]. Appl. Phys. Lett.,2008,92: 221110-221112.
    [12]Vampola K. J., Fellows N. N., Masui H., et al. Highly efficient broad-area blue and white light-emitting diodes on bulk GaN substrates[J]. Physica Status Solidi A,2009, 206 (2):200-202.
    [13]Nakamura S., Mukai T., Senoh M.. Candela-class high brightness InGaN/AlGaN double-heterostructure blue-light emitting diodes[J]. J. Appl. Phys. Lett.,1994,64 (13): 1687-1691.
    [14]Nakamura S., Fasol G. The blue laser diode:GaN based light emitters and lasers[M]. Berlin:Springer-Verlag,1997:5-20.
    [15]Sheu J. K., Chang S. J., Kuo C. H., et al. White-light emission from near UV InGaN-GaN LED chip precoated with blue/green/red phosphors[J]. IEEE Photonics. Tec. Lett.,2003,15(1):18-20.
    [16]徐叙瑢,苏勉曾.发光学与发光材料[M].北京:化学工业出版社.2004:322-324.
    [17]Xie R. J., Li Y. Q., Hirosaki N., et al. Nitride Phosphors and Solid-State Lighting[M]. CRC Press,2011,1:2-3.
    [18]张梅,何鑫,丁唯嘉,等.白光LED用氮(氧)化合物荧光粉[J].化学进展,2010,22:376-383.
    [19]Jiang Y. D., Villalobos G., Souriau J. C., et al. Synthesis and properties of green phosphor SrGa2S4:Eu2+ for field emission displays by an environmentally clean technique[J]. Solid State Comm.,2000,113:475-478.
    [20]Hu Y. S., Zhuang W. D., Ye H. Q., et al. A novel red phosphor for white light emitting diodes[J]. J. Alloys Compd.,2005,390(1-2):226-229.
    [21]Zeng Q. H., Zhang X. G., He P., et al. Research on rare-earth tungstates red Phosphors for white-light emitting diodes[J].J. Inorg. Mater.,2010,25:1009-1014.
    [22]Lu Y. R., Huang C. H., Chen T. M., et al. Effect of Mn substitution on electronic structure of Ca9Y(PO4)7:Eu2+, Mn2+ phosphor determined by X-ray absorption spectroscopy[J]. Chem.Phys. Lett.,2011,515:245-248.
    [23]Jung K. Y., Lee H. W., Kang Y. C., et al. Luminescent properties of (Ba,Sr)MgAl10O17:Mn, Eu green phosphor prepared by spray pyrolysis under VUV excitation[J]. Chem. Mater.,2005,17:2729-2734.
    [24]Kim J. S., Park Y. H., Kim S. M., et al. Temperature-dependent emission spectra of M2SiO4:Eu2+ (M=Ca, Sr, Ba) phosphors for green and greenish white LEDs[J]. Solid State Commun.,2005,133:445-448.
    [25]Liebau F.. Structural chemistry of silicates[M]. Springer Verlag, Berlin,1985: 136-139.
    [26]Liebau F.. Silicates and perovskites:two themes with variations[J]. Angew. Chem., 1999,111:1845-1850.
    [27]Weiss A. Replikationen und Evolution in anorganischen systemen[J]. Angew. Chem., 1981,93:843-854.
    [28]Lundqvist M., Nygren P., Jonsson B. H., et al. Induction of structure and function in a designed peptide upon adsorption on a silica nanoparticle[J]. Angew. Chem.,2006, 118:8349-8353.
    [29]Juza R., Weber H. H., Meyer-Simon E.. Ober ternare nitrade und oxonitride von elementen der 4. gruppe[J]. Z. Anorg. Allg. Chem.,1953,273:48-64.
    [30]Lange H., WOtting G., Winter G.. Siliciumnitrid-vom pulver zum keramischen[J]. Angew. Chem.,1991,103:1606-1625.
    [31]Schnick W.. Solid state chemistry with nonmetal nitrides[J]. Angew. Chem.,1993,105: 846-858.
    [32]Kim K., Lambrecht W. R. L., Segall B.. Elastic constants and related properties of tetrahedrally bonded BN, AIN, GaN and InN[J]. Phys. Rev. B,1996,53:16310-16326.
    [33]Baur W. H.. Occurrence of nitride N in silicate minerals[J]. Nature,1972,240: 461-462.
    [34]Bischoff A., Grund T., Jording T., et al, First refinement of the sinoite structure of a natural crystal from the neuschwanstein (EL6) meteorite[J]. Z. Naturforsch. B,2005, 60:1231-1234.
    [35]Schnick W., Huppertz H.. Nitridosilicates-a aignificant extension of silicate chemistry[J]. Chem. Eur. J.1997,3:679-683.
    [36]Xie R. J., Hirosaki N.. Silicon-based oxynitride and nitride phosphors for white LEDs-A review[J]. Sci Technol. Adv. Mater.,2007,8 (728):588-600.
    [37]赵昕冉,傅仁利,宋秀峰,等.白光LED用硅基氮(氧)化物荧光转换材料的研究进展[J].硅酸盐通报,2009,5(28):965-972.
    [38]van Krevel J. W. H., Hintzen H. T., Metselaar R., et al. Long wavelength Ce3+ emission in Y-Si-O-N materials[J]. J. Alloys Comp.,1998,268:272-277.
    [39]Hoppe H. A., Lutz H., Morys P., et al. Luminescence in Eu2+ doped Ba2Si5N8: fluorescence, thermo-luminescence, and up-conversion[J]. J. Phys. Chem. Solids,2000, 61 (12):2001-2006.
    [40]Uheda K., Takizawa H., Endo T., et al. Synthesis and luminescent property of Eu3+ doped LaSi3N5 phosphor[J]. J. Lumin.,2000,967:87-89.
    [41]van Krevel J. W. H., Rutten J. W. T., Mandal H., et al. Luminescence properties of terbium-, cerium-, or europium-doped [alpha]-Sialon materials[J]. J. Solid State Chem., 2002,165:19-24.
    [42]Hirosaki N., Xie R. J., Kimoto K.. Characterization and properties of green-emitting β-SiAlON:Eu powder phosphors for white light-emitting diodes[J]. Appl. Phys. Lett., 2005,86(211):9051-9053.
    [43]Li Y. Q., Delsing A. C. A., de With G., et al. Luminescence properties of Eu2+-activated alkaline-earth silicon-oxynitride MSi2O2-δN2+2/3δ(M=Ca, Sr, Ba):a promising class of novel LED conversion[J]. Chem. Mater.,2005,17:3242-3248.
    [44]Mueller-Mach R., Mueller G., Krames M. R., et al. Highly efficient all nitride phosphor-converted white light emitting diode[J]. Phys. Status Solidi A,2005,202(9): 1727-1732.
    [45]Li Y. Q., de With G., Hintzen H. T., et al. Luminescence properties of Eu2+ and Ce3+ activated BaYSi4N7[J]. J. Alloys. Compd.,2004,385(122):1-11.
    [46]Uheda K., Hirosaki N., Yamamoto H., et al. Host lattice materials in the system Ca3N2-AlN-Si3N4 for white light emitting diode[J]. Phys. Status. Solids A,2006,203: 2712-2717.
    [47]Mikami M., Shimooka S., Uheda K., et al. New green phosphor Ba3Si6O12N2:Eu for white LED:crystal structure and optical properties[J]. Key Eng. Mater.,2009,403: 11-14.
    [48]林海凤,王海波,张瑞西,等.白光LED用氮化物及氮氧化物红色荧光粉的研究现状[J].材料导报,2010,24(11):10-13.
    [49]Curie D.. Luminescence in crystals[M]. Paris:Dunod,1960:1-2.
    [50]许少鸿.固体发光[M].清华大学岀版社,2011:4-5.
    [51]李建宇.稀土发光材料及其应用[M].化学工业岀版社,2003:14-20.
    [52]解文杰.白光LED用硅基氧氮化物荧光粉的研究[D].合肥:中国科技大学,2010:13-15.
    [53]黄昆,谢希德著.半导体物理学[M].北京:科学出版社,1958:353-358.
    [54]Garcia Sole J., Bausa L. E., Jaque D.. An introduction to the optical spectroscopy of inorganic solids[M]. UK:John Wiley & Sons,2005:183-185.
    [55]Lu Y. R., Huang C. H., Chen T. M., et al. Effect of Mn substitution on electronic structure of Ca9Y(PO4)7:Eu2+,Mn2+ phosphor determined by X-ray absorption spectroscopy[J]. Chem.Phys. Lett.,2011,515:245-248.
    [56]Zhang R. L., MaedaT., Maruta R., et al. Luminescence enhancement of Eu2+,Ce3+ co-doped Ba3Si5O13-δNδ phosphors[J]. J. Solid State Chem.,2010,183:620-623.
    [57]罗新宇,庄卫东,胡运生,等.一种硅基氮化物红色荧光体及其制备方法[P].·中国专利:CN101781558A,2010-07-21.
    [58]Zhang S. S., Zhuang W. D., Zhao C. L., et al. Study on (Y,Gd)3(Al,Ga)5O12:Ce Phosphor[J]. J. Rare Earths,2004,22 (1):118-121.
    [59]Geusic J. E., Marcos H. M., Van Uitert L. G.. Laser oscillation in Nd-doped yttrium aluminium, yttrium gallium and gadolinium garnets[J]. Appl. Phys. Lett.,1964,4: 182-184.
    [60]Li Y. Q., Hirosaki N., Xie R. J., et al. Yellow-orange-emitting CaAlSiN3:Ce3+ phosphor: structure, photoluminescence, and application in white LEDs[J]. Chem. Mater.,2008, 20:6704-6714.
    [61]Xie R. J., Hirosaki N., Mitomo M., at al. Photoluminescence of rare-earth-doped Ca-a-SiAlON phosphors:composition and concentration dependence[J]. J. Am. Ceram. Soc.,2005,88:2883-2888.
    [62]Schlieper T., Schnick W.. Nitride silicate.Ⅰ:high temperature synthesis and crystal structure of Ca2Si5N8[J]. Z. Anorg. Allg. Chem.,1995,621:1037-1041.
    [63]Schlieper T., Milius W., Schnick W.. Nitrido silicate.Ⅱ:high temperature syntheses and crystal structures of Sr2Si5N8 and Ba2Si5N8[J]. Z. Anorg. Allg. Chem.,1995,621: 1380-1384.
    [64]Fang C. M., Hintzen H. T., de With G., et al. Electronic structure of the alkaline-earth silicon nitrides M2Si5N8 (M=Ca and Sr) obtained from first-principles calculations and optical reflectance spectra[J]. J. Phys.:Condens. Mat.,2001,13:67-76.
    [65]Hintzen H. T., van Krevel J. W. H., Botty Ir G. Red emitting luminescent materials[P]. European Patent:EP1104799A1,2001-6-6.
    [66]Braune B., Waltl G., Bogner G., et al. Light source using a yellow-to red-emitting phosphor[P]. International Patent:WO0140403A1,2001-7-6.
    [67]Bogner G., Botty G., Braune B., et al. Light source using a yellow-to-red-emitting phosphor[P]. United States Patent:US 6649946B2,2003-11-18.
    [68]布劳尼,怀特尔,波格纳,等.使用发射黄-红光的磷光体的光源[P].中国发明专利:CN1200992C,2005-5-11.
    [69]玉置宽人,龟岛正敏,高岛优,等.氮化物荧光体及其制造方法及发光装置[P].中国发明专利:CN1522291A,2004-8-18.
    [70]Li Y. Q., van Steen J. E. J., van Krevel J. W. H., et al. Luminescence properties of red-emitting M2Si5N8:Eu2+(M=Ca, Sr, Ba) LED conversion phosphors[J]. J. Alloy. Comp.,2006,417:273-279.
    [71]Piao X. Q., Horikawa T., Hanzawa H., et al. Photoluminescence properties of Ca2Si5N8:Eu2+ nitride phosphor prepared by carbothermal reduction and nitridation method[J]. Chem. Lett.,2006,135(3):334-335.
    [72]Piao X. Q., Machida K., Horikawa T., et al. Self-propagating high temperature synthesis of yellow-emitting Ba2Si5N8:Eu2+ for white light-emitting diodes[J]. Appl. Phys Lett.,2007,91:041908-1-3.
    [73]Piao X. Q., Horikawa T., Hanzawa H., et al. Preparation of (Sr1-xCax)2Si5N8:Eu2+ solid solution and their luminescence properties [J]. J. Electrochem.Soc.,2006,153(12): 232-235.
    [74]Xie R. J., Hirosaki N., Suehiro T., et al. A simple, efficient synthetic route to Sr2Si5N8:Eu2+-based red phosphors for white light-emitting diodes[J]. Chem. Mater., 2006,18:5578-5583.
    [75]Duan C. J., Otten W. M., Delsing A. C. A., et al. Preparation and photoluminescence properties of Mn2+ -activated M2Si5N8 (M=Ca, Sr, Ba) phosphors[J]. Solid State Chem., 2008,181:751-757.
    [76]Teng X. M., Zhuang W. D., Hu Y. S., et al. Luminescence properties of nitride red phosphor for LED[J]. J. Rare Earths,2008,26(5):652-655.
    [77]Teng X. M., Liu Y. H., Zhuang W. D., et al. Preparation and luminescence properties of the red-emitting phosphor (Sr1-xCax)2Si5N8:Eu2+ with different Sr/Ca ratios[J]. J. Rare Earths,2009,27(1):58-61.
    [78]Teng X. M., Liu Y. H., Zhuang W. D., et al. Luminescence properties of Tm3+ co-doped Sr2Si5N8:Eu2+ red phosphor[J]. J. Rare Earths,2010,130(5):851-854.
    [79]Uheda K., Hirosaki N., Yamamoto Y., et al. Luminescence properties of a red phosphor, CaAlSiN3:Eu2+, for white light-emitting diodes[J]. Electrochem. Solid ST.,2006,9: 22-25.
    [80]Piao X. Q., Machida K., Horikawa T., et al. Preparation of CaAlSiN3:Eu2+ by self-propagating high-temperature synthesis and their luminescent properties[J]. Chem. Mater.,2007,19:4592-4599.
    [81]Li J. W., Watanabe T., Wada H., et al. Low-temperature crystallization of Eu-doped red-emitting CaAlSiN3 from alloy derived ammonometallates[J]. Chem. Mater.,2007, 19:3592-3594.
    [82]Li J. W., Watanabe T., Sakamoto N., et al. Synthesis of a multinary nitride, Eu-doped CaAISiN3, from alloy at low temperatures[J]. Chem. Mater.,2008,20:2095-2105.
    [83]Watanabe H., Wada H., Seki K., et al. Synthetic method and luminescence properties of SrxCa1-xAlSiN3:Eu2+ mixed nitride phosphors[J]. J. Electrochem. Soc.,2008,155: 31-36.
    [84]Shen Y., Zhuang W. D., Liu Y. H., et al. Preparation and luminescence properties of Eu2+ -doped CASN-sinoite multiphase system for LED[J]. J. Rare Earths,2010,28(2): 289-291.
    [85]刘元红,何华强,刘荣辉,等.一种氮化物荧光粉、其制造方法及含该荧光粉的发光装置[P].中国发明专利:CN103045267A,2013-4-17.
    [86]何华强,刘荣辉,刘元红,等.一种红色荧光体、其制造方法及含该荧光体的发光装置[P].中国发明专利:CN103045266A,2013-4-17.
    [87]何华强,刘元红,刘荣辉,等. 一种LED红色荧光物质及含有该荧光物质的发光器件[P].中国发明专利:CN103045256A,2013-4-17.
    [88]Hirosaki N., Ueda K., Yamamoto H.. Phosphor and Light Emission Appliance Using Phosphor[P]. International Patent:WO2005052087,2005-06-09.
    [89]永富晶,坂根坚之,后藤昌大,等.荧光物质及其制法及使用它的光源和发光二极管[P].中国发明专利:CN1683470A,2005-10-19.
    [90]Hecht C., Stadler F., Schmidt P. J., et al. SrAlSi4N7:Eu2+ -a nitridoalumosilicate phosphor for warm white light (pc) LEDs with edge-sharing tetrahedra[J]. Chem. Mater.,2009,21:1595-1601.
    [91]Liu T. C., Cheng B. M., Hu S. F., et al. Highly stable red oxynitride β-SiAlON:Pr3 phosphor for light-emitting diodes[J]. Chem. Mater.,2011,23:3698-3705.
    [92]Zhang M., Wang J., Zhang Z., et al. A tunable green alkaline-earth silicon-oxynitride solid solution (Ca1-xSrx)Si2O2N2:Eu2+ and its application in LED[J]. Appl. Phys. B, 2008,93:829-835.
    [93]Song Y. H., Park W. J., Yoon D. H. Photoluminescence properties of Sr1xSi2O2N2:Eu2+x as green to yellow-emitting phosphor for blue pumped white LEDs[J]. J. Phys. Chem. Solids,2010,71:473-475.
    [94]Song X. F., He H., Fu R. L., et al. Photoluminescent properties of SrSi2O2N2:Eu2 phosphor:concentration related quenching and red shift behavior[J]. J. Phys. D:Appl. Phys.,2009,42:1-6.
    [95]Jung K.. Y., Seo J. H.. Preparation of fine sized SrSi2O2-δN2+2/3δ:Eu2+ phosphor by spray pyrolysis and its luminescent characteristics[J]. Electrochem Solid ST.,2008,11(7): 64-67.
    [96]Oyama Y., Kamigaito O.. Solid Solubility of Some Oxides in S13N4[J]. Jpn. J. Appl. Phys.,1971,10:1637-1637.
    [97]Jack K. H., Wilson W.. I. Ceramics based on the Si-Al-O-N and related systems Nature phys[J]. Science,1972,238:28-29.
    [98]Xie R. J., Hirosaki N., Mitomo M., et al. Strong green emission from a-sialon activated by divalent ytterbium under blue light irradiation[J]. J. Phys. Chem. B,2005, 109:9490-9494.
    [99]Xie R. J., Hirosaki N., Li H. L., et al. Synthesis and photoluminescence properties of β-SiAlON:Eu2+(Si6-zAlzOzN8-z:Eu2+)[J]. J. Electrochem. Soc.,2007,154:314-319.
    [100]Fang C. M., Li Y. Q., Hintzen H. T., et al. Crystal and electronic structure of the novel nitrides MYSi4N7 (M=Sr, Ba) with peculiar NSi4 coordination[J]. J. Mater. Chem.,2003,13(6):1480-1483.
    [101]Li Y. Q., Fang C. M., de With G., et al. Preparation, structure and luminescence properties of Eu2+ and Ce3+ -doped SrYSi4N7[J]. J. Solid State Chem.,2004,177: 4687-4690.
    [102]Izumi F., Mitomo M., Suzuki J. Structure refinement of yttrium a-sialon from X-ray powder profile data[J]. J. Mater. Sci. Lett.,1982,1:533-535.
    [103]Mikami M., Kijima N..5d Levels of rare-earth ions in oxynitride/nitride phosphors: To what extent is the idea covalency reliable?[J]. Opt. Mater.,2010,33(2):145-148.
    [104]Dorenbos P.. Energy of the first 4f7→4f65d transition of Eu2+ in inorganic compounds[J]. J. Lumin.,2003,104:239-260.
    [105]Stadler F., Schnick W.. The New Layer-Silicates Ba3Si609N4 and Eu3Si6O9N4[J]. Z. Anorg. Allg. Chem.,2006,632:949-954.
    [106]Braun C., Seibald M., Boger S. L., et al. Material properties and structural characterization of M3Si6O12N2:Eu2+(M=Ba, Sr)-a comprehensive study on a promising green phosphor for pc-LEDs[J]. Chem. Eur. J.,2010,16:9646-9657.
    [107]Poroba D. G., Kishore M. S., Kumar N. P., et al. Synthesis and luminescence properties of green oxynitride phosphor[J]. ECS Transactions,2011,33 (33): 101-107.
    [108]Song Y. H., Choi T. Y., Senthil K., et al. Photoluminescence properties of green-emitting Hu2+-activated Ba3Si6O12N2 oxynitride phosphor for white LED applications[J]. Mater. Lett.,2011,65:3399-3401.
    [109]Song Y. H., Kim B. S., Jung M. K., ct al. Synthesis and photoluminescence properties of green-emitting Ba3Si6O12N2 oxynitride phosphor using boron-coated HU2O3 for white LED applications[J]. J. Electrochem. Soc.,2012,159 (5):148-152.
    [110]Kang E. F., Choi S. W., Hong S. H.. Synthesis of Ba3Si6O12N2:Eu2+ green phosphors using Ba3SiO5:Eu2+ precursor and their luminescent propcrtics[J]. J. Solid Stale Sci. Tech.,2012,1 (1):11-14.
    [111]Tang J. Y., Chen J. H., Hao L. Y., et al. Green Eu2+ doped Ba3Si6O12N2 phosphor for white light-emitting diodes:synthesis, characterization and theoretical simulation[J]. J. Lumin.,2011,131:1101-1106.
    [112]Ryu J. H., Won H. S., Park Y. G., et al. Synthesis of EuxSi6-zAlzOzN8-z green phosphor and its luminescent properties[J]. Appl. Phys. A,2009,95:747-752.
    [113]Li Y. Q., Fand Y., Hirosaki N., et al. Crystal and electronic structures, photoluminescence properties of Eu2+ doped novel oxynitride Ba4Si6O16-3x/2Nx[J]. Mater.,2010,3:1692-1708.
    [114]Yang X. F., Song H. L., Xu X., et al. Reaction mechanism of SrSi2O2N2:Eu2+ phosphor prepared by a direct silicon nitridation method[J]. J. Am. Ceram. Soc.,2011, 94(1):164-171.
    [115]Li H. L., Xie R.J., Hirosaki N., et al.Synthesis and photoluminescence properties of Sr2Si5N8:Eu2+ red phos-phor by a gas-reduction and nitridation mcthod[J]. J. Electrochem. Soc.,2008,155(12):378-383.
    [116]Zhang H. C., Horikawa T., Hanzawa H., et al. Photoluminescence properties of alpha-SiA1ON:Eu2+ prepared by carbothermal reduction and nitridation method[J]. J. Electrochem. Soc,2007,154(2):59-61.
    [117]Piao X. Q., Horikawa T., Hanzawa H., et al. Characterization and luminescence properties of Sr2Si5N8:Eu2+ phosphor for white light-cmitting-diode illumination[J]. Appl. Phys. Lett.,2006,88 (161):908-910.
    [118]Dorenbos P.. Thermal quenching of Euz+ 5d-4f luminescence in inorganic compounds[J]. J. Phys.:Condcns. Mat.,2005,17:8103-8111.
    [119]Kim J. S., Park Y. H., Kim S. M., et al. Temperature-dependent emission spectra of M2SiO4:Eu2+(M=Ca, Sr, Ba) phosphors for green and greenish white LEDs[J]. Solid State Comm.,2005,133:445-448.
    [120]Shioi K., Hirosaki N., Xie R. J., et al. Photoluminescence and thermal stability of yellow-emitting Sr-a-SiAlON:Eu2+ phosphor[J]. J. Mater. Sci.,2010,45:3198-3203.
    [121]Tang Y. S., Hu S. F.. Near-ultraviolet excitable orange-yellow Sr3(Al2O5) Cl2:Eu2+ phosphor for potential application in light-emitting diodes[J]. Appl. Phys. Lett.,2008, 93(13):1114-1116.
    [122]徐光宪.稀土(下册,第2版)[M].北京:冶金工业出版社,1995:20-25.
    [123]苏勉曾.固体化学导论[M].北京:北京大学出版社,1987:51-55.
    [124]Poort S. H. M., Blokpoel W. P., Blasse G.. Luminescence of Eu2+ in barium and strontium aluminate and gallate[J]. Chem. Mater.,1995,7:1547-51.
    [125]Blasse G.. Energy transfer in oxiidic phosphors[J]. Philips Res. Rep.,1969,24: 131-144.
    [126]Blasse G.. Energy transfer between inequivalent Eu2+ ions[J]. J. Solid State Chem., 1986,62:207-211.
    [127]Dexter D. L.. A theory of sensitized luminescence in solids[J]. J. Chem. Phys.1953, 21:836-850.
    [128]Blasse G., Grabmaier B. C.. Luminescent materials[M]. Springer-Verlag, Berlin, 1994:35-42.
    [129]Jabbarov R. B., Chartier C., Tagiev B. G., et al. Radiative properties of Eu2+ in BaGa2S4[J]. J. Phys. Chem. Solids,2005,66(6):1049-1056.
    [130]Barthou C., Jabbarov R. B., Benalloul P., et al. Radiative properties of the blue BaAl2S4:Eu2+ phosphor[J]. J. Electrochem.Soc.,2006,153:253-258.
    [131]Bachmanna V., Justela T., Meijerink A., et al. Luminescence properties of SrSi2O2N2 doped with divalent rare earth ions[J]. J. Lumin.,2006,121:441-449.
    [132]Dorenbos P.. f-d transition energies of divalent lanthanides in inorganic compounds[J]. J. Phys.:Condens. Mat.,2003,15:575-560.
    [133]郝允祥,陈遐举,张保洲.光度学[M].北京:北京师范大学出版社.1987:87-91.
    [134]Dexter D. L., Schulman J. H.. Theory of concentration quenching in inorganic phosphors[J]. J. Chem. Phys.,1954,22(26):1063-1070.
    [135]黄世华,楼立人.能量传递中敏化剂发光强度与浓度的关系[J].发光学报,1990,11(1):1-7.
    [136]Zhu X. W., Masubuchi Y., Motohashi T., at al. The z value dependence of photoluminescence in Eu2+-doped β-SiAlON (Si6-ZA1zOzN8-z) with 1    [137]Ryu J. H., Park Y. G., Won H. S., et al. Luminescence properties of Eu2+-doped β-Si6-zAlzOzN8-z microcrystals fabricated by gas pressured reaction[J]. J. Cryst. Growth,2009,311:878-882.
    [138]Xie R. J., Hirosaki N., Mitomo M., et al. Photoluminescence of cerium-doped a-SiAlON materials[J]. J. Am. Ceram. Soc.,2004,87(7):1368-1370.
    [139]Li Y. Q., de With G., Hintzen H. T.. Luminescence properties of Ce3+ -activited alkalin earth silicon nitride M2Si5N8:Ce3+(M=Ca,Sr,Ba) materials[J]. J. Lumin.,2006, 116(1-2):107-116.
    [140]Kang H. S., Hong S. K., Kang Y. C., et al. The enhancement of photoluminescence characteristics of Eu-doped barium strontium silicate phosphor particles by co-doping materials[J]. J. Alloys Comp.,2005,402:246-250.
    [141]Wang Z. F., Xua M., Zhang W. P., et al. Synthesis and luminescent properties of nano-scale LuAG:RE3+(Ce,Eu) phosphors prepared by co-precipitation method[J]. J. Lumin.,2007,122-123:437-439.
    [142]Liu R. S., Liu Y. H., Bagkar N. C.. Enhanced luminescence of SrSi2O2N2:Eu2 phosphors by codoping with Ce3+, Mn2+, and Dy3+ ions[J]. Appl. Phys. Lett.,2007, 91:061119-1-3.
    [143]姚光庆,张亮,苏勉曾.Eu~(2+)和Mn~(2+)在Sr3MgSi2O8(?)的光致发光研究[J].高等学校化学学报,1997,18(1):1-5.
    [144]Palumbo D. T., Brown Jr J. J.. Electronic states of Mn2+ -activated phosphors[J]. J. Electrochem. Soc.,1970,117:1184-1188.
    [145]张晓,刘行仁.Ce~(3+)和Mn~(2+)共激活的偏硅酸钙的发光性质和能量传递[J].硅酸盐学报,1989,17(2):140-146.
    [146]Yang W. J., Chen T. M.. White-light generation and energy transfer in SrZn2(PO4)2:Eu, Mn phosphor for ultraviolet light-emitting diodes[J]. Appl. Phys. Lett.,2006,88:101903-1-3.
    [147]Huang C. H., Chen T. M.. CayLa (PO4)7:Eu2+,Mn2+:an emission-tunable phosphor through efficient energy transfer for white light-emitting diodes[J]. Opt. express, 2010,18(5):5089-5099.
    [148]Jiao H., Liao F. H., Tian S. J., et al. Luminescent properties of Eu3+ and Tb3+ activated Zn3Ta208[J]. J. Electrochem. Soc.,2003,150:220-224.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700