用户名: 密码: 验证码:
艾烟可吸入颗粒物对人肺腺癌A549细胞增殖及基因表达谱的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的观察艾烟PM10对人肺腺癌A549细胞增殖及基因图谱的影响,全面深入地探讨艾烟PM10对肺腺癌A549细胞的潜在药性作用或(和)毒性作用机制,为今后艾烟的研究寻找更明确的方向,同时为其安全性研究提供参考。
     方法本研究采用体外实验方法,以A549细胞为研究对象,用MTT法观察了艾烟PM10对其活力的影响,对比了艾烟PM10、香烟烟气PM10及广谱抗癌药顺铂对A549细胞以及人支气管上皮细胞BEAS-2B活力的影响;采用流式细胞术观察了艾烟PM10对A549细胞周期的影响,检测了艾烟PN10对A549细胞内活性氧(ROS)水平的影响;采用Hoechest33258染色法用荧光显微镜观察艾烟PM10对A549细胞的凋亡形态学的影响,并对细胞内Ca2+水平以及Caspase9、Caspase3/7活性和NF-κB(p65)表达量进行检测;采用新一代基因测序技术——数字基因表达谱法(Digital Gene Expression profiling, DGE)观察了艾烟PM10对人肺腺癌A549细胞基因表达谱的影响,筛选出艾烟PM10处理后差异表达的基因,对其差异基因表达模式进行聚类分析、Gene Ontology功能显著性富集分析和Pathway显著性富集分析,筛选了艾烟PM10干预A549细胞的过程中差异表达的基因及它们参与的生物过程和最主要的信号转导途径,分析了差异基因与A549细胞周期、细胞凋亡之间的关系。
     结果艾烟PM10对A549细胞增殖影响的实验结果如下:
     (1)艾烟PM10对A549细胞活力的影响
     24h干预组内,与溶剂对照组相比,经不同浓度艾烟PM10处理过的A549细胞活力均显著降低(p<0.05,p<0.01);48h干预组内,与溶剂对照组相比,经不同浓度艾烟PM10处理过的A549细胞活力均显著降低(p<0.01);各艾烟PM10处理组内比较,随浓度增加,细胞活力显著降低(p<0.01);与24h干预组内同浓度艾烟处理组相比,48h干预组内艾烟PM10处理各组细胞存活率均显著降低(p<0.01)。
     (2)艾烟PM10、香烟侧流烟气PM10及顺铂对A549细胞活力的影响
     三种样品同一浓度组间比较,顺铂组A549细胞存活率均低于艾烟PM10组和香烟PM10组(p<0.01):40μg/ml组间比较,艾烟PM10组与香烟PM10组内A549细胞存活率无显著差异(p>0.05),其余各浓度组间比较,艾烟PM10组A549细胞存活率均显著低于香烟PM10组(p<0.05)。
     (3)艾烟PM10、香烟侧流烟气PM10及顺铂对支气管上皮细胞BEAS-2B活力的影响
     三种样品同一浓度间细胞存活率比较,香烟干预组BEAS-2B细胞活力均显著低于艾烟干预组(p<0.05);顺铂干预组的细胞活力,除100μg/ml组与艾烟干预组无差异(p>0.05)外,其余各浓度组细胞活力均显著低于艾烟干预组(p<0.05);40μg/ml组间比较,顺铂干预组细胞活力显著低于香烟PM10干预组,然而80μg/ml和100μg/ml组间比较时,香烟PM10干预组细胞活力却显著低于顺铂组。
     (4)艾烟PM10干预24h对A549细胞周期的影响
     与对照组相比,艾烟PM10处理各组S期细胞比例显著增加(p<0.05)。
     与160μg/ml组相比,其余两个艾烟PM10处理组内S期细胞显著降低(p<0.05);400μg/ml时,G1期细胞比例显著上升,G2期细胞比例显著下降,差异均有统计学意义(p<0.01).320μg/ml时,G1期和G2期细胞比例均无显著变化(p>0.05)。
     与320μ g/ml组相比,浓度为400μg/ml时,G1期细胞比例显著升高(p<0.05),G2期细胞比例无显著差异(p>0.05).
     经艾烟PM10处理过的各组细胞在流式细胞图中出现了明显的“凋亡峰”
     (5)艾烟PM10干预4h对A549细胞内ROS水平的影响
     与对照组相比,艾烟PM10处理各组细胞内ROS水平均显著降低(p<0.05).
     (6)艾烟PM10对A549细胞凋亡形态学的影响
     艾烟PM10处理4h在400μg/ml时出现部分凋亡细胞。
     (7)艾烟PM10对A549细胞内Ca2+水平的影响
     艾烟PM10干预A549细胞4小时后,随浓度增加,细胞内Ca2+水平显著增加(p<0.01).
     (8)艾烟PM10对A549细胞内Caspase9、Caspase3/7活性的影响
     与对照组相比,经不同浓度艾烟PM10处理后,A549细胞内Caspase9活性无差异(p>0.05).当艾烟PM10浓度为280μg/ml时,细胞内Caspase3/7活性明显下降(p<0.01);而浓度为140μg/ml时,Caspase3/7活性无明显变化(p>0.05)。
     (9)艾烟PM10对A549细胞NF-κB(p65)表达的影响
     与空白对照组比,艾烟干预4小时,各浓度组A549细胞内NF-κB(p65)表达量均降低(p<0.05);干预20小时,70μg/ml组和280μg/ml组内p65表达量均降低(p<0.05),140μg/ml组内p65含量无明显变化(p>0.05)。相同浓度下,不同时间的艾烟干预各组间对比,p65表达量无明显变化(p>0.05).
     艾烟PM10对A549细胞基因表达谱的影响实验结果如下:
     (1)差异基因筛选
     与对照组相比,艾烟干预4小时差异表达基因共1109条(上调602条,下调507条);干预20小时差异表达基因共3565条(上调1394条,下调2171条)。与艾烟干预4小时相比,干预20小时后差异表达的基因有2149条(上调1010条,下调1139条).
     (2)差异基因表达模式的聚类分析
     在艾烟PM10干预的过程中(干预4h、干预20h及从4h到20h的过程中)均有差异表达的基因共有316条,这些基因在艾烟PM10干预4h后,以上调为主;在干预20小时后,则以下调为主.
     在艾烟PM10干预的过程中差异表达的基因总共有4415条。对促进细胞周期进程的基因以下调为主。艾烟干预过程中,对促凋亡基因BAD在干预4h时上调,随时间延长又表现为明显下调;对Caspase家族基因和抑制凋亡的基因Bcl家族也时而促进,时而抑制。
     (3)差异基因参与的生物功能显著性富集分析
     与空白组相比,艾烟PM10干预4h引起差异表达的基因涉及1425个生物过程。其中,显著富集的生物功能共有39个,富集最为显著的为“细胞周期”。
     与空白组相比,艾烟PM10干预20h引起差异表达的基因涉及2211个生物过程。其中,显著富集的生物功能共有77个,富集最为显著的为“细胞代谢”。
     与干预4h相比,艾烟PM10干预20h引起差异表达的基因涉及1786个生物过程。其中,显著富集的生物功能共有22个,富集最为显著的生物过程为“细胞过程”。
     (4) Pathway显著性富集分析
     与空白组相比,艾烟PM10干预4h引起差异表达的基因涉及214条信号通路或生物代谢途径。其中,显著富集的有细胞周期、内质网中的蛋白处理、氧化磷酸化、幽门螺杆菌感染的上皮细胞信号、p53信号途径及亨廷顿氏病。
     与空白组相比,艾烟PM10干预20h引起差异表达的基因涉及228条信号通路。其中,显著富集的信号通路由高到底排列如下:细胞周期、DNA复制、代谢通路、剪接酶、糖胺聚糖的生物合成-硫酸角质素、嘧啶代谢、卵母细胞减数分裂、幽门螺杆菌感染的上皮细胞信号、内质网的蛋白处理、泛素介导的蛋白水解、氧化磷酸化、黏附连接点、p53信号通路、孕激素介导的卵母细胞成熟、糖基磷脂酰肌醇(GPI)锚合成、叶酸参与的单碳池代谢、亨廷顿氏病以及Wnt信号通路。
     与干预4小时相比,艾烟PM10干预2h引起差异表达的基因涉及221条信号通路。其中,显著富集的信号通路由高到底排列如下:细胞周期、嘧啶代谢、DNA复制、p53信号通路、剪接酶。
     结论
     1.艾烟PM10对具有抑制人肺腺癌A549细胞增殖的作用。艾烟PM10对支气管上皮细胞BEAS-2B的毒性低于香烟PM10,对A549细胞的增殖有抑制作用,而香烟在同等浓度时对A549细胞活力无影响,说明艾烟PM10中含有抗肿瘤的成分。
     2.艾烟PM10可通过诱导细胞周期阻滞引起A549细胞死亡。艾烟PM10会引起细胞周期各阶段的明显阻滞,但以晚期阻滞作用明显。且该作用涉及对细胞周期调控的许多通路,如cyclin-CDK依赖性通路、p53调节通路、氧化还原调控以及代谢相关途径。
     3.艾烟PM10可通过诱导细胞自噬引起A549细胞死亡。艾烟PM10可通过下调细胞外基质蛋白(ECM)和整合素的表达,使A549细胞出现失巢凋亡,并通过自噬作用使失巢凋亡的细胞死亡,这可能是艾烟PM10抑制癌细胞增长,诱导其死亡的主要机制之一,而且艾烟PM10可能通过该途径发挥抑制肿瘤转移和浸润的作用。
     4.艾烟PM10对A549细胞凋亡的作用呈双向性,可促进又可抑制A549细胞凋亡,两种作用处于动态变化中.
     5.艾烟PM10具有多种生物活性.艾烟PM10干预A549细胞引起大量差异表达的基因,这些基因参与多种生物过程,对机体的作用有利有弊,值得深入研究.
Objective:To observe the effect of PM10in moxa smoke on the growth and the gene expression profile of A549cells.
     Methods:In this study, the effect of PM10in moxa smoke on the vitality of the human lung adenocarcinoma cell line-A549and human bronchial epithelial cells-BEAS-2B were observed by MTT assay, compared with the PM10in cigarette smoke and the broad-spectrum anti-cancer drug cisplatin; to examine whether PM10in moxa smoke could influence the cell cycle progression, FACS was performed, the intracelluar reactive oxygen species (ROS) levels were detected as well; the morphological changes of apoptosis of A549cells were observed by the fluorescence microscopy using staining Hoechest33258and the intracellular Ca2+level, activity of Caspase9, Caspase3/7and the content of NF-kappa B (p65) were detected; the gene expression profile of A549cells after intervention by PM10in moxa smoke was analyized by the next-generation gene sequencing technology-digital gene expression method (Digital Gene Expression profiling, DGE), which would provide some information about the differentially expressed genes(DEGs), clustering analysis of DEGs pattern, gene ontology functional enrichment analysis for DEGs and pathway enrichment analysis for DEGs of A549cells after treated by PM10in moxa smoke.
     Results:
     Results of the research on the effect on the proliferation of A549cells cultured with PM10in moxa smoke are as follows:
     (1) Effect of PM10in moxa smoke on viability of A549cells
     Within24h and48h intervention groups, compared with the solvent control group, the viability A549cells treated with PM10in moxa smoke were significantly lower.
     The cell viability was significantly reduced (p<0.01) with increasing concentration of PM10in moxa smoke.
     Compared with the same concentration in24h intervention group, the cell viability was significantly lower (p<0.01) in the48h intervention group.
     (2) Effect on viability of A549cells of PM10in moxa smoke, PM10in sidestream cigarette smoke and cisplatin
     Compared with the two kinds of PM10groups, cell viability in the cisplatin group was were significant lower(p<0.01) in every the same concerntration. When compared in the concerntration of40μg/ml, there was no significant difference (p>0.05) between the two PM10groups, while the survival of A549cells were significantly lower (p<0.05) in the rest concentrations of moxa smoke PM10group than the cigarette moke groups.
     (3) Effect on viability of BEAS-2B cells of PM10in moxa smoke, PM10in sidestream cigarette smoke and cisplatin
     Compared with the moxa smoke PM10group, the cell viability in every the same concerntration of cigrarette smoke PM10was was significantly lower (p<0.05), as for the cisplatin group, the cell viability in every other the same concerntration except100μg/ml group(p>0.05) was significantly lower (p<0.05) as well.
     In comparision with the cisplatin group, the cell viability was significantly higher in cigarettes PM10intervention group under the concerntration of40μg/ml, however, when the concerntration were80μg/ml and100μg/ml, cell viability were showed significantly lower.
     (4) Effect of24h intervention of moxa smoke PM10on A549cell cycle
     Compared with the control group, the proportion of S-phase cells increased significantly (p<0.05) in moxa smoke PM10group.
     Compared with the160μg/ml group, cells in S-phase was significantly lower (p<0.05) in the other two group(320μg/ml,400μg/ml); cells in G1-phase increased significantly (p<0.01), while decreased significantly (p<0.01) in G2-phase when the concerntration of moxa smoke PM10was400μg/mL However, the proportions of G1and G2phase cells were not significantly changed change (p>0.05)in comparision to160μg/ml group.
     Compared with320μg/ml group, cells in G1phase was significantly higher (p<0.05) in400ng/ml group, and it showed no significant difference (p>0.05) in the proportion of G2phase cells.
     "Apoptotic peak" occured in the flow cytometry diagrams of A549cells cultured with moxa smoke PM10.
     (5) Effect of4h intervention of moxa smoke PM10on ROS levels in A549cells
     Compared with the control group, ROS levels were significantly lower (p<0.05) in A549cells after4h intervention of moxa smoke PM10.
     (6) Effect of moxa smoke PM10on the morphology of apoptosis of A549cells
     Some apoptotic cells were observed after treated with moxa smoke PM10in the concerntration of400μg/mL
     (7) Effect of moxa smoke PM10on intracellular Ca2+levels in A549cells
     The intracellular Ca2+levels increased significantly (p<0.01) A549cells after4hours intervention by moxa smoke PM10with increasing concentration.
     (8) Effect of moxa somke PM10on activity of Caspase9and Caspase3/7in A549cells
     Compared with the control group, the intracellular Caspase9activity was no difference (p>0.05) in each concentration group of moxa smoke PM10after4hours'intervention. As for the activity of Caspase3/7, in comparasion with the control group, it was decreased significantly (p<0.01) when the moxa smoke PM10concentration is280μg/ml, while the difference was not statistically significant (p>0.05) in the concentration of140μg/ml
     (9) Effect of moxa smoke PM10on the expression of NF-κB(p65) in A549cells
     Compared with the control group, the expression of NF-κB (p65) were decreased significantly (p<0.05) after intervention of moxa smoke PM10with different concerntrations for4hours. When the A549cells were cultured with moxa smoke PM10for20hours, the expression of p65were decreased significantly (p<0.05) in the concerntration of70μ/ml and280μg/ml, while it showed no significant change in the concerntration of140μg/ml (p>0.05).
     Results of effect on gene expression profiles of A549cells cultured with PM10in moxa smoke are as follows:
     (1) Differentially Expressed Genes (DEGs)
     Compared with the control group, there were1109different expressed genes in A549cells after intervention of moxa smoke in the concerntration of280μg/ml for4hours, including602up-and507down-regulated genes.
     When A549cells were cultred for20hours, there were3565different expressed genes in A549cells after intervention of moxa smoke in the concerntration of280μg/ml, including1394up-and2171down-regulated genes in the comparision to the control group.
     Compared with the4hours'intervention group, there were2149different expressed genes, including1010up-and1139down-regulated genes.
     (2) Cluster analysis of the expression patterns of different genes
     During the intervention of moxa smoke PM10, there were316different expressed genes in common could be detected in each of the phases, including processes of4h intervention,20h intervention, and the phase from4h and20h. After the intervention for4h, most of these genes were upregulated in comparision to the control group, while they were mostly down regulated after20hours compared with the control group, gene below the main tone. A total of4415differentially expressed genes were detected in the three phases. Genes with the function to promote cell cycle progression were mostly down-regulated. While, BAD gene, a kind of pro-apoptotic gene, showed upregulated after intervention for4hours, then it was significantly down-regulated over time; the Caspase family genes and Bel, the anti-apoptotic gene family expressed up and down without rules.
     (3) Gene ontology (Biological Process) functional enrichment analysis for DEGs in A549cells treated with moxa smoke PM10
     After intervention for4hours, all the different expressed genes compared with the control group involved in1425kinds of different biological processes, of which39kinds were significantly enriched, and "cell cycle" was the most significant one.
     After intervention for20hours, all the different expressed genes compared with the control group involved in2211kinds of different biological processes, of which77kinds were significantly enriched, and "cell metabolism" was the most significant one.
     The different expressed genes between interventions for20hours and4hours involved in1786kinds of biological processes, of which22kinds of were significantly enriched, and "cellular process" was the most significant one.
     (4) Pathway enrichment analysis for DEGs of A549cells after treated by PM10in moxa smoke
     The different expressed genes in A549cells which were cultured with moxa somke PM10for4hours compared with the control group, involved in214kinds of signaling pathways, of which6kinds were significantly enriched as follows:Cell cycle, Protein processing in endoplasmic reticulum, Oxidative phosphorylation, Epithelial cell signaling in Helicobacter pylori-infection, p53signaling pathway and Huntington's disease pathway.
     The different expressed genes intervention with moxa smoke PM10for20hours compared with the control group, involved in228kinds of signaling pathways, of which the significantly enriched ones were as follows:Cell cycle, DNA replication, Metabolic pathways, Spliceosome, Glycosaminoglycan biosynthesis-keratan, Pyrimidine metabolism, Oocyte meiosis, Epithelial cell signaling in Helicobacter pylori, Protein processing in endoplasmic reticulum, Ubiquitin mediated proteo lysis, Oxidative phosphorylation, Ad here ns junction, p53signaling pathway, Progesterone-mediated oocyte maturation, Glycosylphosphatidylinositol(GPI)-anchor, One carbon pool by folate, Huntington's disease and Wnt signaling pathway.
     The different expressed genes caused by moxa smoke intervention for20hours compared with that for4hours, involved in221kinds of signaling pathways, which significantly enriched pathways were arranged as follows:Cell cycle, Pyrimidine metabolism, DNA replication, p53signaling pathway and Spliceosome pathway.
     Conclusions:
     1. The moxa smoke PM10can inhibit human lung adenocarcinoma A549cell proliferatioa It had less toxic on bronchial epithelial cells BEAS-2B than cigarettes PM10did, but can inhibit the proliferation of A549cells. However, the PM10of cigarette somke with the same concentration had no effect on A549cell viability, which indicated that moxa smoke PM10may contain anti-tumor ingredients.
     2. Moxa smoke PM10induced A549cell death by causing cell cycle arrest. It can induce cell cycle arrest in various stages, expecially in the late blockade. And the effect on cell cycle regulation involves many pathways, such as cyclin-CDK-dependent pathway, p53regulatory pathway, redox regulation and metabolic pathways.
     3. Moxa smoke PM10induced A549cell death by causing autophagy. It can reduce the expressions of extracellular matrix proteins (ECM) and integrin in A549cells, which induced anoikis of the cells, and then cells died through autophagy programmed cell death. This may be one of the main mechanism of cell death which the moxa smoke PM10caused. Furthermore, moxa smoke PM10may play a role in tumor metastasis and invasion through this pathway.
     4. Moxa smoke PM10showed two-way effect on the apoptosis of A549cells. It can bothe promote and inhibit apoptosis of A549cells, and the two roles in a dynamic change.
     5. Moxa smoke PM10has many kinds of biological activities. It can cause a large number of different expressed genes in A549cells involved in various biological processes. It was both positive and harmful to the body, so it is necessary to carry out further research on moxa smoke.
引文
[1]丁光宏,沈雪勇,褚君浩,等.中医灸与人体穴位红外辐射光谱特性研究[J].中国生物医学工程学报,2002,21(4):356-360.
    [2]洪文学,蔡建红,景军.艾灸的热辐射光谱特性研究[J].应用光学,2004,25(4):1-3.
    [3]杨华元,肖元春,刘堂义,等.隔物灸的近红外光谱辐射特性测定[J].上海针灸杂志,2003,22(9):15-17.
    [4]靳然,赵百孝,于密密,等.艾燃烧生成物组分固相微萃取气相色谱质谱法定性分析[J].北京中医药大学学报,2011,34(9):632-636.
    [5]洪宗国,杨梅,农熠瑛,等.蕲艾燃烧灰烬提取物抗自由基作用[J].中南民族大学学报:自然科学版,2008,27(3):47-49.
    [6]杨梅,江丹,易筠,等.艾叶燃烧物清除自由基作用的观察[J].中国针灸,2009,29(7)547-549.
    [7]李炎强,胡军,张晓兵,等.艾叶及其烟气粒相物挥发性成分的分析[J].烟草科技,2005,10(219):15-21.
    [8]N. HITOSUGI, R. OHNO, I. HATSUKARI, et al. Induction of cell death by pro-oxidant action of Moxa smoke[J]. Anticancer research,2002,22(1A):159-163.
    [9]H. SAKAGAMI, H. MATSUMOTO, K. SATOH, et al. Cytotoxicity and radical modulating activity of Moxa smoke[J]. In Vivo,2005,19(2):391-397.
    [10]V. J. Sarath, C.-s. So, Y. D. Won, et al. Artemisia princeps var orientalis induces apoptosis in human breast cancer MCF-7 cells[J]. Anticancer research,2007, 27(6B)3891-3898.
    [11]大西基代.艾燃烧生成物的自由基清除作用研究[J].国外医学:中医中药分册,1992,14(3):60-60.
    [12]黄秋风.关于艾的燃烧生成物中含有的抗氧化作用物质[J].国外医学:中医中药分册,1989,1 1(5):47-47.
    [13]孟笑男,徐焕芳,崔莹雪,等.艾燃烧生成物对快速老化模型小鼠大脑SOD, MDA和GSH-Px的影响[J].环球中医药ISTIC,2011,4(6):413-415.
    [14]许焕芳,崔莹雪,韩丽,等.艾烟对SAMP8小鼠脑乙酰胆碱转移酶和胆碱酯酶活性的影响[J].中国针灸,2012,32(1):53-57.
    [15]吕荧,叶春枚,高建芳,等.熏灸治疗外科感染性疾病575例(附艾烟抑菌试验)[J].安徽中医学院学报,1988,7(4)36-37.
    [16]何斌.艾烟熏治疗浸渍糜烂型足癣78例[J].中医外治杂志,2010,19(5):7-9.
    [17]梅全喜,徐景远.艾烟的化学成分及药理作用研究进展[J].时珍国医国药,2003,14(8):3-3.
    [18]吴爱须,李彦平,吴爱华,等.外科病房空气消毒方法的比较研究[J].河北医药,2010,32(013):1818-1819.
    [19]欧阳湘云.艾烟研究概况[J].实用中医药杂志,2010,26(9):663-664.
    [20]许焕芳,崔莹雪,黄茶熙,等.艾燃烧生成物对SAMP8小鼠血清Th1/Th2细胞因 子的影响[J].中华中医药杂志,2012,27(5):1387-1390.
    [21]H. MATSUMOTO, J. SHIMADA, H. NAGASAKA, et al. Inhibition by Moxa smoke of NO production and NOS expression in mouse macrophage-like cells Raw 264.7[J]. In Vivo,2005,19(2):471-474.
    [22]崔莹雪,赵百孝.艾灸与芳香疗法[J].中华中医药杂志,2010,10(10):1548-1551.
    [23]B. Zhao, G Litscher, J. Li, et al. Effects of moxa (Artemisia vulgaris) smoke inhalation on heart rate and its variability[J]. Chinese Medicine,2011,2(2):53-57.
    [24]杨楣良.艾灸对空气影响及改进传统灸法的初步探讨[J].针灸学报,1990,6(1):39-41.
    [25]冯祯钰,安静.艾灸过敏一例[J].中国针灸,2005,25(12):899-899.
    [26]李红霞,刘世伟.艾灸过敏2例分析[J].中国中医急症,2008,17(6):859-860.
    [27]D. K. Shiu. Moxa burner and mount for multiple moxa burners:United States, 4203438[P].1980-5-20.
    [28]黄茶熙,赵百孝,刘平,等.京津地区艾灸场所夏季可吸入颗粒物(PM10)的质量浓度及微观形貌分析[J].中华中医药杂志,2012,27(012)3104-3108.
    [29]J. Wheeler, B. CoppockandC. Chen Does the burning of moxa (Artemisia vulgaris) in traditional Chinese medicine constitute a health hazard?[J]. Acupuncture in Medicine, 2009,27(1):16-20.
    [30]R. Siegel, E. Ward, O. Brawley, et al. The impact of eliminating socioeconomic and racial disparities on premature cancer deaths[J]. Ca Cancer J Clin,2011,61(4)212.
    [31]D. Parkin, P. Pisani, A. Lopez, et al. At least one in seven cases of cancer is caused by smoking. Global estimates for 1985[J]. International journal of cancer,1994, 59(4):494-504.
    [32]H. J. Herbst RS, Lippman SM. Lung Cancer[J]. N Engl J Med,2008,359(13):1367-1380.
    [33]杨玲,李连弟,陈育德,等.中国肺癌死亡趋势分析及发病,死亡的估计与预测[J].中国肺癌杂志,2005,8(4):274-278.
    [34]J. Sanchez de Cos, L. Miravet, A. Nunez, et al.P-309 Lung cancer (LC) in Spaia Last epidemiological trends concerning age, gender, smoking prevalence and histological types[J]. Lung Cancer,2005,49:S196.
    [35]A. Jemal, M. J. Thun, L. A. Ries, et al. Annual report to the nation on the status of cancer, 1975-2005, featuring trends in lung cancer, tobacco use, and tobacco control[J]. Journal of the National Cancer Institute,2008.100(23):1672-1694.
    [36]D. H. Hoffmann, Ilse. The changing cigarette,1950-1995[J]. Journal of Toxicology and Environmental Health Part A,1997,50(4)307-364.
    [37]G AkopyanandB. Bonavida. Understanding tobacco smoke carcinogen NNK and lung tumorigenesis (Review)[J]. International journal of oncology,2006,29(4):745.
    [38]R. DollandA. Bradford Hill. Smoking and Carcinoma of the Lung:Preliminary Report[J]. The Challenge of Epidemiology:Issues and Selected Readings,2004,1(1):475-491.
    [39]E. WynderandE. Graham. Etiologic factors in bronchiogenic carcinoma with special reference to industrial exposures; report of eight hundred fifty-seven proved cases[J]. AMA archives of industrial hygiene and occupational medicine,1951,4(3)221.
    [40]D. T. Janerich, W. D. Thompson, L. R. Varela, et al. Lung cancer and exposure to tobacco smoke in the household[J]. New England Journal of Medicine,1990,323(10):632-636.
    [41]P. Correa, E. Fontham, L. Williams Pickle, et al. Passive smoking and lung cancer[J]. The Lancet,1983,322(8350):595-597.
    [42]R.-x. Luo, B. Wu, Y.-n. Yi, et al. Indoor burning coal air pollution and lung cancer-a case-control study in Fuzhou, China[J]. Lung Cancer,1996,14(1)S113-S119.
    [43]R. A. Kleinerman, Z. Wang, L. Wang, et al. Lung cancer and indoor exposure to coal and biomass in rural China[J]. Journal of occupational and environmental medicine,2002, 44(4)338-344.
    [44]邵龙义,时宗波,黄勤.都市大气环境中可吸入颗粒物的研究[J].环境保护,2000,(1):24-29.
    [45]A. Allen, E. Nemitz, J. Shi, et al. Size distributions of trace metals in atmospheric aerosols in the United Kingdom[J].Atmospheric Environment,2001,35(27):4581-4591.
    [46]B. Ostro, R. Broadwin, S. Green, et al. Fine particulate air pollution and mortality in nine California counties:results from CALFINE[J]. Environmental health perspectives,2006, 114(1)29.
    [47]A. Abell, E. ErnstandJ. P. Bonde. Semen quality and sexual hormones in greenhouse workers[J]. Scandinavian journal of work, environment & health,2000,492-500.
    [48]A. Zanobetti, J. SchwartzandD. W. Dockery. Airborne particles are a risk factor for hospital admissions for heart and lungdisease[J]. Environmental health perspectives,2000, 108(11):1071.
    [49]R. Bascom. Health effects of outdoor air pollution[J]. American Journal of Respiratory and Critical Care Medicine,1996,153(1)3-50.
    [50]J. Schwartz, F. LadenandA. ZanobettL The concentration-response relation between PM (2.5) and daily deaths[J]. Environmental health perspectives,2002,110(10):1025.
    [51]周林,邵龙义,宋晓焱,等.宣威肺癌高发区室内PM10的生物活性研究[J].毒理学杂志,2009,(6):439-441.
    [52]C. A. Pope Ⅲ, R. T. Burnett, M. J. Thun, et al. Lung cancer, cardiopulmonary mortality, and bng-term exposure to fine particulate air pollution[J]. JAMA:the journal of the American Medical Association,2002,287(9):1132-1141.
    [53]李会庆,施胜芳.山东省肺癌死亡率变化趋势与大气污染的相关分析[J].中华流行病学杂志,1994,15(1):38-41.
    [54]赵尔民.乌鲁木齐市肺癌死亡率与大气污染的相关分析[J].环境与健康杂志,1997,14(1):40-40.
    [55]胡.陆应昶,赵金扣.江苏省肺癌死亡和大气污染情况地理信息系统的相关性[J].中国肿瘤,2003,12(7):374-377.
    [56]冯丹,徐桂永,赵连伟,等.肺癌死亡率与大气污染关系的灰色关联分析[J].数理医药学杂志,2001,14(4)".364-365.
    [57]贺琴,吴森林,许芬,等.武汉市空气污染与肺癌潜在减寿年数的关系[J].中华流行病学杂志,2007,28(12):1175-1178.
    [58]L. E. Smith, M. F. Denissenko, W. P. Bennett, et al. Targeting of lung cancer mutational hotspots by polycyclic aromatic hydrocarbons [J]. Journal of the National Cancer Institute, 2000,92(10):803-811.
    [59]B. L. Cohen. How dangerous is low level radiation?[J]. Risk Analysis,1995, 15(6):645-652.
    [60]A. Matakidou, T. EisenandR. Houlston. Systematic review of the relationship between family history and lung cancer risk[J]. British journal of cancer,2005,93(7):825-833.
    [61]J. E. Bailey-Wilson, C. I. Amos, S. M. Pinney, et al. A major lung cancer susceptibility locus maps to chromosome 6q23-25[J]. The American Journal of Human Genetics,2004, 75(3)460-474.
    [62]宋欢,蒋婷婷,严丽波,等.精神心理因素对肺癌发病影响的研究[J].现代预防医学,20 11,38(002):294-297.
    [63]S. C. van't WesteindeandR. J. van Klaveren. Screening and early detection of lung cancer[J]. The Cancer Journal,2011,17(1):3-10.
    [64]A. Fujikawa, Y. Takiguchi, S. Mizuno, et al. Lung cancer screening--comparison of computed tomography and X-ray[J]. Lung cancer (Amsterdam, Netherlands),2008, 61(2):195.
    [65]卢先锋,杨雪琴,张志敏,等.肺癌血清肿瘤标志物meta分析[J].中国肺癌杂志,2010,13(12):1136-1140.
    [66]赵肖,王孟昭.肺癌血清肿瘤标志物的临床意义[J].中国肺癌杂志,2011,14(3):286-291.
    [67]R. C. Lee, R. L. FeinbaumandV. Ambros. The C. elegans heterochronic gene encodes small RNAs with antisense complementarity to lin-14[J]. Cell,1993,75(5):843-854.
    [68]J. A. Bishop, H.Benjamin, H. Cholakh,et al. Accurate classification of non-small cell lung carcinoma using a novel microRNA-based approach[J]. Clinical Cancer Research, 2010,16(2)610-619.
    [69]D. EttingerandB. Johnson. Update:NCCN small cell and non-small cell lung cancer Clinical Practice Guidelines[J]. Journal of the National Comprehensive Cancer Network: JNCCN,2005, (11):S 17-21.
    [70]C. Zhou, Y. Wu, G. Chen, et al. Efficacy results from the randomised phase Ⅲ OPTIMAL (CTONG 0802) study comparing first-line erlotinib versus carboplatin (CBDCA) plus gemcitabine (GEM)[J]. Ann Oncol,2010,21(Suppl.8):
    [71]G. I. Shapiro. Cyclin-dependent kinase pathways as targets for cancer treatment[J]. Journal of Clinical Oncology,2006,24(11):1770-1783.
    [72]M. MalumbresandM. Barbacid. Cell cycle kinases in cancer[J]. Current opinion in genetics & development,2007,17(1):60-65.
    [73]E. Manchado, M. GuillamotandM. Malumbres. Killing cells by targeting mitosis[J]. Cell Death & Differentiation,2012,19(3)369-377.
    [74]P. Nurse. A long twentieth century of review the cell cycle and beyond[J]. Cell,2000, 100(1):71-78.
    [75]曹亚.细胞周期与肿瘤[J].国外医学:生理、病理科学与临床分册,2002,22(2):103-105.
    [76]H. Sauer, M. WartenbergandJ. Hescheler. Reactive oxygen species as intracellular messengers during cell growth and differentiation[J]. Cellular Physiology and Biochemistry,2001,11 (4):173-186.
    [77]D. P. Jones. Radical-free biology of oxidative stress[J]. American Journal of Physiology-Cell Physiology,2008,295(4)C849-C868.
    [78]W. C. BurhansandN. H. Heintz. The cell cycle is a redox cycle:linking phase-specific targets to cell fate[J]. Free Radical Biology and Medicine,2009,47(9):1282-1293.
    [79]Z. X. ChenandS. Pervaiz Bcl-2 induces pro-oxidant state by engaging mitochondrial respiration in tumor cells[J]. Cell Death & Differentiation,2007,14(9):1617-1627.
    [80]F. Caputo, R. VeglianteandL. Ghibelli. Redox modulation of the DNA damage response[J]. Biochemical Pharmacology,2012,84(10):1292-1306.
    [81]P. M. Burch, Z. Yuan, A. Loonen, et al. An extracellular signal-regulated kinase 1-and 2-dependent program ofchromatin trafficking of c-Fos and Fra-1 is required for cyclin D1 expression during cell cycle reentry[J]. Molecular and cellular biology,2004, 24(11):4696-4709.
    [82]S. U. Bajad, W. Lu, E. H. Kimball, et al. Separation and quantitation of water soluble cellular metabolites by hydrophilic interaction chromatography-tandem mass spectrometry[J]. Journal of chromatography. A,2006,1125(1):76-88.
    [83]B. Hwang, J.-S. Hwang, J. Lee, et al. The antimicrobial peptide, psacotheasin induces reactive oxygen species and triggers apoptosis in Candida albicans[J]. Biochemical and Biophysical Research Communications,2011,405(2)267-271.
    [84]P. M. BurchandN. H. Heintz. Redox regulation of cell-cycle re-entry:cyclin D1 as a primary target for the mitogenic effects of reactive oxygen and nitrogen species[J]. Antioxidants & redox signaling,2005,7(5-6):741-751.
    [85]C. G Havens, A. Ho, N. Yoshioka, et al. Regulation of late G1/S phase transition and APCCdhl by reactive oxygen species[J]. Molecular and cellular biology,2006, 26(12)4701-4711.
    [86]A. Borriello, V. Cucciolla, A. Oliva,et al. p27Kipl metabolism:a fescinating labyrinth[J]. Cell Cycle,2007,6(9):1053-1061.
    [87]M. Fujikawa, T. Katagiri, A. Tugores, et al. ESE-3, an Ets family transcription factor, is up-regulated in cellular senescence[J], Cancer science,2007,98(9):1468-1475.
    [88]S. Blain. Switching cyclin D-Cdk4 kinase activity on and off[J]. Cell Cycle,2008, 7(7):892-898.
    [89]S. G Menon, E. H. Sarsour, D. R. Spitz, et al. Redox regulation of the G1 to S phase transition in the mouse embryo fibroblast cell cycle[J]. Cancer Research,2003, 63(9)2109-2117.
    [90]A. Hoffman, L. SpetnerandM. Burke. Ramifications of a redox switch within a normal cell:its absence in a cancer cell[J]. Free Radical Biology and Medicine,2008, 45(3)265-268.
    [91]M. R. BuchakjianandS. Kornbluth. The engine driving the ship:metabolic steering of cell proliferation and death[J]. Nature Reviews Molecular Cell Biology,2010, 11(10):715-727.
    [92]A. B. Pardee. A restriction point for control of normal animal cell proliferation[J]. Proceedings of the National Academy of Sciences,1974,71(4):1286-1290.
    [93]F. Morrish, N. Isern, M. Sadilek, et al. c-Myc activates multiple metabolic networks to generate substrates for cell-cycle entry[J]. Oncogene,2009,28(27)2485-2491.
    [94]M. SalvadorandL. C. Sergio. Fulfilling the metabolic requirements for cell proliferation[J]. Biochemical Journal,2012,446(1):1-7.
    [95]A. Almeida, J. P. BolanosandS. Moncada. E3 ubiquitin ligase APC/C-Cdhl accounts for the Warburg effect by linking glycolysis to cell pro life rat ion[J]. Proceedings of the National Academy of Sciences,2010,107(2):738-741.
    [96]J. P. Bolanos, A. AlmeidaandS. Moncada. Glycolysis:a bioenergetic or a survival pathway?[J]. Trends in biochemical sciences,2010,35(3):145-149.
    [97]S. L. Colombo, M. Palacios-Callender, N. Frakich, et aL Anaphase-promoting complex/cyclosome-Cdhl coordinates glycolysis and glutaminolysis with transition to S phase in human T lymphocytes[J]. Proceedings of the National Academy of Sciences, 2010,107(44):18868-18873.
    [98]D. Li, Y. Zhu, Q. Tang, et al. A new G6PD knockdown tumor-cell line with reduced proliferation and increased susceptibility to oxidative stress[J]. Cancer biotherapy & radiopharmaceuticals,2009,24(1):81-90.
    [99]P. Jiang, W. Du, X.Wang, et al. p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase[J]. Nature cell biology,2011,13(3)310-316.
    [100]J.-M. Peters. SCF and APC:the Yin and Yang of cell cycle regulated proteolysis[J]. Current opinion in cell biology,1998,10(6):759-768.
    [101]Y. Ho, A. Gruhler, A. Heilbut, et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry[J]. Nature,2002,415(6868):180-183.
    [102]J. H. Hoeijmakers. Genome maintenance mechanisms for preventing cancer[J]. Nature, 2001,411(6835)366-374.
    [103]Z. DengLin, CaoYa. CyclinDl polymorphism and the susceptibility to NP Cusing DHPLC[[J]. Act a Biochemica ofBiophysica Sinica,2002,34(1):16-20.
    [104]于卉影,史承广,朱继江,等.细胞周期素A的表达与非小细胞肺癌增殖及预后的关系[J].癌症,2001,20(1):38-40.
    [105]张益,彭志海,裘国强,等.周期蛋白A在原发性肝癌中的表达及意义[J].中华肿瘤杂志,2002,24(4)353-355.
    [106]M. PeterandI. Herskowitz Joining the complex:cyclin-dependent kinase inhibitory proteins and the cell cycle[J]. Cell,1994,79(2):181.
    [107]T. G.Davies, J. Bentley, C. E. Arris, et al. Structure-based design of a potent purine-based cyclin-dependent kinase inhibitor[J]. Nature Structural & Molecular Biology, 2002,9(10):745-749.
    [108]I. CollinsandM. D. Garrett. Targeting the cell division cycle in cancer:CDK and cell cycle checkpoint kinase inhibitors[J]. Current opinion in pharmacology,2005, 5(4)366-373.
    [109]S. LapennaandA. Giordano. Cell cycle kinases as therapeutic targets for cancer[J]. Nature reviews Drug discovery,2009,8(7):547-566.
    [110]J. Cicenasand M. Valius. The CDK inhibitors in cancer research and therapy[J]. Journal of cancer research and clinical oncology,2011,137(10):1409-1418.
    [111]M. MalumbresandM. Barbacid. Milestones in cell division:to cycle or not to cycle:a critical decision in cancer[J]. Nature Reviews Cancer,2001,1(3)222-231.
    [112]O. TetsuandF. McCormick. Proliferation of cancer cells despite CDK2 inhibition[J]. Cancer cell,2003,3(3)233-245.
    [113]M. Malumbres. Physiological relevance of cell cycle kinases[J]. Physiological reviews, 2011,91(3)573-1007.
    [114]Q. Yu, E. Sicinska, Y. Geng, et al. Requirement for CDK4 kinase function in breast cancer[J]. Cancer cell,2006,9(1)23-32.
    [115]J. J. Molenaar, M. E. Ebus, J. Koster, et al. Cyclin D1 and CDK4 activity contribute to the undifferentiated phenotype in neuroblastoma[J]. Cancer Research,2008, 68(8)2599-2609.
    [116]F. Graf, L. Koehler, T. Kniess, et al. Cell cycle regulating kinase Cdk4 as a potential target for tumor cell treatment and tumor imaging[J]. Journal of oncology, 2009,2009:1-12.
    [117]H. Sedlacek. Mechanisms of action of flavopiridol[J]. Critical reviews in oncology/hematology,2001,38(2):139.
    [118]G Siemeister, U. Luecking, C. Wagner, et al. Molecular and pharmacodynamic characteristics of the novel multi-target tumor growth inhibitor ZK 304709[J]. Biomedicine & pharmacotherapy,2006,60(6)269-272.
    [119]S. J. McClueandl. Stuart. Metabolism of the trisubstituted purine cyclin-dependent kinase inhibitor seliciclib (R-roscovitine) in vitro and in vivo[J]. Drug Metabolism and Disposition,2008,36(3)561-570.
    [120]X. Garrofe-Ochoa, A. M. Cosialls, J. Ribas, et al. Transcriptional modulation of apoptosis regulators by roscovitine and related compounds[J]. Apoptosis,2011, 16(7):660-670.
    [121]K. C. Bible, Peethambaram, P.P.,Oberg,A.L., Maples,W., Groteluschen,D.L., Boente,M., A phase 2 trial of flavopiridol (Alvocidib) and cisplatin in platin-resistant ovarian and primary peritoneal carcinoma:M C 0261 [J]. Gynecol Oncol,2012,127(1):55-62.
    [122]J. J. Luke, D'Adamo, D. R., Dickson, M. A., Keohan, M. L., Carvajal, R. D., Maki, R. G The cyclin-dependent kinase inhibitor flavopiridol potentiat as doxorubicin efficacy in advanced sarcomas:preclinical investigations and results of a phase dose-escalation clinical trial[J]. Clin Cancer Res,18(9)2638-2647.
    [123]M. MalumbresandM. Barbacid. Cell cycle, CDKs and cancer:a changing paradigm[J]. Nature Reviews Cancer,2009,9(3):153-166.
    [124]R. Swords, D. Mahalingam, M. O'Dwyer, et al. Cdc7 kinase-a new target for drug development[J]. European journal of cancer,2010,46(1):33-40.
    [125]A. Montagnoli, J. MollandF. Colotta. Targeting cell division cycle 7 kinase:a new approach for cancer therapy [J]. Clinical Cancer Research,2010,16(18):4503-4508.
    [126]Y.-S. Tu, X.-L. Kang, J.-G Zhou, et al. Involvement of Chkl-Cdc25A-cyclin A/CDk2 pathway in simvastatin induced S-phase cell cycle arrest and apoptosis in multiple myeloma cells[J]. European journal of pharmacology,2011,670(2):356-364.
    [127]Q. Wu, C. Fan, T. Chen, et al. Micro wave-ass is ted synthesis of arene ruthenium (II) complexes that induce S-phase arrest in cancer cells by DNA damage-mediated p53 phosphorylation[J]. European Journal of Medicinal Chemistry,2013,63(3):57-63.
    [128]H. Ding, C. Han, D. Guo, et al. OSU03012 activates Erkl/2 and Cdks leading to the accumulation of cells in the S-phase and apoptosis[J]. International journal of cancer, 2008,123(12)2923-2930.
    [129]M. Sozmen, R. TuncaandS. Dag Erginsoy. Cyclin A expression is associated with apoptosis and mitosis in murine 3-methylcholanthrene-induced fibrosarcomas[J]. Experimental and Toxicologic Pathology,2009,61(1):41-49.
    [130]B. ChanetonandE. Gottlieb. Rocking cell metabolism:revised functions of the key glycolytic regulator PKM2 in cancer[J]. Trends in biochemical sciences,2012, 37(8):309-316.
    [131]X. ZHAO, Y. ZHOUandY. HU. miR-124, miR-137 and miR-340 regulate colorectal cancer growth via inhibition of the Warburg effect[J]. Oncology reports,2012, 28(4):1346-1352.
    [132]C. F. Zhou, X. B. Li, H. Sun, et al. Pyruvate kinase type M2 is upregulated in colorectal cancer and promotes proliferation and migration of colon cancer cells[J]. IUBMB life, 2012,64(9):775-782.
    [133]N. N. DanialandS. J. Korsmeyer. Cell death:critical control points[J]. Cell,2004, 116(2)205-219.
    [134]H. DerradjiandS. Baatout. Apoptosis:a mechanism of cell suicide[J]. In vivo (Athens, Greece),2003,17(2):185.
    [135]D. Vaux. Apoptosis timeline[J]. Cell death and differentiation,2002,9(4):349-354.
    [136]V. Gogvadze, S. OrreniusandB. Zhivotovsky. Multiple pathways of cytochrome release from mitochondria in apoptosis[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2006,1757(5):639-647.
    [137]P. Zhou,J. Chou, R. S. Olea.et al. Solution structure of Apaf-1 CARD and its interaction with caspase-9 CARD:a structural basis for specific adaptor/caspase interactbn[J]. Proceedings of the National Academy of Sciences,1999,96(20):11265-11270.
    [138]A. Abdel-Latif, H. Abuel-ElaandS. El-Shourbagy. Increased caspase-3 and altered expression ofapoptosis-associated proteins, Bcl-2 and Bax in lichen planus[J]. Clinical and experimental dermatology,2009,34(3)390-395.
    [139]O. Kutukand H. Basaga. Bcl-2 protein family:implications in vascular apoptosis and atherosclerosis[J]. Apoptosis,2006, 11(10):1661-1675.
    [140]K. D. Sullivan, C. L. Gallant-Behm, R. E. Henry, et al. The p53 circuit board[J]. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer,2012,1825(2)229-244.
    [141]R. J. YouleandA. Strasser. The BCL-2 protein family:opposing activities that mediate cell death[J]. Nature Reviews Molecular Cell Biology,2008,9(1):47-59.
    [142]E. Oda, R. Ohki, H. Murasawa, et al. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis[J]. Science Signaling,2000, 288(5468):1053.
    [143]H. Kim, H.-C. Tu, D. Ren, et aL Stepwise activation of BAX and BAK by tBID, BIM, and PUMA initiates mitochondrial apoptosis[J]. Molecular cell,2009,36(3):487-499.
    [144]M. S. HaydenandS. Ghosh. Shared principles in NF-κB signaling[J]. Cell,2008, 132(3)344-362.
    [145]X. Liu, Z. ShenandJ. Huang. Mechanism of epimedium flavonoids in regulating immuno-senescence via nuclear factor-kappa B related signal transduction pathway][J]. Zhongguo Zhong xi yi jie he za zhi Zhongguo Zhongxiyi jiehe zazhi= Chinese journal of integrated traditional and Western medicine/Zhongguo Zhong xi yi jie he xue hui, Zhongguo Zhong yi yan jiu yuan zhu ban,2006,26(7):620.
    [146]M. Osaki, M. a. OshimuraandH. Ito. PI3K-Akt pathway:its functions and alterations in human cancer[J]. Apoptosis,2004,9(6):667-676.
    [147]G Song, G OuyangandS. Bao. The activation of Akt/PKB signaling pathway and cell survival[J]. Journal of cellular and molecular medicine,2005,9(1):59-71.
    [148]R. M. SharrardandN. J. Maitland. Regulation of protein kinase B activity by PTEN and SHIP2 in human prostate-derived cell lines[J]. Cellular signalling,2007,19(1):129-138.
    [149]M. A. O'BrienandR. Kirby. Apoptosis:A review of pro-apoptotic and anti-apoptotic pathways and dysregulation in disease[J]. Journal of Veterinary Emergency and Critical Care,2008,18(6):572-585.
    [150]F. Qi, A. Li, L. Zhao, et al. Apoptosis-inducing effect of cinobufacini on human hepatoma cell line HepG2 and its mechanism of action[J]. Acta Pharm Sin (药学学报), 2010,45(8)318-323.
    [151]Y. O. W. Zhu, Y. Li R. Xiao, M. Shu, Y. Zhou, J. Xie, S. He, P. Qiu, G. Yan. A small-molecule triptolide suppresses angiogenesis and invasion of human anaplastic thyroid carcinoma cells via down-regulation of the nuclear factor-kappa B pathway[J]. Pharmacol,2009,75(4):812-819.
    [152JC.-H. Liao, S.-L. Pan, J.-H. Guh, et al. Antitumor mechanism of evodiamine, a constituent from Chinese herb Evodiae fructus, in human multiple-drug resistant breast cancer NCI/ADR-RES cells in vitro and in vivo[J]. Carcinogenesis,2005,26(5):968-975.
    [153]D. Silvera, S. C. FormentiandR. J. Schneider. Translational control in cancer[J]. Nature Reviews Cancer,2010,10(4)254-266.
    [154]J. Y. Zhu, I. N. Lavrik, U. Mahlknecht, et al. The traditional Chinese herbal compound rocaglamide preferentially induces apoptosis in leukemia cells by modulation of mitogen activated protein kinase activities[J]. International journal of cancer,2007, 121(8):1839-1846.
    [155]J. Zhu, M. Giaisi.R. Kohler, et al. Rocaglamide sensitizes leukemic T cells to activation-induced cell death by differential regulation of CD95L and c-FLIP expression[J]. Cell Death & Differentiation,2009,16(9):1289-1299.
    [156]M. Bleumink, R. Kohler, M. Giaisi, et al. Rocaglamide breaks TRAIL resistance in HTLV-1-associated adult T-cell leukemia/lymphoma by translational suppression of c-FLIP expression[J]. Cell Death & Differentiation,2010,18(2):362-370.
    [157]X. Pang, Z. Yi, J. Zhang, et al. Celastrol suppresses angiogenesis-mediated tumor growth through inhibition of AKT/mammalian target of rapamycin pathway[J]. Cancer Research,2010,70(5):1951-1959.
    [158]D. Trachootham, J. AlexandreandP. Huang. Targeting cancer cells by ROS-mediated mechanisms:a radical therapeutic approach?[J]. Nature reviews Drug discovery,2009, 8(7):579-591.
    [159]P. T. Schumacker. Reactive oxygen species in cancer cells:live by the sword, die by the sword[J]. Cancer cell,2006,10(3):175-176.
    [160]Q. Huang, G. Lu, H. M. Shen, et al. Anti- cancer properties of anthraquinones from rhubarb[J]. Medicinal research reviews,2007,27(5):609-630.
    [161]Z. Gao, K. Huang, X. Yang, et al. Free radical scavenging and antioxidant activities of flavonoids extracted from the radix of Scutellaria baicalensis Georgi[J]. Biochimica et Biophysica Acta (BBA)-General Subjects,1999,1472(3):643-650.
    [162]S. Baumann, S. C. Fas, M. Giaisi, et al. Wogonin preferentially kills malignant lymphocytes and suppresses T-cell tumor growth by inducing PLCγl-and Ca2+-dependent apoptosis[J]. Blood,2008,111(4)2354-2363.
    [163]V. E. Velculescu, L.Zhang, B. Vogelstein, et al. Serial analysis of gene expression[J]. Science-AAAS-Weekly Paper Edition,1995,270(5235):484-486.
    [164]N. Ramachandran, J. V. Raphael, E. Hainsworth, et al. Next-generation high-density self-assembling functional protein arrays[J]. Nature methods,2008,5(6)535-538.
    [165]S. S. Koh,M. L. Opel, J.-P. J. Wei, et al. Molecular classification of melanomas and nevi using gene expression microarray signatures and formalin-fixed and paraffin-embedded tissue[J]. Modern Pathology,2009,22(4)538-546.
    [166]M. R. Fielden, B. P. Eynon, G. Natsoulis, et al. A gene expression signature that predicts the future onset of drug-induced renal tubular toxicity[J]. Toxicologic pathology,2005, 33(6):675-683.
    [167]J. A. DiMasi,R. W. HansenandH. G Grabowski. The price of innovation:new estimates of drug development costs[J]. Journal of health economics,2003,22(2):151-186.
    [168]U. Scherf, D. T. Ross, M. Waltham, et al. A gene expression database for the molecular pharmacology of cancer[J]. Nature genetics,2000,24(3)236-244.
    [169]M. S. Boguski, K. D. MandlandV. P. Sukhatme. Repurposing with a difference[J]. Science,2009,324(5933):1394.
    [170]M. Sirota, J. T. Dudley, J. Kim, et al. Discovery and preclinical validation of drug indications using compendia of public gene expression data[J]. Science translational medicine,2011,3(96):96ra77.
    [171]毕蕾,王瑞平,邹玺,等.益肺方对人肺癌A549细胞肿瘤相关生物学通路基因表达的影响[J].中华中医药杂志,2010,25(4):500-503.
    [172]孙海,耿建,陈龙邦.应用基因芯片技术筛选人肺腺癌SPC-A1多西他赛耐药差异表达基因[J].中国肺癌杂志,2007,10(5):356-361.
    [1]N. HITOSUGI, R.OHNO, I.HATSUKARI, et al. Induction of cell death by pro-oxidant action of Moxa smoke[J]. Anticancer research,2002,22(1A):159-163.
    [2]H. SAKAGAMI, H. MATSUMOTO, K. SATOH, et al. Cytotoxieity and radical modulating activity of Moxa smoke[J]. In Vivo,2005,19(2)391-397.
    [3]V. J. Sarath, C.-s. So, Y. D. Won, et al. Artemisia princeps var orientalis induces apoptosis in human breast cancer MCF-7 cells[J]. Anticancer research,2007,27(6B):3891-3898.
    [4]大西基代.艾燃烧生成物的自由基清除作用研究[J].国外医学:中医中药分册,1992,14(3):60-60.
    [5]黄秋风.关于艾的燃烧生成物中含有的抗氧化作用物质[J].国外医学:中医中药分册,1989,1 1(5):47-47.
    [6]孟笑男,徐焕芳,崔莹雪,等.艾燃烧生成物对快速老化模型小鼠大脑SOD, MDA和GSH-Px的影响[J].环球中医药,2011,4(6)413-415.
    [7]许焕芳,崔莹雪,韩丽,等.艾烟对SAMP8小鼠脑乙酰胆碱转移酶和胆碱酯酶活性的影响[J].中国针灸,2012,32(1):53-57.
    [8]吕荧,叶春枚,高建芳,等.熏灸治疗外科感染性疾病575例(附艾烟抑菌试验)[J].安徽中医学院学报,1988,7(4):36-37.
    [9]何斌.艾烟熏治疗浸渍糜烂型足癣78例[J].中医外治杂志,2010,19(5):7-9.
    [10]H.MATSUMOTO, J. SHIMADA, H. NAGASAKA, et al. Inhibition by Moxa smoke of NO production and iNOS expression in mouse macrophage-like cells Raw 264.7[J]. In Vivo,2005,19(2):471-474.
    [11]周林,邵龙义,宋晓焱,等.宣威肺癌高发区室内PM10的生物活性研究[J].毒理学杂志,2009,006):439-441.
    [12]C. A. Pope Ⅲ, R. T. Burnett, M. J. Thun, et al. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution[J]. JAMA:the journal of the American Medical Association,2002,287(9):1132-1141.
    [13]黄茶熙,赵百孝,刘平,等.京津地区艾灸场所夏季可吸入颗粒物(PM10)的质量浓度及微观形貌分析[J].中华中医药杂志,2012,27(12):3104-3108.
    [14]N. A. Howlader N, Krapcho M, et al,.SEER Cancer Statistics Review,1975-2008[N/OL]. Bethesda:National Cancer Institute.2010[2013].http://seer.cancer.gov/csr/1975_2008/.
    [15]H. J. Herbst RS, Lippman SM. Lung Cancer[J]. N Engl J Med,2008,359(13):1367-1380.
    [16]闵凌峰.香烟烟雾提取物诱导肺腺癌A549细胞相关分子改变的比较蛋白组学研究[D].湖南:中南大学,2011:5.
    [17]N. Hitosugi, R. Ohno, I. Hatsukari, et al. Diverse biological activities of moxa extract and smoke[J]. In vivo (Athens, Greece),2001,15(3)249.
    [1]B.-B. S. ZhouandS. J. Elledge. The DNA damage response:putting checkpoints in perspective[J]. Nature,2000,408(6811):433-439.
    [2]J. H. Hoeijmakers. Genome maintenance mechanisms for preventing cancer[J]. Nature, 2001,411(6835)366-374.
    [3]C.-J. Hsiao, S.-H. Hsiao, W.-L. Chen, et al. Pycnidione, a fungus-derived agent, induces cell cycle arrest and apoptosis in A549 human lung cancer cells[J]. Chemico-Biological Interactions,2012,197(1)23-30.
    [4]S. Sundarraj, R. Thangam, V. Sreevani, et al. y-Sitosterol from Acacia nilotica L. induces G2/M cell cycle arrest and apoptosis through c-Myc suppression in MCF-7 and A549 cells[J]. Journal of Ethnopharmacology,2012,141 (3):803-809.
    [5]Q. Wu, C. Fan, T. Chen, et al. Microwave-assisted synthesis of arene ruthenium (Ⅱ) complexes that induce S-phase arrest in cancer cells by DNA damage-mediated p53 phosphorylation[J]. European Journal of Medicinal Chemistry,2013,63C:57-63.
    [6]大西基代.艾燃烧生成物的自由基清除作用研究[J].国外医学:中医中药分册,1992, 14(3):60-60.
    [7]西谷郁子.关于艾的燃烧生成物中含有的抗氧化作用物质[J][J].国外医学:中医中药分册,1989,11(5):47-47.
    [8]H. SAKAGAM, H. MATSUMOTO, K. SATOH, et al.Cytotoxicity and radical modulating activity of Moxa smoke[J]. In Vivo,2005,19(2)391-397.
    [9]许焕芳,崔莹雪,韩丽,等.艾烟对SAMP8小鼠脑乙酰胆碱转移酶和胆碱酯酶活性的影响[J].中国针灸,2012,32(1)53-57.
    [10]孟笑男,徐焕芳,崔莹雪,等.艾燃烧生成物对快速老化模型小鼠大脑SOD, MDA和GSH-Px的影响[J].环球中医药,2011,4(6):413-415.
    [11]H. Sauer, M. WartenbergandJ. Hescheler. Reactive oxygen species as intracellular messengers during cell growth and differentiation[J]. Cellular Physiology and Biochemistry,2001,11(4):173-186.
    [12]D. P. Jones. Radical-free biology of oxidative stress[J]. American Journal of Physiology-Cell Physiology,2008,295(4):C849-C868.
    [13]W. C. BurhansandN. H. Heintz. The cell cycle is a redox cycle:linking phase-specific targets to cell fate[J]. Free Radical Biology and Medicine,2009,47(9):1282-1293.
    [14]Z. X. ChenandS. Pervaiz. Bcl-2 induces pro-oxidant state by engaging mitochondrial respiration in tumor cells[J]. Cell Death & Differentiation,2007,14(9):1617-1627.
    [15]F. Caputo,R. VeglianteandL. Ghibelli. Redox modulation of the DNA damage response[J]. Biochemical Pharmacology,2012,84(10):1292-1306.
    [16]P. M. Burch, Z. Yuan, A. Loonen, et al. An extracellular signal-regulated kinase 1-and 2-dependent program of chromatin trafficking of c-Fos and Fra-1 is required for cyclin D1 expression during cell cycle reentry[J]. Molecular and cellular biology,2004, 24(11):4696-4709.
    [17]S. U. Bajad, W. Lu, E. H. Kimball, et al. Separation and quantitation of water soluble cellular metabolites by hydrophilic interaction chromatography-tandem mass spectrometry[J]. Journal of chromatography. A,2006,1125(1):76-88.
    [18]J. H. Hwang, I. S. Hwang, Q. H. Liu, et al. (+)-Me dioresinol leads to intracellular ROS accumulation and mitochondria-mediated apoptotic cell death in Candida albicans[J]. Biochimie,2012,94(8):1784-1793.
    [19]P. M. BurchandN. H. Heintz. Redox regulation of cell-cycle re-entry:cyclin D1 as a primary target for the mitogenic effects of reactive oxygen and nitrogen species[J]. Antioxidants & redox signaling,2005,7(5-6):741-751.
    [20]C. G. Havens, A. Ho, N. Yoshioka, et al. Regulation of late G1/S phase transition and APCCdh1 by reactive oxygen species[J]. Molecular and cellular biology,2006, 26(12):4701-4711.
    [21]S. G. Menon, E. H. Sarsour, D. R. Spitz, et al. Redox regulation of the G1 to S phase transition in the mouse embryo fibroblast cell cycle[J]. Cancer Research,2003, 63(9)2109-2117.
    [22]A. Hoffman, L. SpetnerandM. Burke. Ramifications of a redox switch within a normal cell:its absence in a cancer cell[J]. Free Radical Biology and Medicine,2008, 45(3)265-268.
    [1]V. J. Sarath, C.-s. So. Y. D. Won. et al. Artemisia princeps var orientalis induces apoptosis inhuman breast cancer MCF-7 cells[J]. Anticancer research,2007,27(6B)3891-3898.
    [2]H. SAKAGAMI, H. MATSUMOTO, K. SATOH, et al. Cytotoxicity and radical modulating activity of Moxa smoke[J]. In Vivo,2005,19(2)391-397.
    [3]N. N. DanialandS. J. Korsmeyer. Cell death: critical control points[J]. Cell,2004, 116(2)205-219.
    [4]M. A. O'BrienandR. Kirby. Apoptosis: A review of pro-apoptotic and anti-apoptotic pathways and dysregulation in disease[J]. Journal of Veterinary Emergency and Critical Care,2008,18(6)572-585.
    [5]V. Gogvadze, S. OrreniusandB. Zhivotovsky. Multiple pathways of cytochrome release from mitochondria in apoptosis[J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2006,1757(5):639-647.
    [6]P. Zhou, J. Chou, R. S. Olea, et al. Solution structure of Apaf-1 CARD and its interaction with caspase-9 CARD:a structural basis for specific adaptor/caspase interaction[J]. Proceedings of the National Academy of Sciences,1999,96(20):11265-11270.
    [7]K. SJ, S. JR, V. DJ, et al. Bcl-2/Bax:a rheostat that regulates an anti-oxidant pathway and cell death[J]. Semin Cancer Biol,1993,4(6)327-322.
    [8]A. Abdel-Latif, H. Abuel-ElaandS. E1-Shourbagy. Increased caspase-3 and altered expression of apoptosis-associated proteins, Bel-2 and Bax in lichen planus[J]. Clinical and experimental dermatology,2009,34(3)390-395.
    [9]S. SALAKOU, D. KARDAMAKIS, A. C. TSAMANDAS, et al. Increased Bax/Bcl-2 ratio up-regulates caspase-3 and increases apoptosis in the thymus of patients with myasthenia gravis[J].In Vivo,2007,21(1):123-132.
    [10]O. KutukandH. Basaga. Bcl-2 protein family:implications in vascular apoptosis and atherosclerosis[J]. Apoptosis,2006,11(10):1661-1675.
    [11]M. Karin. Nuclear factor-kappaB in cancer development and progression[J]. Nature,2006, 441(7092):431-436.
    [12]M. S. HaydenandS. Ghosh. Shared principles in NF-κB signaling[J]. Cell,2008, 132(3)344-362.
    [13]P. A, Izykowskal, P.-O. M, et al. The structure ofNF-kappaB family proteins and their role in apoptosis[J]. Postepy Hig Med Dosw,2008,15(62):64-67.
    [14]G R. Erickson, J. M. Gimble, D. M. Franklin,et al. Chondrogenic potential of adipose tissue-derived stromal cells in vitro and in vivo[J]. Biochemical and Biophysical Research Communications,2002,290(2):763-769.
    [15]X. Liu, Z. ShenandJ. Huang. Mechanism of epimedium flavonoids in regulating immuno-senescence via nuclear factor-kappa B related signal transduction pathway][J]. Zhongguo Zhong xi yi jie he za zhi Zhongguo Zhongxiyi jiehe zazhi= Chinese journal of integrated traditional and Western medicine/Zhongguo Zhong xi yi jie he xue hui, Zhongguo Zhong yi yan jiu yuan zhu ban,2006,26(7):620.
    [16]C. NakanishiandM. Toi. Nuclear factor-KB inhibitors as sensitizers to anticancer drugs[J]. Nature Reviews Cancer,2005,5(4)297-309.
    [17]Y. O. W. Zhu, Y. Li, R. Xiao, M. Shu, Y. Zhou, J. Xie, S. He, P. Qiu, G Yan. A small-molecule triptolide suppresses angiogenesis and invasion of human anaplastic thyroid carcinoma cells via down-regulation of the nuclear factor-kappa B pathway[J]. Pharmacol,2009,75(4)812-819.
    [18]C.-H. Liao, S.-L. Pan, J.-H. Guh, et al. Antitumor mechanism of evodiamine, a constituent from Chinese herb Evodiae fructus, in human multiple-drug resistant breast cancer NCI/ADR-RES cells in vitro and in vivo[J]. Carcinogenesis,2005,26(5):968-975.
    [19]Y.Takada, Y.KobayashiandBB.Aggarwal. Evodiamine abolishes constitutive and inducible NF-kappaB activation by inhibiting IkappaBalpha kinase activation, thereby suppressing NF-kappaB-regulated antiapoptotic and metastatic gene expression, up-regulating apoptosis, and inhibiting invasion[J]. J Biol Chem,2005, 280(17):17203-17212.
    [20]DD.Sun, WZ.Wang, JW.Mao, et al. Imidazo [4,5t][1,10] phenanthroline derivatives as inhibitor of c-myc gene expression in A549 cells via NF-κB pathway[J]. Bioorg Med Chem Lett,2012,22(1):102-105.
    [21]D. Trachootham, J. AlexandreandP. Huang. Targeting cancer cells by ROS-mediated mechanisms:a radical therapeutic approach?[J]. Nature reviews Drug discovery,2009, 8(7)579-591.
    [22]T. P. SzatrowskiandC. F. Nathan. Production of large amounts of hydrogen peroxide by human tumor cells[J]. Cancer Research,1991,51(3):794-798.
    [23]P. T. Schumacker. Reactive oxygen species in cancer cells:live by the sword, die by the sword[J]. Cancer cell 2006,10(3):175-176.
    [24]Q. Huang, G Lu, H. M. Shen, et al. Anti-cancer properties of anthraquinones from rhubarb[J]. Medicinal research reviews,2007,27(5):609-630.
    [25]Z. Gao, K. Huang, X. Yang, et aL Free radical scavenging and antioxidant activities of flavonoids extracted from the radix of Scutellaria baicalensis Georgi[J]. Biochimica et Biophysica Acta (BBA)-General Subjects,1999,1472(3):643-650.
    [26]S. Baumann, S. C. Fas, M. Giaisi, et al. Wogonin preferentially kills malignant lymphocytes and suppresses T-cell tumor growth by inducing PLCγ1-and Ca2+ -dependent apoptosis[J]. Blood,2008,111(4)2354-2363.
    [1]P. AC't Hoen, Y. Ariyurek, H. H. Thygesen, et al. Deep sequencing-based expression analysis shows major advances in robustness, resolution and inter-lab portability over five microarray platforms[J]. Nucleic acids research,2008,36(21):e 141-e141.
    [2]A. S. Morrissy, R. D. Morin, A. Delaney, et al. Next-generation tag sequencing for cancer gene expression profiling[J]. Genome research,2009,19(10):1825-1835.
    [3]S. AudicandJ.-M. Claverie. The significance of digital gene expression profiles[J]. Genome research,1997,7(10):986-995.
    [4]M. B. Eisen, P. T. Spellman, P.O. Brown, et al. Cluster analysis and display of genome-wide expression patterns[J]. Proceedings of the National Academy of Sciences, 1998,95(25):14863-14868.
    [5]M. Kanehisa, M. Araki, S. Goto, et al. KEGG for linking genomes to life and the environment[J]. Nucleic acids research,2008,36(suppl 1):D480-D484.
    [6]D. Li, Y. Zhu, Q. Tang, et al. A new G6PD knockdown tumor-cell line with reduced proliferation and increased susceptibility to oxidative stress[J]. Cancer biotherapy & radiopharmaceuticals,2009,24(1):81-90.
    [7]P. Jiang, W. Du, X. Wang, et al. p53 regulates biosynthesis through direct inactivationof glucose-6-phosphate dehydrogenase[J]. Nature cell biology,2011,13(3)310-316.
    [8]曹亚.细胞周期与肿瘤[J].国外医学:生理、病理科学与临床分册,2002,22(2):103-105.
    [9]T. G. Davies, J. Bentley, C. E. Arris, et al. Structure-based design of a potent p urine-based cyclin-dependent kinase inhibitor[J]. Nature Structural & Molecular Biology,2002, 9(10):745-749.
    [10]I. Collinsand M. D. Garrett. Targeting the cell division cycle in cancer:CDK and cell cycle checkpoint kinase inhibitors[J]. Current opinion in pharmacology,2005, 5(4)366-373.
    [11]S. LapennaandA. Giordano. Cell cycle kinases as therapeutic targets for cancer[J]. Nature reviews Drug discovery,2009,8(7):547-566.
    [12]J. CicenasandM. Valius. The CDK inhibitors in cancer research and therapy[J]. Journal of cancer research and clinical oncology,2011,137(10):1409-1418.
    [13]M. MalumbresandM. Barbacid. Milestones in cell division:to cycle or not to cycle:a critical decision in cancer[J]. Nature Reviews Cancer,2001,1(3)222-231.
    [14]O. TetsuandF. McCormick. Proliferation of cancer cells despite CDK2 inhibition[J]. Cancer cell,2003,3(3)233-245.
    [15]M. Malumbres. Physiological relevance of cell cycle kinases[J]. Physiological reviews, 2011,91(3)573-1007.
    [16]R. Swords, D. Mahalingam, M. O'Dwyer, et al. Cdc7 kinase-a new target for drug development[J]. European journal of cancer,2010,46(1)33-40.
    [17]A. Montagnoli, J. MollandF. Colotta. Targeting cell division cycle 7 kinase:a new approach for cancer therapy [J]. Clinical Cancer Research,2010,16(18):4503-4508.
    [18]H. Ding, C. Han, D. Guo, et al. OSU03012 activates Erkl/2 and Cdks leading to the accumulation of cells in the S-phase and apoptosis[J]. International journal of cancer, 2008,123(12)2923-2930.
    [19]M. Sozmen, R, TuncaandS. Dag Ergjnsoy. Cyclin A expression is associated with apoptosis and mitosis in murine 3-methylcholanthrene-induced fibrosarcomas[J]. Experimental and Toxicologic Pathology,2009,61(1):41-49.
    [20]Y.-S. Tu, X.-L. Kang, J.-G. Zhou, et al. Involvement of Chkl-Cdc25A-cyclin A/CDk2 pathway in simvastatin induced S-phase cell cycle arrest and apoptosis in multiple myeloma cells[J]. European journal of pharmacology,2011,670(2)356-364.
    [21]Q. Wu, C. Fan, T. Chen, et al. Microwave-assisted synthesis ofarene ruthenium (Ⅱ) complexes that induce S-phase arrest in cancer cells by DNA damage-mediated p53 phosphorylation[J]. European Journal of Medicinal Chemistry,2013,63C:57-63.
    [22]A. Hoffman, L. SpetnerandM. Burke. Ramifications of a redox switch within a normal cell:its absence in a cancer cell[J]. Free Radical Biology and Medicine,2008, 45(3)265-268.
    [23]C. G Havens, A. Ho, N. Yoshioka, et al. Regulation of late G1/S phase transition and APCCdh1 by reactive oxygen species[J]. Molecular and cellular biology,2006, 26(12):4701-4711.
    [24]S. G. Menon, E. H. Sarsour, D. R. Spitz, et al. Redox regulation of the G1 to S phase transition in the mouse embryo fibroblast cell cycle[J]. Cancer Research,2003, 63(9)2109-2117.
    [25]M. R. BuchakjianandS. Kornbluth. The engine driving the ship:metabolic steering of cell proliferation and death[J]. Nature Reviews Molecular Cell Biology,2010, 11(10):715-727.
    [26]A. Almeida, J. P. BolanosandS. Moncada. E3 ubiquitin ligase APC/C-Cdhl accounts for the Warburg effect by linking ghycolysis to cell proliferation[J]. Proceedings of the National Academy of Sciences,2010,107(2):738-741.
    [27]J. P. Bolanos, A. AlmeidaandS. Moncada. Glycolysis:a bioenergetic or a survival pathway?[J]. Trends in biochemical sciences,2010,35(3):145-149.
    [28]S. L. Colombo, M. Palacios-Callender, N. Frakich, et al. Anaphase-promoting complex/cyclosome-Cdhl coordinates glycolysis and glutamino lysis with transition to S phase in human T lymphocytes [J]. Proceedings of the National Academy of Sciences, 2010,107(44):18868-18873.
    [29]M. SalvadorandL. C. Sergio. Fulfilling the metabolic requirements for cell proliferation[J]. Biochemical Journal,2012,446(1):1-7.
    [30]M. MalumbresandM. Barbacid. Cell cycle, CDKs and cancer:a changing paradigm[J]. Nature Reviews Cancer,2009,9(3):153-166.
    [31]M. Osaki, M. a. OshimuraandH. Ito. PI3K-Akt pathway: its functions and alterations in human cancer[J]. Apoptosis,2004,9(6):667-676.
    [32]G. Song, G OuyangandS. Bao. The activation of Akt/PKB signaling pathway and cell survival[J]. Journal of cellular and molecular medicine,2005,9(1):59-71.
    [33]K. D. Sullivan, C. L. Gallant-Behm, R. E. Henry, et al. The p53 circuit board[J]. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer,2012,1825(2)229-244.
    [34]F. Qi, A. Li, L. Zhao, et al. Apoptosis-inducing effect ofcinobufacini on human hepatoma cell line HepG2 and its mechanism of action[J]. Acta Pharm Sin,2010,45(318-323.
    [35]J. Yu, L. Zhang, P. M. Hwang, et al. PUMA induces the rapid apoptosis of colorectal cancer cells[J]. Molecular cell,2001,7(3):673-682.
    [36]K. NakanoandK. H. Vousden. PUMA, a Novel Proapoptotic Gene, Is Induced by p53[J]. Molecular cell,2001,7(3):683-694.
    [37]R. J. YouleandA. Strasser. The BCL-2 protein family:opposing activities that mediate cell death[J]. Nature Reviews Molecular Cell Biology,2008,9(1):47-59.
    [38]E.Oda, R.Ohki, H.Murasawa, et al. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis[J]. Science,2000,288(5468):1053-1058.
    [39]H. Kim, H.-C. Tu, D. Ren, et al. Stepwise activation of BAX and BAK by tBID, BIM, and PUMA initiates mitochondrial apoptosis[J]. Molecular cell,2009,36(3):487-499.
    [40]P. Lu, V. M. WeaverandZ. Werb. The extracellular matrix:a dynamic niche in cancer progression[J]. The Journal of cell biology,2012,196(4):395-406.
    [41]J. HeinoandJ. Kapyla. Cellular receptors of extracellular matrix molecules[J]. Current pharmaceutical design,2009,15(12):1309-1317.
    [42]R. O. Hynes. Integrins:bidirectional, allosteric signaling machines[J]. Cell,2002, 110(6):673-687.
    [43]J. S. DesgrosellierandD. A. Cheresh. Integrins in cancer:biological implications and therapeutic opportunities[J]. Nature Reviews Cancer,2010,10(1):9-22.
    [44]W. GuoandF. G Giancotti. Integrin signalling during tumour progression[J]. Nature Reviews Molecular Cell Biology,2004,5(10):816-826.
    [45]V. Morello, S. Cabodi, S. Sigismund, et aL β1 integrin controls EGFR signaling and tumorigenic properties of lung cancer cells[J]. Oncogene,2011,30(39):4087-4096.
    [46JE.-H. Nam, Y. Lee, Y.-K. Park, et al. ZEB2 upregulates integrin a5 expression through cooperation with Spl to induce invasion during epithelial-mesenchymal transition of human cancer cells[J]. Carcinogenesis,2012,33(3):563-571.
    [47]D. M. RAMOS, D. DANGandS. SADLER. The role of the integrin αvβ6 in regulating the epithelial to mesenchymal transition in oral cancer[J]. Anticancer research,2009, 29(1):125-130.
    [48]K. R. Legate, S. A. WickstromandR. Fassler. Genetic and cell biological analysis of integrin outside-in signaling[J]. Genes & development,2009,23(4):397-418.
    [49]P. FriedlandK. Wolf Plasticity of cell migration:a multiscale tuning model[J]. The Journal of cell biology,2010,188(1):11-19.
    [50]C. D. Simpson, K. AnyiweandA. D. Schimmer. Anoikis resistance and tumor metastasis[J]. Cancer letters,2008,272(2):177-185.
    [51]S. M. FrischandR. A. Screaton. Anoikis mechanisms[J]. Current opinion in cell biology, 2001,13(5):555-562.
    [52]Z. T. Schafer, A. R. Grassian, L. Song, et al. Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix attachment [J]. Nature,2009, 461(7260):109-113.
    [53]L. Guo, F.Zhang, Y. Cai, et al. Expression profiling of integrins in lung cancer cells[J]. Pathology-Research and Practice,2009,205(12):847-853.
    [54]C. Fung, R. Lock, S. Gao, et al. Induction of autophagy during extracellular matrix detachment promotes cell survival[J]. Molecular biology of the cell,2008,19(3):797-806.
    [55]J. D. RabinowitzandE. White. Autophagy and metabolism[J]. Science Signaling,2010, 330(6009):1344.
    [56]L. Galluzzi, E. Morselli, J. M. Vicencio, et al.Life, death and burial:multifaceted impact of autophagy[J]. Biochemical Society Transactions,2008,36(Pt 5):786.
    [57]T. P. Neufeld. Nutrient-dependent regulation of autophagy through the target of rapamycin pathway[J]. Biochemical Society Transactions,2009,37(part 1)232-236.
    [58]H. Land, L. F. ParadaandR. A. Weinberg. Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes[J]. Nature,1983,304(5927):596.
    [59]J. Adams, A. Harris, C. Pinkert, et al. The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice[J]. Nature,1985, 318(6046):533.
    [60]M. Chesi, D. F. Robbiani, M. Sebag, et al. AID-Dependent Activation of a MYC Transgene Induces Multiple Myeloma in a Conditional Mouse Model of Post-Germinal Center Malignancies[J]. Cancer cell,2008,13(2):167-180.
    [61]A. Leder, P. K. Pattengale, A. Kuo, et al. Consequences of widespread deregulation of the c-myc gene in transgenic mice:Multiple neoplasms and normal development[J]. Cell, 1986,45(4):485-495.
    [62]D. Cappellen, T. Schlange, M. Bauer, et al. Novel c-MYC target genes mediate differential effects on cell proliferation and migration[J]. EMBO reports,2006, 8(1):70-76.
    [63]C. M. Koh, B. Gurel, S. Sutcliffe, et al. Alterations in Nucleolar Structure and Gene Expression Programs in Prostatic Neoplasia Are Driven by the MYC Oncogene[J]. The American journal of pathology,2011,178(4):1824-1834.
    [64]S. Yokoi, K. Yasui, T. Lizasa, et al. Down- regulation of SKP2 induces apoptosis in lung-cancer cells[J]. Cancer science,2003,94(4)344-349.
    [65]S. Yokoi, K. Yasui, M. Mori, et al. Amplification and Overexpression of SKP2 Are Associated with Metastasis of Non-Small-Cell Lung Cancers to Lymph Nodes[J]. The American journal of pathology,2004,165(1):175-180.
    [66]D. F. Calvisi, S. Ladu, F. Pinna, et al. SKP2 and CKS1 promote degradation of cell cycle regulators and are associated with hepatocellular carcinoma prognosis[J]. Gastroenterology,2009,137(5):1816-1826.
    [67]H. Ogawa, K.-i Ishiguro, S. Gaubatz, et al. A complex with chromatin modifiers that occupies E2F-and Myc-responsive genes in GO cells[J]. Science Signaling,2002, 296(5570):1132.
    [68]S. Bates, A. C. Phillips, P. A. Clark, et al. p14ARF links the tumour suppressors RB and p53[J]. Nature,1998,395(6698):124-125.
    [69]M. C. Moroni, E. S. Hickman, E. L. Denchi, et al. Apaf-1 is a transcriptional target for E2F and p53[J]. Nature cell biology,2001,3(6):552-558.
    [70]M. KarinandA. Lin. NF-κB at the crossroads of life and death[J]. Nature immunology. 2002,3(3):221-227.
    [71]A.Menssen, P.Hydbring, K.Kapelle, et al. The c-MYC oncoprotein, the NAMPT enzyme, the SIRT1-inhibitor DBC1, and the SIRT1 deacetylase form a positive feedback loop[J]. Proc Natl Acad Sci USA,2012,109(4):E187-E196.
    [72]A. Ristimaki, N.Honkanen,H. Jankala, et al. Expression of cyclooxygenase-2 in human gastric carcinoma[J]. Cancer Research,1997,57(7):1276-1280.
    [73]H. Wolff,K. Saukkonen, S. Anttila, et al. Expression of cyclooxygenase-2 in human lung carcinoma[J]. Cancer Research,1998,58(22):4997-5001.
    [74]A. K. Bauer, L. D. Dwyer-NiekiandA. M. Makinson.High cyclooxygenase 1 (COX-1) and cyclooxygenase 2 (COX-2) contents in mouse lung tumors[J]. Carcinogenesis,2000, 21(4)543-550.
    [75]R.-Y. HuangandG G Chen. Cigarette smoking, cyclooxygenase-2 pathway and cancer[J]. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer,2011,1815(2):158-169.
    [76]S. Buckman, A. Gresham, P. Hale, et al. COX-2 expression is induced by UVB exposure inhuman skin:implications for the development of skin cancer[J]. Carcinogenesis,1998, 19(5):723-729.
    [77]Y. W. E. Chang, K. Putzer, L. Ren, et al. Differential regulation of cyclooxygenase 2 expression by small GTPases Ras, Racl, and RhoA[J]. Journal of cellular biochemistry, 2005,96(2)314-329.
    [78]J. R. Reed, R. P. Leon, M. K. Hall, et al. Interleukin-lbeta and fibroblast growth factor receptor 1 cooperate to induce cyclooxygenase-2 during early mammary tumourigenesis[J]. Breast Cancer Res,2009,11(2):R21.
    [79]W.Liu, N.Reinmuth, O.Stoeltzing, et al. Cyclooxygenase-2 is up-regulated by interleukin-1 beta in human colorectal cancer cells via multiple signaling pathways[J]. Cancer Research,2003,63(13)3632-3636.
    [80]D. HanahanandR. A. Weinberg. Hallmarks of cancer:the next generation[J]. Cell,2011, 144(5):646-674.
    [81]S. Martin, D. C. Phillips, K. Szekely-Szucs, et al. Cyclooxygenase-2 inhibition sensitizes human colon carcinoma cells to TRAIL-induced apoptosis through clustering of DR5 and concentrating death-indue ing signaling complex components into ceramide-enriched caveolae[J]. Cancer Research,2005,65(24):11447-11458.
    [82]B. A. Pockaj, L. B. Pathangey,R. J. Gray,et al. Reduced T-cell and dendritic cell function is related to cyclooxygenase-2 overexpression and prostaglandin E2 secretion in patients with breast cancer[J]. Annals of Surgical Oncology,2004,11(3)328-339.
    [83]M. D. Castellone, H. Teramoto, B.O.Williams, et al. Prostaglandin E2 Promotes Colon Cancer Cell Growth Through aGs-Axin-{beta}-Catenin Signaling Axis[J]. Science Signaling,2005,310(5753):1504.
    [84]W. H. Sun, Y. L. Sun, R. N.Fang, et al. Expression of cyctooxygenase-2 and matrix metaltoproteinase-9 in gastric carcinoma and its correlation with angiogenesis[J]. Japanese journal of clinical oncology,2005,35(12):707-713.
    [85]T. L. Larkins, M. Nowell, S. Singh, et al. Inhibition of eyelooxygenase-2 decreases breast cancer cell motility, invasion and matrix metalloproteinase expression[J]. BMC cancer, 2006,6(1):181.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700