用户名: 密码: 验证码:
纳米尺度薄膜的制备及其光学性质的椭偏研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
科学史上,测量技术的每次进步,都能够推动科学的发展。所以从某种意义上来说,科学领域的进展都可以归功于各种用于科学研究的测量手段。在过去五十年中,人们发明了许多新的表征技术,比如扫描隧道显微镜,就带来了表面科学的一场革命并大大推动了表面科学的快速发展。
     然而,作为研究表面科学的重要技术,椭圆偏振测量术虽然在100多年前就已经问世,但是一直被视为“没有应用价值的技术”。直到二十世纪九十年代,随着电子计算机技术的飞速发展,椭圆偏振测量术的境况发生了翻天覆地的变化。由于计算机技术的发展与成熟,实现了椭圆偏振测量术的自动化测量与测量数据的自动化分析,也因此带动了九十年代中期光谱式椭圆偏振测量术的商用化进程。现在,椭圆偏振测量术已经成为了一种被广泛应用的技术,并且被用在了从半导体到生物学等多种领域。近年来,光谱式椭圆偏振测量术实现了对薄膜生长过程的实时表征,并且将应用领域拓宽到了各向异性的光学材料。可以说光谱式椭圆偏振测量术已经确立了其高精度光学表征技术的地位并且被越来越多的学校、单位和公司使用,为基础研究、能源产业、医学生物学的发展提供了有力的技术手段,大大促进了科学技术的进步。椭圆偏振测量术的原理常常被认为是困难的,部分是因为人们对椭圆偏振测量术中作为探测光的偏振光的知识了解有限,另一部分原因是椭圆偏振测量并非直接测量,而需要一个相对独特的数据分析过程。
     随着微电子、集成光学、自旋电子器件等领域的发展,薄膜在人们生活中扮演的地位越来越重要。不论是半导体薄膜、光学薄膜、磁性薄膜、铁电薄膜还是超导薄膜等,都是各个领域不可缺少的重要组成部分。在集成电路领域,作为硅基片上的绝缘层和保护层,二氧化硅薄钝化膜的制备与性质研究对其实际应用具有重要的指导意义。对于新兴的拓扑绝缘体材料,其超薄膜的光学性质作为其特性的重要组成部分,也值得人们深入研究。超薄铝膜作为一种重要的镀膜材料,在光学镀膜和平板显示等领域发挥着不可替代的作用,其光学性质更是其在光学镀膜和平板显示中应用的基础。超薄铁膜是巨磁阻效应的必备材料,而巨磁阻效应又是自旋电子器件研究中重要的一部分,因此,超薄铁膜的光学性质便成了值得人们研究的课题。铁氧化物的光学性质,在磁学与磁光存储中的地位非比寻常。因此,我们可以看出,薄膜的光学性质的研究,在很多领域中都有非常重要的意义。而对于薄膜的研究,必然就会涉及到其厚度或者是光学性质的研究。此时,光谱式椭圆偏振测量术由于其极高的测量精度、便捷的测量方式和对样品无破坏的特点,在薄膜的研究领域具有不可替代的重要作用,也一直是表征薄膜厚度和光学性质的重要手段。近年来,随着工业技术和加工水平的进步,人们逐渐意识到与块体材料性质迥异的超薄膜对于科学技术和工业产业的重要性,对于厚度仅为几十纳米甚至几纳米的超薄薄膜的应用和需求也越来越大。因此,对于超薄膜的研究就被推到了一个越来越重要的位置。然而光谱式椭圆偏振测量术在超薄膜的研究中却遇到了困难。当超薄膜的厚度减小到一定程度时,我们发现椭偏技术测量得到的椭偏数据对于超薄膜的光学常数不再敏感。这也就意味着通过传统的椭偏测量来研究超薄膜,就会遇到难以准确测量超薄膜厚度和光学常数的困难。
     本课题组基于光谱式椭圆偏振测量技术和薄膜制备技术,对纳米尺度的部分金属、非金属和半导体薄膜进行了研究。探索了PECVD法制备集成电路领域常用的二氧化硅钝化膜的工艺及其成膜性质的影响。测量了新兴的拓扑绝缘体材料超薄膜的光学常数和带隙。研究了超薄金属铝膜的光学性质及其随厚度变化的规律。对磁控溅射法制备的纳米尺度钽膜的工艺参数与成膜性质的关系进行了研究。在此基础上对椭圆偏振测量术研究超薄膜的方法进行了改进,提出了具有独创性的有效可行的利用光谱式椭圆偏振测量术研究超薄膜的方法,解决了椭偏难以准确测量超薄膜的光学性质和厚度的难题。本文主要内容有如下几个方面:
     第一、探索了PECVD法制备二氧化硅钝化膜的性质,并利用光谱式椭偏测量和X射线光电子能谱研究了PECVD法制备二氧化硅钝化膜时衬底温度对成膜质量和光学性质的影响。发现通过提高衬底温度,能够大大降低PECVD法制备的二氧化硅钝化膜中的杂质含量,并显著提高成膜密度。
     通过光谱式椭偏测量研究了分子束外延法制备的氧化铋与硒化铋超薄膜的光学性质和带隙,通过改进的评价函数,利用点对点拟合方法,得到并报道了两种材料超薄膜的可见光范围的光学常数,发现两种材料折射率在可见光范围变化规律相似但消光系数差异明显,通过计算得到了两种材料的带隙并发现其小于块体材料。
     第二、研究了超薄金属铝膜的光学性质随厚度的变化规律,报道了2-5纳米超薄铝膜的光学性质。通过不同椭偏模型的建立和比较,找到了描述超薄铝膜物理结构的最佳模型。并在此基础上得到了2-16纳米厚度超薄铝膜的光学常数。发现其折射率和消光系数随厚度的变化规律相反。观察到了12纳米和16纳米超薄铝膜的吸收峰并观察到随着厚度的增加,其峰值位置向长波长方向的漂移。
     第三、研究了磁控溅射技术制备超薄金属钽膜的工艺参数及其对纳米尺度钽膜的表面形貌和光学常数的影响。
     1.利用磁控溅射法在不同制备条件下制备了一系列纳米尺度钽膜,并利用原子力显微镜观察其表面形貌,探索了溅射功率和衬底温度影响纳米尺度钽膜表面形貌的规律,并通过对表面小丘状突起的成因分析和实验研究,找到了制备表面平整无突起的纳米尺度钽膜的最佳制备条件。
     2.利用光谱式椭偏测量对样品进行测量,并建立了由德鲁德方程和洛伦兹方程组成的色散模型来描述纳米尺度钽膜的光学性质,从而通过拟合得到了不同制备条件下的纳米尺度钽膜的光学常数。分析了溅射功率和衬底温度对纳米尺度钽膜光学常数的影响,并观察到了极小的薄膜应力对光学常数的显著影响。
     第四、采用透射测量与椭偏测量结合的方法,研究了不同厚度超薄铁膜的光学常数。
     1.使用覆盖保护性钽膜的方法,实现了超薄铁膜的非原位椭偏研究。
     2.通过在透明衬底和不透明衬底上制备性质相同的双层超薄金属膜的方法,配合透射数据与椭偏数据的同时分析,实现了双层超薄金属膜的透射测量与椭偏测量的结合运用。并通过对单独制备的单层钽膜的研究,降低了双层超薄金属膜中的未知量,从而使得双层超薄金属膜的椭偏研究成为可能。
     3.利用Matlab编写了点对点分析计算薄膜光学常数和厚度的蚁群算法,并对其进行了优化,使程序能够高效率的实现对解空间的搜索并提高了程序寻找全局最优解的能力。
     4.利用唯一性检测分析,证明了透射测量与椭偏测量的结合大大提高了得到的薄膜厚度结果的唯一性。并在此基础上得到了超薄铁膜的厚度,进而得到了不同厚度超薄铁膜的光学常数。结果表明超薄铁膜的光学常数随薄膜厚度变化明显。7.1纳米超薄铁膜光学常数与其他厚度铁膜差别明显。在370纳米处观察到了超薄铁膜的宽吸收峰,发现其随着厚度的降低,向长波长方向漂移,并就这一现象给出了理论解释。
     第五、实现了利用等效衬底法对铁材料衬底上超薄自然氧化薄膜的椭偏研究,并得到了铁材料超薄自然氧化膜的厚度和光学性质。
     1.通过对暴露在自然环境中的铁材料衬底的不间断测量,得到了椭偏测量数据随暴露时间变化的规律。发现随着暴露时间的增加,测量数据的曲线形状基本不变,但数值不断降低。
     2.利用等效衬底法,通过准介电函数的计算,实现了在未知光学性质的铁材料衬底上的未知厚度与光学性质的超薄自然氧化膜即未知衬底上的厚度未知、光学性质未知的超薄膜的椭偏研究。
     3.利用二维唯一性检测方法,得到了铁材料在自然环境下暴露一小时的超薄自然氧化膜的厚度为1.5纳米。得到了超薄自然氧化膜的光学常数和带隙。发现其比人为制备的三价铁氧化物带隙略小,并且在此基础上得到了铁材料衬底的光学常数。
     第六、搭建了高精度可变温光谱式椭偏测量平台,研究了70K到425K温度下的砷化镓衬底的光学常数。实现了在较宽温度范围内的高精度自动控温椭偏测量。对杜瓦瓶进行了改进和升级,为其加装了测量窗口、液氮加注口、真空阀、控温电路以及冷头,通过注入的液氮与电热丝的配合达到控温的目的,从而实现了真空环境下对样品的宽温域精确控温的光谱式椭偏测量。
     综上所述,本论文利用光谱式椭圆偏振测量术探索了二氧化硅钝化膜的光学性质及其与制备工艺的关系,研究了拓扑绝缘体材料超薄膜的光学性质并报道了其可见光范围的光学常数,通过椭偏测量与分析得到了不同厚度超薄铝膜的光学常数。研究了纳米尺度钽膜的表面形貌与光学性质及其与制备条件的关系。进而提出了解决光谱式椭偏测量研究超薄膜这一难点的具有独创性的办法,并利用这些方法行之有效的解决了非原位椭偏研究超薄铁膜的问题以及未知衬底上未知超薄膜的椭偏研究问题。
Historically, almost every step up the ladder of science is implied by the advance of measurement technology. In some sense, advances in science can be attributed to various measurement techniques which are used for research. In the past fifty years, many new characterization techniques have been established, such as scanning tunneling microscope (STM) which has lead a revolution in surface science and has improved the rapid progress of surface science.
     Nevertheless, ellipsometry, which is an important technique for surface science, was established more than100years ago, but it has been seen as an'unproductive instrument" until recently. In1990s, with the rapid progress of computer, automatic measurement and data analysis of ellipsometry was realized. In the mid of1990s, the commercialization of spectroscopic ellipsometry started. By now, spectroscopic ellipsometry has become a widely used technique which is applied in semiconductor, biology and many other fields. In recent years, spectroscopic ellipsometry has realized the real-time characterization of film growth and has been applied in anisotropic optics. Spectroscopic ellipsometry has established its position in optical high-precision characterization. It has been used by more and more universities, departments and companies for fundamental research, energy industry, biology and medical fields. However, the principles of ellipsometry are usually thought to be difficult. It is partly because people have little knowledge of polarization light which is used as probe in ellipsometry and partly because the ellipsometry is an indirect measurement and needs a unique data analysis.
     With the rapid development of micro-electronics, integrated optics, solar cell industry and medical industry, thin film has played a more and more important role in our life. Due to its extremely high precision, convenient operation and non-destructive character, spectroscopic ellipsometry has irreplaceable importance in films research. Recently, with the improvement of industrial technology and processing level, people begin to realize the importance of ultrathin films which has significantly different properties from bulk material. Human thirst for ultrathin films which are tens of nanometers or even several nanometers thick has grown. In this situation, the research for ultrathin films has become essentially important. However, ellipsometry has trouble with ultrathin films measurement. When the thickness of ultrathin films is small enough, the ellipsometry measured data is not sensitive to the variety of film thickness or optical constants, which means traditional ellipsometry is not capable to obtain film thickness and optical constants of ultrathin films simultaneously.
     Based on spectroscopic ellipsometry, our group has studied some metal, nonmetal and semiconductor films with nanoscale thicknesses. We have investigated the technology of PECVD deposited silica films and its effects on films properties. Optical constants and bandgap of topological insulator materials films have been measured. We have studied the optical constants of ultrathin aluminum films and their thickness dependence. We also investigated the technology of magnetron sputtering of tantalum films and its relationship between the sputtering condition and the properties of deposited films. Based on previous research, we have improved the traditional ellipsometry and proposed an original and effective method to solve the problem of ellipsometry investigation on ultrathin films. The work of this dissertation will be described in the following aspects:
     Firstly, we explored the properties of PECVD deposited silica films. And we have studied the effect of substrate temperature on the optical properties of deposited silica films with PECVD by using spectroscopic ellipsometry and XPS. We found that with increase of the substrate temperature, the impurities of silica films deposited by PECVD decrease dramatically and the density of silica films have increased.
     We have studied the optical properties and bandgap of Bi2O3and Bi2Se3ultrathin films prepared by MBE technique by using spectroscopic ellipsometry. By updating the evaluation function, we obtain and firstly report the optical constants of Bi2O3and Bi2Se3ultrathin films in the visible range. We found that the thickness dependence of refractive index of these two films are similar but and the thickness dependence of extinction coefficient of these two films are different. The calculated bandgap of them are smaller than corresponding bulk materials.
     Secondly, we studied the thickness dependence of ultrathin aluminum films and firstly report the optical constants of ultrathin aluminum films with thickness of2-5nm. By the construction and comparison of different models, we found the best model to describe our samples and obtain the optical constants of ultrathin aluminum films with thickness of2-16nm. We found that the thickness dependence of refractive index and extinction coefficient of these ultrathin aluminum films are opposite. An absorption peak of ultrathin aluminum films with thickness of12nm and16nm is observed and it shifted to longer wavelength with the increase of film thicknesses.
     Thirdly, we have studied the effect of sputtering power and substrate temperature onto the morphology and optical constants of ultrathin tantalum films.
     1. A set of tantalum films were deposited by magnetron sputtering and measured by AFM to observe their morphology. The effect of sputtering power and substrate temperature has been explored. The formation of hillocks on the surface has been studied. We eventually find the optimized condition to obtain tantalum films with hillock-free surface.
     2. The tantalum films were measured by spectroscopic ellipsometry and a dispersion law of Drude function and Lorentz function was constructed to describe the optical constants of ultrathin tantalum films. Then the optical constants of ultrathin tantalum films deposited under different conditions were obtained by a fitting procedure. We analyze the effect of sputtering power and substrate temperature onto the optical constants of tantalum films. Abnormal low optical constants were observed in the tantalum film with extremely low film stress.
     Fourthly, a method of combing ellipsometry and transmission has been used to investigate the optical constants with different thicknesses.
     1. We originally perform an ex situ ellipsometry measurement of ultrathin iron films by covering a protective layer of tantalum material.
     2. We perform a combined ellipsometry and transmission measurement of double-layer ultrathin metal films by depositing the same films on transparent and opacity substrates. Study on an extra single-layer tantalum film reduced the unknowns in the double-layer ultrathin metal films and make it possible to investigate them by spectroscopic ellipsometry.
     3. A point-to-point fitting program based on Matlab was written by using the ant colony algorithm. We have optimized the program to make it effective when searching the solution space and improve its ability to search the global optimal solution.
     4. A uniqueness test proved that the combined ellipsometry and transmission measurement has improved the uniqueness of the obtained film thickness a lot and we obtain the film thickness of ultrathin iron films by it. Then the optical constants of ultrathin iron films with different thicknesses have been obtained. The results show that the optical constants strongly depend on film thicknesses. The ultrathin iron film with a thickness of7.1nm has significantly different optical constants from other samples. There is a broad absorption peak observed at the370nm and it shifted to longer wavelength with the increase of film thicknesses. We have explained the mechanism of it theoretically.
     Fifthly, we have originally performed an ellipsometry study on the ultrathin native oxide film of iron by using an effective-substrate method. We have obtained the film thickness and optical properties of the ultrathin native oxide film of iron.
     1. Spectroscopic ellipsometry measurements have been performed continuously on the iron substrate exposed to natural environment. We found that with the increase of exposure time, the shape of the curve of measured data does not change obviously but gradually decreases.
     2. A spectroscopic ellipsometry study of an unknown ultrathin film with unknown film thickness on an unknown substrate, i.e. an ultrathin native oxide layer of iron with unknown film thickness and optical constants on an iron substrate with unknown optical constants was originally performed by using an effective-substrate method with the help of calculation of pseudo dielectric function.
     3. We originally obtain the film thickness of ultrathin iron native oxide layer which is1.5nm by a two-dimensional uniqueness test. We also obtain the optical constants and bandgap of the oxide film which is smaller than the artificially deposited ferric oxide films and then the optical constants of the iron substrate are also obtained.
     Sixthly, a spectroscopic ellipsometry measurement system with high-precision temperature control is established. We study the optical constants of GaAs substrate by using the system and realize a spectroscopic ellipsometry with automatic high-precision temperature control function during a wide temperature range. We update the Duwar-flask by adding measurement windows, inject hole of liquid nitrogen, vacuum valve, electric circuit and cold-heading on it. By the balance of liquid nitrogen and heating-wire, we realize the spectroscopic ellipsometry in vacuum with high-precision temperature control function.
     In a conclusion, in this dissertation we explore the depositing technology of silica films and the relationship between the deposition and its optical properties. We also investigate the ultrathin film of topological materials and firstly report their optical constants in the visible wavelength range. We obtain the optical constants of ultrathin aluminum films with different film thicknesses by a spectroscopic ellipsometry measurement and analysis. The relationship between the depositing condition and the surface morphology and optical constants of ultrathin tantalum films has been investigated. Based on previous work, we proposed original methods to solve the difficulties of spectroscopic ellipsometry study on ultrathin films. We eventually solve problems of ex situ spectroscopic ellipsometry investigation of ultrathin iron films and unknown ultrathin films on an unknown substrate by using our proposed methods.
引文
[1]H. Ahn, H.-W. Chen, D. Landheer, Thin Solid Films 455-456 (2004) 318-322.
    [2]D. Tonova, M. Depas, J. Vanhellemont, Thin Solid Films 288 (1996) 64-68.
    [3]K. Postava, Z. Kurant, A. Maziewski, Applied Surface Science 254 (2007) 360-364.
    [4]Chian Liu, J. Erdmann, A. Macrander, Thin Solid Films 355-356 (1999) 41-48.
    [5]J.R. Fermin, A. Azevedo, F.M. de Aguiar, Journal of Magnetism and Magnetic Materials 226-230 (2001) 1621-1623.
    [6]M. Born and E. Wolf, Principles of Optics,6th ed. (Cambridge University Press, 1980), ch. I and II.
    [7]R M A Azzam.N M Bashara Ellipsometry and Polarized Light 1977
    [8]D. E. Aspnes and A. A. Studna, High precision scanning ellipsometer, Appl. Opt.,14 (1975)220-228.
    [9]R. H. Muller and J. C. Fanner, Fast, self-compensating spectral-scanning ellipsometer, Rev. Sci. Instrum.,55 (1984) 371-374.
    [10]Y.-T. Kim, R. W. Collins and K. Vedam, Fast scanning spectroelectrochemical ellipsometry:in-situ characterization of gold oxide, Surf. Sci.,233 (1990) 341-350.
    [11]江任荣,陈树光,叶贤京,莫党.《仪器仪表学报》1983年第04期
    [12]陈岳立,张荣军,夏国强,赵海斌,王松有,陈良尧,褚君浩,王志明.双重傅里叶变换红外椭偏光谱系统的研制2001
    [13]黄佐华,何振江,杨冠玲,傅强,宁惠军.多功能椭偏测厚仪[期刊论文]-光学技术2001(5)
    [14]杜泉,郭文胜,朱自强.可见、近红外椭偏光谱仪[期刊论文]-激光与红外1998(3)
    [15]唐伟忠,薄膜材料制备原理、技术及应用,北京,冶金工业出版社,2003
    [16]郑伟涛,薄膜材料与薄膜技术,北京,化学工业出版社,2004
    [17]T. Itoh, Y. Shimada, S. Okamoto, O. Kitakami, Journal of Magnetism and Magnetic Materials,272-276 (2004) 1419-1420
    [18]T. Tesfamichael, Nunzio Motta, Thor Bostrom, J.M. Bell, Applied Surface Science,253 (2007) 4853-4859
    [19]Da-Yung Wang, Ko-Wei Weng, Shi-Yao Hwang, Diamond and Related Materials, 9(2000) 1762-1766
    [20]H Wang, L.Z Ouyang, M.Q Zeng, M Zhu, Journal of Alloys and Compounds,375 (2004)313-317
    [21]J.W.S. Bodys, K.C. Campbell, The International Journal of Applied Radiation and Isotopes,24(1973)107-113
    [22]Xiaozheng Yu, Zhigang Shen, Zheng Xu, Sen Wang, Applied Surface Science,253 (2007)7082-7088
    [23]Xiaozheng Yu, Zhigang Shen, Powder Technology,187 (2008) 239-243
    [24]S.H. Jeong, D.-G. Yoo, D.Y. Kim, N.-E. Lee, J.-H. Boo, Thin Solid Films,516(2008) 6598-6603
    [25]J. Musil, J. Vlcek, Thin Solid Films.343-344 (1999) 47-50
    [26]R Hubler, Surface and Coatings Technology,158-159 (2002) 680-684
    [27]N.-T.H Kim-Ngan, W Soszka, Physica B:Condensed Matter,319 (2002) 133-140
    [28]M Doyama, R Yamamoto, T Kaneko, M Imafuku, C Kokubu, T Izumiya, T Hanamura, Vacuum.36 (1986) 909-911
    [29]J. Jaroszynski, J. Wrobel, R. Nowakowski, Thin Solid Films,306 (1997) 291-295
    [30]Yong-ning He, Jing-wen Zhang, Xiao-dong Yang, Qing-an Xu, Xing-hui Liu, Chang-chun Zhu, Xun Hou, Microelectronics Journal,36 (2005) 125-128
    [31]Y. Gao, S.A. Chambers, Materials Letters,26 (1996) 217-221
    [32]赵凯华等,光学,北京工业大学出版社,1982
    [33]Chin Y. Poon, Bharat Bhushan, Wear,190 (1995) 76-88
    [34]Lars Mattsson, Pia Wagberg, Precision Engineering,15 (1993) 141-149
    [35]R.K. Kotnala, Jyoti Shah, Mohan C. Mathpal, K.C. Verma. Sandeep Singh. Lovkush. Thin Solid Films.519 (2011) 6135-6139
    [36]S.-I. Yamamoto, H. Yamada, K. Matsushige, T. Ishida, W. Mizutani, H. Tokumoto, Surface Science,433-435 (1999) 567-574
    [37]Kyu-Seog Hwang, Bo-An Kang, Young-Sun Jeon, Surface and Coatings Technology,190 (2005) 331-335
    [38]E. Gyorvary, J. Peltonen, M. Linden, J.B. Rosenholm, Thin Solid Films,284-285 (1996)368-372
    [39]Hu Yan, Hidenori Okuzaki. Synthetic Metals,159 (2009) 2225-2228
    [40]Jolanta Swiatowska-Mrowiecka, Vincent Maurice. Lorena Klein, Philippe Marcus. Electrochemistry Communications,9 (2007) 2448-2455
    [41]Takayuki Shibata, Kazuya Unno, Eiji Makino, Shiro Shimada, Sensors and Actuators A:Physical,114 (2004) 398-405
    [42]Jian-Ping Xie, Wen-Yan Yu, Sheng-Lin Zhang, Miao-Gen Chen, Gao-Xiang Ye, Physics Letters A,371 (2007) 160-164
    [43]Ming Tan, Qiao Liu, Nian Zhang, Huiqin Hu, Biao Li, Xianjie Kang, Journal of Alloys and Compounds,509 (2011) 5926-5930
    [44]O. Volobujeva, M. Altosaar, J. Raudoja, E. Mellikov, M. Grossberg, L. Kaupmees, P. Barvinschi, Solar Energy Materials and Solar Cells,93 (2009) 11-14
    [45]J. Ikonomov, D. Stoychev, Ts. Marinova, Applied Surface Science,161 (2000)94-104
    [46]M.C Baykul, A Balcioglu, Microelectronic Engineering,51-52 (2000) 703-713
    [47]I. Espitia-Cabrera, H.D. Orozco-Hernandez, P. Bartolo-Perez, M.E. Contreras-Garcia, Surface and Coatings Technology,203 (2008) 211-216
    [48]S. Erat, H. Metin, M. An, Materials Chemistry and Physics,111 (2008) 114-120
    [49]D. Eyidi, O. Eibl, Micron,33 (2002) 499-505
    [50]Zaoli Zhang. Dangsheng Su, Ultramicroscopy,109 (2009) 166-774
    [51]S. Janbroers, T.R. de Kruijff, Q. Xu, P.J. Kooyman, H.W. Zandbergen, Ultramicroscopy,109 (2009) 1105-1109
    [52]P.L. Sun, J.P. Chu, T.Y. Lin, Y.L. Shen, N. Chawla, Materials Science and Engineering:A,527 (2010) 2985-2992
    [53]W. Grunewald, A. Heilmann, C. Reinhardt, Applied Surface Science,93 (1996)157-165
    [54]P.L. Tarn, Y. Cao, L. Nyborg, Surface Science,606 (2012) 329-336
    [55]Weiping Yan, Henan Li, Junshan Liu, Jihong Guo, Sensors and Actuators A: Physical,136(2007)212-215
    [56]A.R. Bushroa, R.G. Rahbari, H.H. Masjuki, M.R. Muhamad, Vacuum,86 (2012)1107-1112
    [57]R.S Mane. CD Lokhande, Surface and Coatings Technology,172 (2003) 51-56
    [58]K Senthil, D Mangalaraj, Sa.K Narayandass, R Kesavamoorthy, G.L.N Reddy, Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,173 (2001) 475-482
    [59]B. Winter, J. Ivanco. F.P. Netzer, M.G. Ramsey, Thin Solid Films,433 (2003) 269-273
    [60]S. Muller, B. Schulz, G. Kostka, M. Farle, K. Heinz, K. Baberschke, Surface Science,364(1996)235-241
    [61]M. Parschau, D. Schlatterbeck, K. Christmann, Surface Science,376 (1997) 133-150
    [62]Y.J. Kim, C. Westphal. R.X. Ynzunza, Z. Wang, H.C. Galloway, M. Salmeron, M.A. Van Hove, C.S. Fadley, Surface Science,416 (1998) 68-111
    [63]R. Bennewitz, V. Barwich, M. Bammerlin, C. Loppacher, M. Guggisberg, A. Baratoff, E. Meyer, H.-J. Guntherodt, Surface Science,438 (1999) 289-296
    [64]Andreas Langner. Annegret Hauschild, Sonja Fahrenholz, Moritz Sokolowski, Surface Science,574 (2005) 153-165
    [65]Ataru Ichinose, Akita Shirabe, Physica C:Superconductivity,277 (1997) 243-251
    [66]J Klein, C Hofener, L Alff. R Gross, Journal of Magnetism and Magnetic Materials,211 (2000)9-15
    [67]Kui-juan Jin, Shao-hua Pan, Guo-zhen Yang, Surface Science,380 (1997) 522-529
    [68]Stephane Andrieu, Patrick Frechard, Surface Science,360 (1996) 289-296
    [69]J.Y. Lee, J.Y. Juang, J.H. Ou, Y.F. Chen, K.H. Wu, T.M. Uen, Y.S. Gou, Physica B:Condensed Matter,284-288 (2000) 2099-2100
    [70]Y Iwata, H Kobayashi, S Kikuchi, E Hatta, K Mukasa, Journal of Crystal Growth,203 (1999) 125-130
    [71]Li Zhang, Tadashi Sakai, Naoshi Sakuma, Tomio Ono, Diamond and Related Materials,10(2001)829-833
    [72]Klaus D. Jandt Materials Science and Engineering:R:Reports,21 (1998) 221-295
    [73]T.G. Lenihan. A.P. Malshe, W.D. Brown, L.W. Schaper, Thin Solid Films,270 (1995)356-361
    [74]H Weinforth. H Muhlbauer, Ch Muller, G Dumpich. Thin Solid Films,324 (1998) 176-179
    [75]H.M. Benia, N. Nilius, H.-J. Freund. Surface Science,601 (2007) L55-L58
    [76]D. Cattaneo, N. Righetti, C.S. Casari. A. Li Bassi, C.E. Bottani, Applied Surface Science.253 (2007) 7917-7921
    [77]Yunhui Xu, K Steenbeck, P Das. Jiandong Wei. M Koblischka. U Hartmann, Journal of Magnetism and Magnetic Materials,272-276 (2004) E875-E876
    [78]S Stempel, M Baumer, H.-J Freund, Surface Science,402-404 (1998) 424-427
    [79]G.B Khomutov, L.V Belovolova, V.V Khanin, E.S Soldatov, A.S Trifonov, Colloids and Surfaces A:Physicochemical and Engineering Aspects,198-200 (2002)745-752
    [80]LA. Rauf, F. Czerwinski, J.D. Boyd, J.A. Szpunar, Micron,2 (1995) 565-569
    [81]P.L. Tarn, Y. Cao, L. Nyborg, Surface Science,606 (2012) 329-336
    [82]Jolanta Swiatowska-Mrowiecka, Vincent Maurice, Sandrine Zanna, Lorena Klein, Philippe Marcus, Electrochimica Acta,52 (2007) 5644-5653
    [83]R Reiche, S Oswald, K Wetzig, Applied Surface Science,179 (2001) 316-323
    [84]Loic Baggetto, Nancy J. Dudney, Gabriel M. Veith, Electrochimica Acta,90 (2013) 135-147
    [85]M. Santamaria, F. Di Quarto, S. Zanna, P. Marcus, Electrochimica Acta,53 (2007) 1314-1324
    [86]Kodigala Subba Ramaiah, V.Sundara Raja, Scripta Materialia,44 (2001) 773-777
    [87]A.B.M.O Islam, Y Nishiyama, T Tambo, C Tatsuyama, T Ito, Applied Surface Science,159-160 (2000) 588-593
    [88]C. Gonzalez-Valenzuela, L. Cota, R. Gonzalez-Valenzuela, W. de la Cruz, A. Duarte-Moller, Applied Surface Science,252 (2006) 3401-3405
    [89]R Kapsa, I Stara, D Zeze, B Gruzza, V Matolin, Thin Solid Films,317 (1998) 77-80
    [90]Kornelia Dittmar, Hans-Jurgen Engelmann, M. Peikert, E. Wieser, J.V. Borany, Applied Surface Science,252 (2005) 185-188
    [91]Hiroaki Niwa, Setsuo Nakao, Kazuo Saitoh, Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,136-138 (1998) 297-300
    [92]Daniel Machajdik, Alexander Pavlovich Kobzev, Karol Frohlich, Vacuum.78 (2005)455-461
    [93]M.V. Reddy, B. Pecquenard, P. Vinatier, C. Wannek, A. Levasseur, P. Moretto, Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,246 (2006) 397-401
    [94]Umananda M. Bhatta. J. Ghatak, Mrinmay Mukhopadhyay, Raymond Conley, Chian Liu, P.V. Satyam, Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,266, (2008) 1548-1552
    [95]J.E.E. Baglin, M.H. Tabacniks, A.J. Kellock, Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,136-138 (1998) 241-246
    [96]A.C. Marques, A.R. Ramos, E. Alves, R.M. Almeida, Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,219-220 (2004) 923-927
    [97]Sasa Bajt, N.V. Edwards, Theodore E. Madey, Surface Science Reports, Volume 63, Issue 2,15 February 2008, Pages 73-99
    [98]A.H. Bailey, D.A. Darbyshire, A.P. Overbury, C.W. Pitt, J. Newton, Vacuum,36 (1986) 139
    [99]P. Melpignano, C. Cioarec, R. Clergereaux, N. Gherardi, C. Villeneuve, L. Datas, Organic Electronics,11 (2010) 1111-1119
    [100]Donyoung Kim, Hyun-Sik Hwang, Dahl-Young Khang, Thin Solid Films,519 (2011)5511-5515
    [101]W. Xu, T.J. Lu, F. Wang, International Journal of Solids and Structures,47 (2010) 1830-183
    [102]Qin-Tao Liu, Miriam L Diamond, Sarah E Gingrich, John M Ondov, Polina Maciejczyk, Gary A Stern, Environmental Pollution,122 (2003) 51-61
    [103]Hongbo Li, Jing Li, Zhanjun Yang, Qin Xu, Chuantao Hou, Jinyun Peng, Xiaoya Hu, Journal of Hazardous Materials,191, (2011) 26-31
    [104]Martin J Butson, Peter K.N Yu, Tsang Cheung, Peter Metcalfe, Materials Science and Engineering:R:Reports,41 (2003) 61-120
    [105]李增峰,葛渊,张焓亮,汤慧萍,汪强兵,王建永,朱纪磊,稀有金属材料与工程,39(2010)248-250
    [106]Takeshi Kawagoe, Katsuhiko Nakamura, Takayoshi Terashima, Hideya Kaihoko, Tadashi Mizoguchi, Journal of Magnetism and Magnetic Materials 148 (1995) 185-186
    [107]S.A. Kovalenko, M.P. Lisitsa. Semiconductor Physics, Quantum Electronics& Optoelectronics.4 (2001) 352-357
    [108]H.G. Tompkins, S. Tasic, JVSTA 18 (3) (2000) 946
    [109]Harland G. Tompkins, Sonja Tasic, Jeff Baker and Diana Convey, Surf. Interface Anal.29,179-187(2000)
    [110]G.K. Pribil, B. Johs, N.J. Ianno, Thin Solid Films,455-456 (2004) 443-49
    [111]F.K. Urban III, D. Barton, T. Tiwald, Thin Solid Films 518 (2009) 1411-1414
    [112]Chian Liu, J. Erdmann, A. Macrander, Thin Solid Films 355-356 (1999) 41-48
    [113]Zhaoqi Sun, Chunbin Cao, Ling Cao, Ping Liang, Xingfa Huang, Xueping Song, Vacuum 84 (2010) 828-832
    [114]GIGNAC L M, PARRLL T M, CHANDRA SHEKHAR G V. Porous SiO2 films analyzed by transmission electron microscopy [J]. Thin Solid films,1995,261 (1-2)59-63.
    [115]Bernat J, Javorka P, Fox A, et al. Effect of surface passivation on performance of AlGaN/GaN/Si HEMTs[J]. Solid-state Electronics,2003,47(11):2097
    [116]HOFFMANN M R, MARTIN S T, CHOIW. Environmental applications of semiconductor photocatalysis[J]. Chem Rev,1995,95:69-73
    [117]Aberle A G. Overview on SiN surface passivation of crystalline silicon solar cell[J]. Solar Energy Materials and Solar Cells,2001,65(1-4):239
    [118]ALAYM I, PEREYRA LPCARRENO M N. Thick SiOxNy and SiO2 films obtained by PECVD technique at low temperatures[J].Thin Solid Films,1998,332(l-2):40-45.
    [119]FURUKAWAK, LIU Y and NKASHIMA H.[J].J.Appl.Phys.,1998,84(8):4579
    [120]H.J. Zhang, C.X. Liu, X.L. Qi, X. Dai, Z. Fang, S.C. Zhang, Nat. Phys.5 (2009) 438.
    [121]Y.L. Chen, J.G. Analytis, J.H. Chu, Z.K. Liu, S.K. Mo, X.L. Qi, H.J. Zhang, D.H. Lu, X. Dai, Z. Fang, S.C. Zhang, I.R. Fisher, Z. Hussain, Z.X. Shen, Science 325 (2009) 178.
    [122]D. Hsieh, Y. Xia, D. Qian, L. Wray, F. Meier, J.H. Dil, J. Osterwalder, L. Patthey, A.V. Fedorov, H. Lin, A. Bansil, D. Grauer, YS. Hor, R.J. Cava, M.Z. Hasan, Phys. Rev. Lett.103 (2009) 146401.
    [123]D.X. Qu, YS. Hor, J. Xiong, R.J. Cava, N.P. Ong. Science 329 (2010) 821.
    [124]X.L. Qi. R.D. Li, J.D. Zang. S.C. Zhang, Science 323 (2009) 1184.
    [125]J.E. Moore, Nature 464 (2010) 194.
    [126]L. Fu. C.L. Kane, Phys. Rev. Lett.100 (2008) 096407
    [127]M.Z. Hasan, C.L. Kane, Rev. Mod. Phys.82 (2010) 3045.
    [128]X.-L. Qi, S.-C. Zhang, Phys. Today 63 (2010) 33.
    [129]C. L. Song, Y. L. Wang, Y. P. Jiang, Y. Zhang, C. Z. Chang, L.Wang, K. He, X. Chen, J. F. Jia, Y. Wang, Z. Fang, X. Dai, X. C. Xie, X.-L. Qi, S.-C. Zhang, Q.-K. Xue, X.Ma, Appl. Phys. Lett.97 (2010) 143118.
    [130]P. K. Bose, N. Paitya, S. Bhattacharya. D. De, S. Saha, K. M. Chatterjee, S. Pahari, and K. P. Ghatak, Quantum Matter 1 (2012) 89
    [131]Burcu Tuzun and csakir Erkoc, Quantum Matter 1 (2012) 136
    [132]Paitya, S. Bhattacharya, and K. P. Ghatak, Quantum Matter 1 (2012) 63
    [133]Xi Chen, Xu-Cun Ma, Ke He, Jin-Feng Jia, Qi-Kun Xue, Adv. Mater.2011,23, 1162-1165
    [134]Fu. L. & Kane, C. L. Superconducting proximity effect and Majorana fermions at the surface of a topological insulator. Physics Review Letter 100,096407 (2008).
    [135]J. Tauc. R. Grigorovici, A. Vancu:Phys. Stat. Vol.15 (1996) 455.
    [136]Z.Q.Sun, C.B. Cao, L. Cao, P. Liang. X.F. Huang, X.P. Song, Surface morphology and optical propertiesof magnetron-sputtered ultrathin Al films. Vacuum 84 (2010) 828-832.
    [137]H. Ahn, H.-W. Chen, D. Landheer, Thin Solid Films 455-456 (2004) 318-322.
    [138]D. Tonova, M. Depas. J. Vanhellemont, Thin Solid Films 288 (1996) 64-68.
    [139]K. Postava, Z. Kurant, A. Maziewski, Applied Surface Science 254 (2007) 360-364.
    [140]Chian Liu, J. Erdmann, A. Macrander, Thin Solid Films 355-356 (1999) 41-48.
    [141]J.R. Fermin, A. Azevedo, F.M. de Aguiar, Journal of Magnetism and Magnetic Materials 226-230 (2001) 1621-1623.
    [142]Harland G. Tompkins, Handbook of Ellipsometry,609-635.
    [143]H. Du, J.Q. Xiao. Y.S. Zou. Optical Materials 28 (2006) 944-949
    [144]S. Li. H.S. Park, M.H. Liang. Thin Solid Films 462-463 (2004) 192-196
    [145]T. Laurilaa, K. Zenga. J.K. Kivilahtia. Microelectronic Engineering 60 (2002) 71-80
    [146]J. P. DELPLANQUE, W. D. CAL R. H. RANGEL. PII:S1359-6454(97)00166-3
    [147]T. Balaji. R. Govindaiah, M.K. Sharma. Materials Letters 56 (2002) 560-563
    [148]W. Ensinger. Surface and Coatings Technology 84 (1996) 434-438
    [149]Hwang S-J, W D. Nix, Joo Y-C. Acta Materialia 55 (2007) 5297-5301
    [150]Chaudhari P. J Appl Phys 1974; 45:4339
    [151]W.J. Boettinger, C. E. Johnson, L.A. Bendersky, K-W. Moon. Acta Materialia 53 (2005)5033-5050
    [152]E. Chason, B.W. Sheldon, L. B. Freund, J. A. Floro, and S. J. Hearne, Phys. Rev. Lett.88,156103(2002).
    [153]C. Friesen and C.V. Thompson, Phys. Rev. Lett.89,126103 (2002).
    [154]R.Abermann, Vacuum 41,1279(1990).
    [155]R. Koch, J. Phys. Condens. Matter 6,9519 (1994).
    [156]Carl V. Thompson, Stress Evolution During Volmer-Weber Growth of Thin Films
    [157]Davoud Dorranian, Elmira Solati, Mohamadreza Hantezadeh. Vacuum 86 (2011) 51-55
    [158]Manago T, Kuramochi H and Akinaga H 2005 J. Appl. Phys.97023907
    [159]B. Heinrich and J.A.C. Bland 2004 Ultrathin Magnetic Structures III (Berlin: Springer Verlag)
    [160]Spoddig D, Kohler U, Haak M, Kneppe M, Schmitte T, Westphalen A, Theis-Brohler K, Meckenstock R, You D and Pelzl J 2008 Superlattices Microst. 43180-189
    [161]Qiu X J, Zhang Y P, He Z H, Bai L, Liu G L, Wang Y, Chen P and Xiong Z H 2006 Acta. Phys. Sin.556101-6107 (in Chinese)
    [162]Xie J P, Xia A G, Zhang C H, Yang B, Fang Z N and Ye G X 2009 Chin. Phys. Lett.2611-7501
    [163]Zhang L J, He K, Jia J F and Xue Q K 2005 Chin. Phys. Lett.22203-206
    [164]Wang X, Lian J, Wang G T, Song P, Li P and Gao S 2011 J. Magn. Magn. Mater. 3232711-2716
    [165]Xu Y B, Lu M. Zhai H R, Miao Y Z, Wang H, Zhou S M and Cai J W 1990 Chin. Phys. Lett.7377-380
    [166]Hilfiker J N, Singh N, Tiwald T, Convey D, Smith S M, Baker J H and Tompkins H G 2008 Thin Solid Films 516 7979-7989
    [167]Zhou Y, Wu G S, Dai W, Li H B and Wang Y A 2010 Acta. Phys. Sin.59 2356-2363 (in Chinese)
    [168]Tompkins H G and Tasic S 2000 J. Vac. Sci. Technol. A 18 946
    [169]Frederix F. Friedt JM, Choi KH, Campitelli A, Mondelaers D, Maes G and Borghs G 2003 Anal. Chem.75 6894
    [170]Alvarez MM, Khoury JT, Schaaff TG, Shafigullin MN, Vezmar Ⅰ and Whetten RL 1997 J. Phys. Chem. B 101 3706
    [171]Zhaoqi Sun, Chunbin Cao, Ling Cao, Ping Liang, Xingfa Huang and Xueping Song 2010 Vacuum 848 28-832
    [172]Y. Chye, V. Huard. M.E. White, B. Gerardot, P.M. Petroff. Physica E, Low-Dimens. Syst. Nanostruct.13 (2002) 1135.
    [173]W.T. Wang, G. Yang, Z.H. Chen, Y.L. Zhou, H.B. Lu, G.Z. Yang. J. Appl. Phys.92 (2002)7242
    [174]David Necas, Lenka Zajickova, Daniel Franta, and Pavel St'ahel. e-J. Surf. Sci. Nanotech. Vol.7 (2009) 486-490
    [175]G. Bhargava, I. Gouzman, C.M. Chun, T.A. Ramanarayanan, S.L. Bernasek. Applied Surface Science 253 (2007) 4322-4329
    [176]V. Goossens, J. Wielant, S. Van Gils, R. Finsy, H. Terryn. Surface and Interface Analysis. (2006) 38:489-493
    [177]V. Goossens, J. Wielant, S. Van Gils. R. Finsy and H. Terryn, Surf. Interface Anal. 2006:38:489-493
    [178]Alaa A. Akl, Applied Surface Science 233 (2004) 307-319
    [179]M.F. Al-Kuhaili, M. Saleem, S.M.A. Durrani, Journal of Alloys and Compounds 521 (2012)178-182
    [180]A Schlegel, S F Alvarado, P Wachter, J. Phys. C:Solid State Phys.,12 (1979) 1157-1164
    [181]S.S. Kulkarni. C.D. Lokhande:Materials Chemistry and Physics.82 (2003) 151-156.
    [182]Nilgun Ozer, Fatma Tepehan:Solar Energy Materials and Solar Cells.56 (1999) 141-152.
    [183]G. Bhargava, I. Gouzman, C.M. Chun. T.A. Ramanarayanan, S.L. Bernasek. Applied Surface Science 253 (2007) 4322-4329

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700