用户名: 密码: 验证码:
人工关节假体阴极弧沉积氧化锆膜对成骨细胞生物活性影响的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[摘要]目的:试图采用磁过滤真空阴极弧沉积法在钛金属假体表面制备氧化锆膜,并检测其表征。方法:采用磁过滤真空阴极弧沉积法在纯钛片表面制备氧化锆膜,然后对氧化锆膜的形貌特征、化学组成、相组成等进行表征检测。结果:检测显示真空阴极弧沉积制备的氧化锆膜比较均匀、光滑、致密,具有纳米结构的表面。结论:采用磁过滤真空阴极弧沉积系统可在纯钛表面制备均匀、致密的氧化锆膜,制备的氧化锆膜具有纳米结构的表面,阴极弧沉积氧化锆膜的纳米表面结构可能与它的生物活性有关。
     [摘要]目的:探讨阴极弧沉积氧化锆膜对成骨样MG63细胞粘附及增殖活性的影响。方法:以阴极弧沉积ZrO_2膜作为实验组,纯Ti作为对照组,分别按一定的密度接种MG63细胞进行培养。MTT法检测1、6、12、24小时两组材料表面附着的成骨细胞数;扫描电镜观察12和24小时成骨细胞在两组材料表面的铺展情况;鬼笔环肽荧光染色倒置荧光显微镜观察12和24小时两组材料表面细胞骨架蛋白的表达。CCK-8法检测1、4、7、10天时两组材料表面成骨细胞的增殖活性。结果:MTT结果显示:1小时后,两组样品表面MG63细胞附着的数量差异无统计学意义(P>0.05);6、12和24小时后,ZrO_2膜表面的细胞数显著多于纯Ti表面,且差异具有统计学意义(P<0.05)。扫描电镜观察结果显示12和24小时后ZrO_2组的细胞铺展优于Ti组,荧光显微镜观察结果显示12和24小时后ZrO_2组表面细胞骨架蛋白的表达多于Ti组;CCK结果显示:培养4天及7天后,ZrO_2膜表面的细胞增殖活性显著高于纯Ti表面,且差异具有统计学意义(P<0.05)。结论:人工关节假体表面阴极弧沉积制备的氧化锆膜具有促进成骨细胞粘附及增殖的能力。
     [摘要]目的:探讨阴极弧沉积氧化锆膜对成骨样MG63细胞分化表型标志物的影响。方法:以阴极弧沉积ZrO_2膜作为实验组,纯Ti作为对照组,分别按一定的密度接种MG63细胞进行培养。分别于第1、4、7、10天收集标本,检测碱性磷酸酶(ALP)活性;以定量RT-PCR法检测成骨细胞分化标志物碱性磷酸酶、I型胶原(COLI)及骨钙素(OC)的基因表达情况;荧光染色倒置荧光显微镜观察4天时COLI蛋白的表达;ELISA检测1、4、7、10天时成骨细胞分泌OC蛋白量。结果:在培养第1天时,两组碱性磷酸酶活性及基因表达差异无统计学意义(p>0.05);随着培养时间的延长,两组碱性磷酸酶活性及基因表达均呈现出逐渐增加的趋势,第4、7、10天时,ZrO_2组碱性磷酸酶活性及基因表达显著高于纯Ti组(p<0.05)。第1天时,且两组COLI基因表达差异无统计学意义(p>0.05);在第4天及7天时,ZrO_2组COLI基因表达显著高于纯Ti组(p<0.05),在第10天时,两组COLI基因表达无统计学差异(p>0.05)。在第1天和第4天培养时,两组OC基因表达无统计学差异(p>0.05);但在第7天和第10天时,ZrO_2组的OC基因表达显著高于纯Ti组(p<0.05)。第4天时,ZrO_2组表面的COLI蛋白合成量多于Ti组。两组OC蛋白分泌量在第1、4天时无统计学差异(p>0.05);但在第7、10天时,ZrO_2组OC蛋白分泌量均显著高于Ti组(p<0.05)。结论:阴极弧沉积氧化锆膜具有提高MG63细胞分化表型标志物水平的能力,表明阴极弧沉积氧化锆膜是一种具有良好生物活性的涂层材料。
     [摘要]目的:探讨人工关节假体表面阴极弧沉积氧化锆膜对成骨细胞破骨细胞分化相关基因表达及蛋白分泌的影响。方法:以阴极弧沉积ZrO_2膜作为实验组,纯Ti作为对照组,分别按一定的密度接种MG63细胞进行培养。分别于第1、4、7、10天收集标本,以定量RT-PCR法检测成骨细胞破骨细胞分化相关的骨保护素(OPG)和核因子κ B受体活化因子配体(RANKL)基因表达情况;ELISA检测1、4、7、10天时成骨细胞分泌OPG和RANKL蛋白量。结果:第1天及第4天时,两组OPG基因表达无统计学差异(p>0.05);第7天及第10天时,ZrO_2组OPG基因表达显著高于Ti组(p<0.05)。第1天及第4天时,两组RANKL基因表达无显著差异(p>0.05);在第7天及第10天时,ZrO_2组的基因表达显著低于Ti组(p<0.05)。培养第1天及第4天时,两组样品表面的成骨细胞OPG蛋白分泌无统计学差异(p>0.05);第7天及第10天时,ZrO_2组OPG蛋白分泌显著高于Ti组(p<0.05)。第1天及第4天时,两组样品表面的成骨细胞RANKL蛋白分泌无显著差异(p>0.05);第7天及第10天时,ZrO_2组的RANKL蛋白分泌显著低于Ti组(p<0.05)。结论:人工关节假体表面阴极弧沉积氧化锆膜能够上调成骨细胞OPG水平,同时下调RANKL水平,提高OPG/RANKL相对比率,从而抑制破骨细胞的分化和活性。
     [摘要]目的:探讨人工关节假体表面阴极弧沉积氧化锆膜对成骨样MG63细胞活性影响的可能信号传导通路。方法:以阴极弧沉积ZrO_2膜作为实验组,纯Ti作为对照组,分别按照一定的密度在表面接种MG63细胞进行培养。分别于第6小时,24小时,4天,7天后四个时间点收集标本,检测整合素β1、FAK、ERK1、ERK2、c-fos及c-jun的基因表达。结果:6、24小时及4天后,ZrO_2组整合素β1基因表达显著高于Ti组(p<0.05);7天后,两组整合素β1表达无统计学差异(p>0.05)。6、24小时及4天后,ZrO_2组FAK基因表达显著高于Ti组(p<0.05);7天后,两组FAK基因表达无统计学差异(p>0.05);6小时及24小时后,ZrO_2组ERK1基因表达显著高于Ti组(p<0.05);4天及7天后,两组ERK1基因表达无显著差异(p>0.05)。6、24小时及4天后,ZrO_2组ERK2基因表达显著高于T组(p<0.05);7天后,两组样品表面的ERK2基因表达无显著差异(p>0.05)。6、24小时、4天及7天后,ZrO_2组c-fos基因表达显著高于Ti组(p<0.05)。6、24小时及4天后,ZrO_2组c-jun表达显著高于Ti组(p<0.05);7天后,两组样品表面的c-jun基因表达无统计学差异(p>0.05)。结论:人工关节假体表面阴极弧沉积氧化锆膜可能通过整合素介导的MAPK/ERK信号传导途径影响细胞活性。
[Abstract] Objective: To prepare ZrO_2film by cathodic arc deposition (CAD),and to detect thecharacterizations of the ZrO_2film. Method: ZrO_2film was prepared on titanium by cathodic arcdeposition. The surface topography was characterized by scanning electron microscopy (SEM) andatomic force microscopy (AFM). The element composition of the films was detected by X-rayphotoelectron spectroscopy (XPS). The phase of films was identified by thin film X-ray diffraction(XRD). Result: SEM view images show that the ZrO_2film was uniform, dense and smooth. AFM resultindicates that the ZrO_2film deposited by filtered cathodic arc deposition has a nanostructured surface.XRD analysis indicates the ZrO_2film were amorphous. XPS spectra of ZrO_2film shows C1s, O1s, Ti3p,Zr3d, Zr3p, Zr3s, and Zr4s peaks are observed. Conclusion: Amorphous ZrO_2film can be deposited onTi disks by cathodic arc deposition. The deposited ZrO_2film seems to be uniform, dense and smoothand has a nanostructured surface, which may contribute to its bioactivity.
     [Abstract] Objective: To evaluate the effect of ZrO_2film fabricated by cathodic arc deposition onadhesion and proliferation of osteoblast-like MG63cells. Method: Osteoblast-like MG63cells werecultured on ZrO_2film and Ti respectively. MTT was used to measure the number of cell attachmentafter1,6,12,24h of cultivation. Cell spreading was investigated by scanning electron microscopy(SEM). The expression of actin on each sample was observed by immunofluorescence. Cellproliferation was assessed using a Cell Counting Kit-8(CCK-8) after1,4,7,10days of cultivation.Result: The MTT result showed that after6,12,24h of culture, the number of cell attachment on ZrO_2films was more than that on Ti (p <0.05). The SEM study showed that MG63cells spread better onZrO_2films than on Ti. The fluorescence micrographs of actin stress fibers demonstrated thatwell-defined actin stress fibers distributed through the body of cells cultured on ZrO_2films afterincubated for12and24h. The CCK-8assay indicated that the ZrO_2films promoted the proliferation ofMG63cells. Conclusion: It was proved that the ZrO_2film fabricated by cathodic arc deposition was able to promote adhesion and proliferation of osteoblast-like MG63cells, suggesting that the ZrO_2filmis worth further consideration for orthopedic implant applications.
     [Abstract] Objective: To evaluate the effect of ZrO_2film fabricated by cathodic arc deposition ondifferentiation of osteoblast-like MG63cells. Method: Osteoblast-like MG63cells were cultured onZrO_2film and Ti respectively. After1,4,7,10days of incubation respectively, samples were collectedfor assay. ALP activity and gene expression of alkaline phosphates (ALP), Type I collagen (COLI),osteocalcin (OC) were assessed. The production of COLI at day4was evaluated byimmunofluorescence and the OC protein secretion after1,4,7,10days of culture were investigated byELISA assay. Result: The ALP activity increased steadily on both surfaces over the course ofincubation. By days4,7and10, the ALP activity of cells on ZrO_2films was significantly higher than onTi (p <0.05). The ALP mRNA expression of cells on ZrO_2films was significantly higher than on Tiafter cultured for4,7and10days (p <0.05). The COLI mRNA expression of cells on ZrO_2films wassignificantly higher than on Ti after cultured for4and7days (p <0.05). The OC mRNA expression onZrO_2films was significantly higher than on Ti after7and10days of incubation (p <0.05). Theproduction of type COLI by immunofluorescence showed that cells on ZrO_2films produced more COLIthan on Ti after4days of culture. The OC protein secretion on ZrO_2films was higher than on Ti after7,10days of culture. Conclusion: ZrO_2film was able to enhance induction of osteoblastic phenotype ofosteoblast-like MG63cells, which indicated that ZrO_2film may be a favorable bioactive biomaterial.
     [Abstract] Objective: To evaluate the effect of ZrO_2film fabricated by cathodic arc deposition onosteoclastogenic gene expression and their protein synthesis of osteoblast-like MG63cells. Method:Osteoblast-like MG63cells were cultured on ZrO_2film and Ti respectively. After1,4,7,10days ofincubation respectively, samples were collected for assay. The osteoclastogenic gene expression (OPG,RANKL) and their protein secretion were analyzed by real time PCR and ELISA respectively. Result:The OPG mRNA level on both surfaces appeared equal at day1and4(p>0.05). After7and10days ofculture, the OPG mRNA level on ZrO_2films displayed higher than that on Ti (p <0.05). The RANKLmRNA expression level on both surfaces showed no significant difference at day1and4(p>0.05). However, the RANKL mRNA expression level of cells on ZrO2films appeared lower than on Ti at day7and10(p <0.05). The OPG protein secretion on both surfaces appeared equal at day1and4(p>0.05). The OPG protein secretion on ZrO2films was significantly higher than on Ti at day7and10(p <0.05). The RANKL protein secretion on both surfaces appeared equal at day1and4(p>0.05). TheRANKL protein secretion on ZrO2films was lower than on Ti at day7and10(p <0.05). Conclusion:ZrO2film fabricated by cathodic arc deposition was able to enhance the expression of OPG geneexpression and protein synthesis while reduce the RANKL gene expression and protein synthesis,leading to increase in the ratio of OPG/RANKL, which may help contribute to the successful
     [Abstract] Objective: To explore the possible signal transduction passway mediating osteoblasticactivity on ZrO_2film fabricated by cathodic arc deposition. Method: Osteoblast-like MG63cells werecultured on ZrO_2film and Ti respectively. After6h,24h,4d,7d of cultivation respectively, sampleswere collected for assay. Gene expression of integrin β1, focal adhesion kinase (FAK), extracellularregulated kinases (ERK, including ERK1and ERK2), c-fos and c-jun were measured by real-time PCR.Result: After6h,24h and4d of culture, integrin β1mRNA expression on ZrO_2films wassignificantly higher than on Ti (p <0.05). The gene expression of FAK on ZrO_2films was significantlyhigher than that on Ti at6h,24h and4d (p <0.05). The gene expression of ERK1on ZrO_2films wassignificantly higher than on Ti at6h and24h (p <0.05). The gene expression of ERK2on ZrO_2filmswas significantly higher than on Ti at6h,24h and4d (p <0.05). The gene expression of c-fos on ZrO_2films appeared significantly higher than on Ti disks (p <0.05) at all time points. After cultured for6h,24h and4d, c-jun gene expression appeared significantly higher on ZrO_2films than on Ti disks (p <0.05). Conclusion: The enhanced cell activity on ZrO_2films may be partially regulated by integrin β1mediated MAPK/ERK pathway.
引文
[1] Kurtz S, Mowat F, Ong K, Chan N, Lau E, Halpern M. Prevalence of primary and revision total hipand knee arthroplasty in the United States from1990through2002. J Bone Joint Surg Am.2005;87(7):1487-1497.
    [2] Kurtz S, Ong K, Lau E, Mowat F, Halpern M. Projections of primary and revision hip and kneearthroplasty in the United States from2005to2030. J Bone Joint Surg Am.2007;89(4):780-785.
    [3] Simon M, Lagneau C, Moreno J, Lissac M, Dalard F, Grosgogeat B. Corrosion resistance andbiocompatibility of a new porous surface for titanium implants. Eur J Oral Sci.2005;113(6):537-545.
    [4] Buser D, Nydegger T, Oxland T, Cochran DL, Schenk RK, Hirt HP, Snetivy D, Nolte LP. Interfaceshear strength of titanium implants with a sandblasted and acid-etched surface: a biomechanicalstudy in the maxilla of miniature pigs. J Biomed Mater Res.1999;45(2):75-83.
    [5] Martin JY, Schwartz Z, Hummert TW, Schraub DM, Simpson J, Lankford J, Jr., Dean DD, CochranDL, Boyan BD. Effect of titanium surface roughness on proliferation, differentiation, and proteinsynthesis of human osteoblast-like cells (MG63). J Biomed Mater Res.1995;29(3):389-401.
    [6] Lefaix H, Asselin A, Vermaut P, Sautier JM, Berdal A, Portier R, Prima F. On the biocompatibility ofa novel Ti-based amorphous composite: structural characterization and in-vitro osteoblastsresponse. J Mater Sci Mater Med.2008;19(5):1861-1869.
    [7] Fini M, Cigada A, Rondelli G, Chiesa R, Giardino R, Giavaresi G, Nicoli Aldini N, Torricelli P,Vicentini B. In vitro and in vivo behaviour of Ca-and P-enriched anodized titanium. Biomaterials.1999;20(17):1587-1594.
    [8] Jacobs JJ, Skipor AK, Patterson LM, Hallab NJ, Paprosky WG, Black J, Galante JO. Metal release inpatients who have had a primary total hip arthroplasty. A prospective, controlled, longitudinal study.J Bone Joint Surg Am.1998;80(10):1447-1458.
    [9] Jacobs JJ, Skipor AK, Black J, Urban R, Galante JO. Release and excretion of metal in patients whohave a total hip-replacement component made of titanium-base alloy. J Bone Joint Surg Am.1991;73(10):1475-1486.
    [10] Jacobs JJ, Silverton C, Hallab NJ, Skipor AK, Patterson L, Black J, Galante JO. Metal release andexcretion from cementless titanium alloy total knee replacements. Clin Orthop Relat Res.1999(358):173-180.
    [11] Sugino A, Ohtsuki C, Tsuru K, Hayakawa S, Nakano T, Okazaki Y, Osaka A. Effect of spatialdesign and thermal oxidation on apatite formation on Ti-15Zr-4Ta-4Nb alloy. Acta Biomater.2009;5(1):298-304.
    [12] Kasuga T, Nogami M, Niinomi M, Hattori T. Bioactive calcium phosphate invert glass-ceramiccoating on beta-type Ti-29Nb-13Ta-4.6Zr alloy. Biomaterials.2003;24(2):283-290.
    [13] Capello WN, D'Antonio JA, Jaffe WL, Geesink RG, Manley MT, Feinberg JR.Hydroxyapatite-coated femoral components:15-year minimum followup. Clin Orthop Relat Res.2006;453:75-80.
    [14] Liu XY, Chu PK, Ding CX. Surface modification of titanium, titanium alloys, and related materialsfor biomedical applications. Mat Sci Eng R.2004;47(3-4):49-121.
    [15] Kim BK, Bae HEK, Shim JS, Lee KW. The influence of ceramic surface treatments on the tensilebond strength of composite resin to all-ceramic coping materials. Journal of Prosthetic Dentistry.2005;94(4):357-362.
    [16] Chiesa R, Giavaresi G, Fini M, Sandrini E, Giordano C, Bianchi A, Giardino R. In vitro and in vivoperformance of a novel surface treatment to enhance osseointegration of endosseous implants. OralSurg Oral Med Oral Pathol Oral Radiol Endod.2007;103(6):745-756.
    [17] Le Guehennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dentalimplants for rapid osseointegration. Dent Mater.2007;23(7):844-854.
    [18] Cooper LF, Zhou Y, Takebe J, Guo J, Abron A, Holmen A, Ellingsen JE. Fluoride modificationeffects on osteoblast behavior and bone formation at TiO2grit-blasted c.p. titanium endosseousimplants. Biomaterials.2006;27(6):926-936.
    [19] Guo J, Padilla RJ, Ambrose W, De Kok IJ, Cooper LF. The effect of hydrofluoric acid treatment ofTiO2grit blasted titanium implants on adherent osteoblast gene expression in vitro and in vivo.Biomaterials.2007;28(36):5418-5425.
    [20] Park JW, Park KB, Suh JY. Effects of calcium ion incorporation on bone healing of Ti6Al4V alloyimplants in rabbit tibiae. Biomaterials.2007;28(22):3306-3313.
    [21] Park JW, Jang JH, Lee CS, Hanawa T. Osteoconductivity of hydrophilic microstructured titaniumimplants with phosphate ion chemistry. Acta Biomater.2009;5(6):2311-2321.
    [22] Sul YT, Johansson C, Byon E, Albrektsson T. The bone response of oxidized bioactive andnon-bioactive titanium implants. Biomaterials.2005;26(33):6720-6730.
    [23] Vercaigne S, Wolke JG, Naert I, Jansen JA. The effect of titanium plasma-sprayed implants ontrabecular bone healing in the goat. Biomaterials.1998;19(11-12):1093-1099.
    [24] Kim HW, Li LH, Koh YH, Knowles JC, Kim HE. Sol-gel preparation and properties offluoride-substituted hydroxyapatite powders. J Am Ceram Soc.2004;87(10):1939-1944.
    [25] Wang G, Liu X, Gao J, Ding C. In vitro bioactivity and phase stability of plasma-sprayednanostructured3Y-TZP coatings. Acta Biomater.2009;5(6):2270-2278.
    [26] Coelho PG, Lemons JE. Physico/chemical characterization and in vivo evaluation of nanothicknessbioceramic depositions on alumina-blasted/acid-etched Ti-6Al-4V implant surfaces. J BiomedMater Res A.2009;90(2):351-361.
    [27] Chen F, Lam WM, Lin CJ, Qiu GX, Wu ZH, Luk KD, Lu WW. Biocompatibility ofelectrophoretical deposition of nanostructured hydroxyapatite coating on roughen titanium surface:in vitro evaluation using mesenchymal stem cells. J Biomed Mater Res B Appl Biomater.2007;82(1):183-191.
    [28] Lynn AK, DuQuesnay DL. Hydroxyapatite-coated Ti-6Al-4V Part2: the effects of post-depositionheat treatment at low temperatures. Biomaterials.2002;23(9):1947-1953.
    [29] Suchanek W, Yoshimura M. Processing and properties of hydroxyapatite-based biomaterials for useas hard tissue replacement implants. J Mater Res.1998;13(1):94-117.
    [30] Yang YC, Chang E, Lee SY. Mechanical properties and Young's modulus of plasma-sprayedhydroxyapatite coating on Ti substrate in simulated body fluid. J Biomed Mater Res A.2003;67(3):886-899.
    [31] Kim JS, Marzouk HA, Reucroft PJ. DEPOSITION AND STRUCTURAL CHARACTERIZATIONOF ZRO2AND YTTRIA-STABILIZED ZRO2FILMS BY CHEMICAL-VAPOR-DEPOSITION.Thin Solid Films.1995;254(1-2):33-38.
    [32] Chen YX, Liu WM. Preparation and tribological properties of sol-gel zirconia thin films stabilizedwith ceria. Mater Lett.2002;55(6):407-413.
    [33] Sprio S, Guicciardi S, Bellosi A, Pezzotti G. Yttria-stabilized zirconia films grown byradiofrequency magnetron sputtering: Structure, properties and residual stresses. Surf Coat Tech.2006;200(14-15):4579-4585.
    [34] Liu XY, Huang AP, Ding CX, Chu PK. Bioactivity and cytocompatibility of zirconia (ZrO2) filmsfabricated by cathodic arc deposition. Biomaterials.2006;27(21):3904-3911.
    [35] Martin PJ, Bendavid A. Review of the filtered vacuum arc process and materials deposition. ThinSolid Films.2001;394(1-2):1-15.
    [36] Ostrikov K. Colloquium: Reactive plasmas as a versatile nanofabrication tool. Reviews of ModernPhysics.2005;77(2):489-511.
    [37] Li WF, Liu XY, Huang AP, Chu PK. Structure and properties of zirconia (ZrO2) films fabricated byplasma-assisted cathodic arc deposition. Journal of Physics D-Applied Physics.2007;40(8):2293-2299.
    [38] Uchida M, Kim HM, Miyaji F, Kokubo T, Nakamura T. Apatite formation on zirconium metaltreated with aqueous NaOH. Biomaterials.2002;23(1):313-317.
    [39] Yan YY, Han Y. Structure and bioactivity of micro-arc oxidized zirconia films. Surf Coat Tech.2007;201(9-11):5692-5695.
    [40] Wang G, Meng F, Ding C, Chu PK, Liu X. Microstructure, bioactivity and osteoblast behavior ofmonoclinic zirconia coating with nanostructured surface. Acta Biomater.2010;6(3):990-1000.
    [41] Sollazzo V, Pezzetti F, Scarano A, Piattelli A, Bignozzi CA, Massari L, Brunelli G, Carinci F.Zirconium oxide coating improves implant osseointegration in vivo. Dent Mater.2008;24(3):357-361.
    [42] Franchi M, Bacchelli B, Giavaresi G, De Pasquale V, Martini D, Fini M, Giardino R, Ruggeri A.Influence of different implant surfaces on peri-implant osteogenesis: histomorphometric analysis insheep. J Periodontol.2007;78(5):879-888.
    [43] Bacchelli B, Giavaresi G, Franchi M, Martini D, De Pasquale V, Trire A, Fini M, Giardino R,Ruggeri A. Influence of a zirconia sandblasting treated surface on peri-implant bone healing: Anexperimental study in sheep. Acta Biomater.2009;5(6):2246-2257.
    [44] Sollazzo V, Palmieri A, Pezzetti F, Bignozzi CA, Argazzi R, Massari L, Brunelli G, Carinci F.Genetic effect of zirconium oxide coating on osteoblast-like cells. J Biomed Mater Res B ApplBiomater.2008;84(2):550-558.
    [45] Palmieri A, Pezzetti F, Brunelli G, Zollino I, Lo Muzio L, Martinelli M, Scapoli L, Arlotti M,Masiero E, Carinci F. Zirconium oxide regulates RNA interfering of osteoblast-like cells. J MaterSci Mater Med.2008;19(6):2471-2476.
    [46] Bachle M, Kohal RJ. A systematic review of the influence of different titanium surfaces onproliferation, differentiation and protein synthesis of osteoblast-like MG63cells. Clin OralImplants Res.2004;15(6):683-692.
    [47] Hattar S, Berdal A, Asselin A, Loty S, Greenspan DC, Sautier JM. Behaviour of moderatelydifferentiated osteoblast-like cells cultured in contact with bioactive glasses. Eur Cell Mater.2002;4:61-69.
    [48] Boyan BD, Schwartz Z, Lohmann CH, Sylvia VL, Cochran DL, Dean DD, Puzas JE. Pretreatmentof bone with osteoclasts affects phenotypic expression of osteoblast-like cells. J Orthop Res.2003;21(4):638-647.
    [49] Zinger O, Zhao G, Schwartz Z, Simpson J, Wieland M, Landolt D, Boyan B. Differential regulationof osteoblasts by substrate microstructural features. Biomaterials.2005;26(14):1837-1847.
    [50] Giancotti FG, Ruoslahti E. Integrin signaling. Science.1999;285(5430):1028-1032.
    [51] Moser M, Legate KR, Zent R, Fassler R. The tail of integrins, talin, and kindlins. Science.2009;324(5929):895-899.
    [52] Anselme K. Osteoblast adhesion on biomaterials. Biomaterials.2000;21(7):667-681.
    [53] Lee M, Lee HJ, Seo WD, Park KH, Lee YS. Sialylation of integrin beta1is involved inradiation-induced adhesion and migration in human colon cancer cells. Int J Radiat Oncol BiolPhys.2010;76(5):1528-1536.
    [54] Lu ZF, Zreiqat H. Beta-tricalcium phosphate exerts osteoconductivity through α2β1integrin anddown-stream MAPK/ERK signaling pathway. Biochemical and Biophysical ResearchCommunications.2010;394(2):323-329.
    [55] Seger R, Krebs EG. The MAPK signaling cascade. FASEB J.1995;9(9):726-735.
    [56] Bernstein LR, Ferris DK, Colburn NH, Sobel ME. A family of mitogen-activated proteinkinase-related proteins interacts in vivo with activator protein-1transcription factor. J Biol Chem.1994;269(13):9401-9404.
    [57] Klees RF, Salasznyk RM, Vandenberg S, Bennett K, Plopper GE. Laminin-5activates extracellularmatrix production and osteogenic gene focusing in human mesenchymal stem cells. Matrix Biol.2007;26(2):106-114.
    [58] Salasznyk RM, Klees RF, Williams WA, Boskey A, Plopper GE. Focal adhesion kinase signalingpathways regulate the osteogenic differentiation of human mesenchymal stem cells. Exp Cell Res.2007;313(1):22-37.
    [59] Jaiswal RK, Jaiswal N, Bruder SP, Mbalaviele G, Marshak DR, Pittenger MF. Adult humanmesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated bymitogen-activated protein kinase. J Biol Chem.2000;275(13):9645-9652.
    [60] Klees RF, Salasznyk RM, Kingsley K, Williams WA, Boskey A, Plopper GE. Laminin-5inducesosteogenic gene expression in human mesenchymal stem cells through an ERK-dependent pathway.Mol Biol Cell.2005;16(2):881-890.
    [1] Ostrikov K. Colloquium: Reactive plasmas as a versatile nanofabrication tool. Reviews of ModernPhysics.2005;77(2):489-511.
    [2] Li WF, Liu XY, Huang AP, Chu PK. Structure and properties of zirconia (ZrO2) films fabricated byplasma-assisted cathodic arc deposition. Journal of Physics D-Applied Physics.2007;40(8):2293-2299.
    [3] Yan YY, Han Y. Structure and bioactivity of micro-arc oxidized zirconia films. Surf Coat Tech.2007;201(9-11):5692-5695.
    [4] Wang G, Meng F, Ding C, Chu PK, Liu X. Microstructure, bioactivity and osteoblast behavior ofmonoclinic zirconia coating with nanostructured surface. Acta Biomater.2010;6(3):990-1000.
    [5] Sollazzo V, Pezzetti F, Scarano A, Piattelli A, Bignozzi CA, Massari L, Brunelli G, Carinci F.Zirconium oxide coating improves implant osseointegration in vivo. Dent Mater.2008;24(3):357-361.
    [6] Liu XY, Huang AP, Ding CX, Chu PK. Bioactivity and cytocompatibility of zirconia (ZrO2) filmsfabricated by cathodic arc deposition. Biomaterials.2006;27(21):3904-3911.
    [7] Simon M, Lagneau C, Moreno J, Lissac M, Dalard F, Grosgogeat B. Corrosion resistance andbiocompatibility of a new porous surface for titanium implants. Eur J Oral Sci.2005;113(6):537-545.
    [8] Chiesa R, Giavaresi G, Fini M, Sandrini E, Giordano C, Bianchi A, Giardino R. In vitro and in vivoperformance of a novel surface treatment to enhance osseointegration of endosseous implants. OralSurg Oral Med Oral Pathol Oral Radiol Endod.2007;103(6):745-756.
    [9] Le Guehennec L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implantsfor rapid osseointegration. Dent Mater.2007;23(7):844-854.
    [10] Cooper LF, Zhou Y, Takebe J, Guo J, Abron A, Holmen A, Ellingsen JE. Fluoride modificationeffects on osteoblast behavior and bone formation at TiO2grit-blasted c.p. titanium endosseousimplants. Biomaterials.2006;27(6):926-936.
    [11] Guo J, Padilla RJ, Ambrose W, De Kok IJ, Cooper LF. The effect of hydrofluoric acid treatment ofTiO2grit blasted titanium implants on adherent osteoblast gene expression in vitro and in vivo.Biomaterials.2007;28(36):5418-5425.
    [12] Park JW, Park KB, Suh JY. Effects of calcium ion incorporation on bone healing of Ti6Al4V alloyimplants in rabbit tibiae. Biomaterials.2007;28(22):3306-3313.
    [13] Park JW, Jang JH, Lee CS, Hanawa T. Osteoconductivity of hydrophilic microstructured titaniumimplants with phosphate ion chemistry. Acta Biomater.2009;5(6):2311-2321.
    [14] Sul YT, Johansson C, Byon E, Albrektsson T. The bone response of oxidized bioactive andnon-bioactive titanium implants. Biomaterials.2005;26(33):6720-6730.
    [15] Franchi M, Bacchelli B, Giavaresi G, De Pasquale V, Martini D, Fini M, Giardino R, Ruggeri A.Influence of different implant surfaces on peri-implant osteogenesis: histomorphometric analysis insheep. J Periodontol.2007;78(5):879-888.
    [16] Bacchelli B, Giavaresi G, Franchi M, Martini D, De Pasquale V, Trire A, Fini M, Giardino R,Ruggeri A. Influence of a zirconia sandblasting treated surface on peri-implant bone healing: Anexperimental study in sheep. Acta Biomater.2009;5(6):2246-2257.
    [17] Uchida M, Kim HM, Miyaji F, Kokubo T, Nakamura T. Apatite formation on zirconium metaltreated with aqueous NaOH. Biomaterials.2002;23(1):313-317.
    [18] Moritz T, Benfer S, Arki P, Tomandl G. Influence of the surface charge on the permeate flux in thedead-end filtration with ceramic membranes. Separation and Purification Technology.2001;25(1-3):501-508.
    [19] Vayssieres L, Chaneac C, Tronc E, Jolivet JP. Size tailoring of magnetite particles formed byaqueous precipitation: An example of thermodynamic stability of nanometric oxide particles.Journal of Colloid and Interface Science.1998;205(2):205-212.
    [20] Han Y, Chen D, Sun J, Zhang Y, Xu K. UV-enhanced bioactivity and cell response of micro-arcoxidized titania coatings. Acta Biomater.2008;4(5):1518-1529.
    [21] Zhang J, Jiang D, Kotobuki N, Maeda M, Hirose M, Ohgushi H. Increased cell response to zirconiaceramics by surface modification. Appl Phys Lett.2006;89(18).
    [1] Hasenbein ME, Andersen TT, Bizios R. Micropatterned surfaces modified with select peptidespromote exclusive interactions with osteoblasts. Biomaterials.2002;23(19):3937-3942.
    [2] Anselme K. Osteoblast adhesion on biomaterials. Biomaterials.2000;21(7):667-681.
    [3] Dragan S, Wall A.[Periprosthetic bone remodeling after cementless hip endoprosthesis stemimplantation]. Wiad Lek.2006;59(3-4):170-176.
    [4] Castellani C, Lindtner RA, Hausbrandt P, Tschegg E, Stanzl-Tschegg SE, Zanoni G, Beck S,Weinberg AM. Bone-implant interface strength and osseointegration: Biodegradable magnesium alloyversus standard titanium control. Acta Biomater.2011;7(1):432-440.
    [5] Simon M, Lagneau C, Moreno J, Lissac M, Dalard F, Grosgogeat B. Corrosion resistance andbiocompatibility of a new porous surface for titanium implants. Eur J Oral Sci.2005;113(6):537-545.
    [6] Hench LL, Wilson J. Surface-active biomaterials. Science.1984;226(4675):630-636.
    [7] Capello WN, D'Antonio JA, Jaffe WL, Geesink RG, Manley MT, Feinberg JR.Hydroxyapatite-coated femoral components:15-year minimum followup. Clin Orthop Relat Res.2006;453:75-80.
    [8] Liu XY, Chu PK, Ding CX. Surface modification of titanium, titanium alloys, and related materialsfor biomedical applications. Mat Sci Eng R.2004;47(3-4):49-121.
    [9] Mahmood TA, de Jong R, Riesle J, Langer R, van Blitterswijk CA. Adhesion-mediated signaltransduction in human articular chondrocytes: the influence of biomaterial chemistry and tenascin-C.Exp Cell Res.2004;301(2):179-188.
    [10] Jeschke B, Meyer J, Jonczyk A, Kessler H, Adamietz P, Meenen NM, Kantlehner M, Goepfert C,Nies B. RGD-peptides for tissue engineering of articular cartilage. Biomaterials.2002;23(16):3455-3463.
    [11] Uchida M, Kim HM, Miyaji F, Kokubo T, Nakamura T. Apatite formation on zirconium metaltreated with aqueous NaOH. Biomaterials.2002;23(1):313-317.
    [12] Yan YY, Han Y. Structure and bioactivity of micro-arc oxidized zirconia films. Surf Coat Tech.2007;201(9-11):5692-5695.
    [13] Wang G, Meng F, Ding C, Chu PK, Liu X. Microstructure, bioactivity and osteoblast behavior ofmonoclinic zirconia coating with nanostructured surface. Acta Biomater.2010;6(3):990-1000.
    [14] Sollazzo V, Pezzetti F, Scarano A, Piattelli A, Bignozzi CA, Massari L, Brunelli G, Carinci F.Zirconium oxide coating improves implant osseointegration in vivo. Dent Mater.2008;24(3):357-361.
    [15] Franchi M, Bacchelli B, Giavaresi G, De Pasquale V, Martini D, Fini M, Giardino R, Ruggeri A.Influence of different implant surfaces on peri-implant osteogenesis: histomorphometric analysis insheep. J Periodontol.2007;78(5):879-888.
    [16] Bacchelli B, Giavaresi G, Franchi M, Martini D, De Pasquale V, Trire A, Fini M, Giardino R,Ruggeri A. Influence of a zirconia sandblasting treated surface on peri-implant bone healing: Anexperimental study in sheep. Acta Biomater.2009;5(6):2246-2257.
    [17] Sollazzo V, Palmieri A, Pezzetti F, Bignozzi CA, Argazzi R, Massari L, Brunelli G, Carinci F.Genetic effect of zirconium oxide coating on osteoblast-like cells. J Biomed Mater Res B Appl Biomater.2008;84(2):550-558.
    [18] Palmieri A, Pezzetti F, Brunelli G, Zollino I, Lo Muzio L, Martinelli M, Scapoli L, Arlotti M,Masiero E, Carinci F. Zirconium oxide regulates RNA interfering of osteoblast-like cells. J Mater SciMater Med.2008;19(6):2471-2476.
    [19] Liu XY, Huang AP, Ding CX, Chu PK. Bioactivity and cytocompatibility of zirconia (ZrO2) filmsfabricated by cathodic arc deposition. Biomaterials.2006;27(21):3904-3911.
    [20] Moritz T, Benfer S, Arki P, Tomandl G. Influence of the surface charge on the permeate flux in thedead-end filtration with ceramic membranes. Separation and Purification Technology.2001;25(1-3):501-508.
    [21] Vayssieres L, Chaneac C, Tronc E, Jolivet JP. Size tailoring of magnetite particles formed byaqueous precipitation: An example of thermodynamic stability of nanometric oxide particles. Journal ofColloid and Interface Science.1998;205(2):205-212.
    [22] Han Y, Chen D, Sun J, Zhang Y, Xu K. UV-enhanced bioactivity and cell response of micro-arcoxidized titania coatings. Acta Biomater.2008;4(5):1518-1529.
    [23] Zhang J, Jiang D, Kotobuki N, Maeda M, Hirose M, Ohgushi H. Increased cell response to zirconiaceramics by surface modification. Appl Phys Lett.2006;89(18).
    [24] Huang H, Zhao Y, Liu Z, Zhang Y, Zhang H, Fu T, Ma X. Enhanced osteoblast functions on RGDimmobilized surface. J Oral Implantol.2003;29(2):73-79.
    [25] Webb K, Hlady V, Tresco PA. Relationships among cell attachment, spreading, cytoskeletalorganization, and migration rate for anchorage-dependent cells on model surfaces. J Biomed Mater Res.2000;49(3):362-368.
    [26] Matschegewski C, Staehlke S, Loeffler R, Lange R, Chai F, Kern DP, Beck U, Nebe BJ. Cellarchitecture-cell function dependencies on titanium arrays with regular geometry. Biomaterials.2010;31(22):5729-5740.
    [27] Mierke CT. The role of vinculin in the regulation of the mechanical properties of cells. CellBiochem Biophys.2009;53(3):115-126.
    [28] Endlich N, Endlich K. Stretch, tension and adhesion-adaptive mechanisms of the actincytoskeleton in podocytes. Eur J Cell Biol.2006;85(3-4):229-234.
    [29] Pollard TD, Cooper JA. Actin and actin-binding proteins. A critical evaluation of mechanisms andfunctions. Annu Rev Biochem.1986;55:987-1035.
    [30] Coluccio LM, Bretscher A. Reassociation of microvillar core proteins: making a microvillar core invitro. J Cell Biol.1989;108(2):495-502.
    [31] Xue W, Krishna BV, Bandyopadhyay A, Bose S. Processing and biocompatibility evaluation oflaser processed porous titanium. Acta Biomater.2007;3(6):1007-1018.
    [1] Wang C, Duan Y, Markovic B, Barbara J, Howlett CR, Zhang X, Zreiqat H. Phenotypic expressionof bone-related genes in osteoblasts grown on calcium phosphate ceramics with different phasecompositions. Biomaterials.2004;25(13):2507-2514.
    [2] Bosetti M, Zanardi L, Hench L, Cannas M. Type I collagen production by osteoblast-like cellscultured in contact with different bioactive glasses. J Biomed Mater Res A.2003;64(1):189-195.
    [3] Loty C, Sautier JM, Tan MT, Oboeuf M, Jallot E, Boulekbache H, Greenspan D, Forest N. Bioactiveglass stimulates in vitro osteoblast differentiation and creates a favorable template for bone tissueformation. J Bone Miner Res.2001;16(2):231-239.
    [4] Wang C, Duan Y, Markovic B, Barbara J, Rolfe Howlett C, Zhang X, Zreiqat H. Proliferation andbone-related gene expression of osteoblasts grown on hydroxyapatite ceramics sintered at differenttemperature. Biomaterials.2004;25(15):2949-2956.
    [5] Lossdorfer S, Schwartz Z, Lohmann CH, Greenspan DC, Ranly DM, Boyan BD. Osteoblastresponse to bioactive glasses in vitro correlates with inorganic phosphate content. Biomaterials.2004;25(13):2547-2555.
    [6] Owen TA, Aronow M, Shalhoub V, Barone LM, Wilming L, Tassinari MS, Kennedy MB, PockwinseS, Lian JB, Stein GS. Progressive development of the rat osteoblast phenotype in vitro: reciprocalrelationships in expression of genes associated with osteoblast proliferation and differentiationduring formation of the bone extracellular matrix. J Cell Physiol.1990;143(3):420-430.
    [7] Ramaswamy Y, Wu C, Van Hummel A, Combes V, Grau G, Zreiqat H. The responses of osteoblasts,osteoclasts and endothelial cells to zirconium modified calcium-silicate-based ceramic.Biomaterials.2008;29(33):4392-4402.
    [8] Han P, Ji WP, Zhao CL, Zhang XN, Jiang Y. Improved osteoblast proliferation, differentiation andmineralization on nanophase Ti6Al4V. Chin Med J (Engl).2011;124(2):273-279.
    [9] Jiang D, Franceschi RT, Boules H, Xiao G. Parathyroid hormone induction of the osteocalcin gene.Requirement for an osteoblast-specific element1sequence in the promoter and involvement ofmultiple-signaling pathways. J Biol Chem.2004;279(7):5329-5337.
    [10] Mari-Buye N, Semino CE. Differentiation of mouse embryonic stem cells in self-assemblingpeptide scaffolds. Methods Mol Biol.2011;690:217-237.
    [11] You H, Yang H, Zhu Q, Li M, Xue J, Gu Y, Lin S, Ding F. Advanced oxidation protein productsinduce vascular calcification by promoting osteoblastic trans-differentiation of smooth muscle cellsvia oxidative stress and ERK pathway. Ren Fail.2009;31(4):313-319.
    [12] Matsuzaka K, Yoshinari M, Shimono M, Inoue T. Effects of multigrooved surfaces onosteoblast-like cells in vitro: scanning electron microscopic observation and mRNA expression ofosteopontin and osteocalcin. J Biomed Mater Res A.2004;68(2):227-234.
    [13] Varanasi VG, Saiz E, Loomer PM, Ancheta B, Uritani N, Ho SP, Tomsia AP, Marshall SJ, MarshallGW. Enhanced osteocalcin expression by osteoblast-like cells (MC3T3-E1) exposed to bioactivecoating glass (SiO2-CaO-P2O5-MgO-K2O-Na2O system) ions. Acta Biomater.2009;5(9):3536-3547.
    [14] Sima LE, Stan GE, Morosanu CO, Melinescu A, Ianculescu A, Melinte R, Neamtu J, Petrescu SM.Differentiation of mesenchymal stem cells onto highly adherent radio frequency-sputteredcarbonated hydroxylapatite thin films. J Biomed Mater Res A.2010;95(4):1203-1214.
    [15] Ercan B, Webster TJ. The effect of biphasic electrical stimulation on osteoblast function atanodized nanotubular titanium surfaces. Biomaterials.2010;31(13):3684-3693.
    [16] Hoffmann H, Green J, van Wijnen AJ, Stein JL, Stein GS, Lian JB. Expression screening of factorsbinding to the osteocalcin bone-specific promoter element OC box I: isolation of a novel osteoblastdifferentiation-specific factor. J Cell Biochem.2000;80(1):156-168.
    [17] Cao F, Shen B, Li Y, Huang Q, Yang J, Zhou ZK, Kang PD, Peng WZ, Xia QJ, Pei FX.[Influenceof mutation of-1997G-->T of COL I A1gene on the biochemical function of osteoblast]. SichuanDa Xue Xue Bao Yi Xue Ban.2010;41(5):831-835.
    [18] Maekawa K, Yoshida Y, Mine A, van Meerbeek B, Suzuki K, Kuboki T. Effect of polyphosphoricacid pre-treatment of titanium on attachment, proliferation, and differentiation of osteoblast-likecells (MC3T3-E1). Clin Oral Implants Res.2008;19(3):320-325.
    [19] Ramaswamy Y, Wu C, Zhou H, Zreiqat H. Biological response of human bone cells tozinc-modified Ca-Si-based ceramics. Acta Biomater.2008;4(5):1487-1497.
    [20] Lo KW, Kan HM, Ashe KM, Laurencin CT. The small molecule PKA-specific cyclic AMPanalogue as an inducer of osteoblast-like cells differentiation and mineralization. J Tissue EngRegen Med.2012;6(1):40-48.
    [21] Ker ED, Chu B, Phillippi JA, Gharaibeh B, Huard J, Weiss LE, Campbell PG. Engineering spatialcontrol of multiple differentiation fates within a stem cell population. Biomaterials.2011;32(13):3413-3422.
    [22] Meng S, Zhang Z, Rouabhia M. Accelerated osteoblast mineralization on a conductive substrate bymultiple electrical stimulation. J Bone Miner Metab.2011;29(5):535-544.
    [23] Forsprecher J, Wang Z, Goldberg HA, Kaartinen MT. Transglutaminase-mediated oligomerizationpromotes osteoblast adhesive properties of osteopontin and bone sialoprotein. Cell Adh Migr.2011;5(1):65-72.
    [24] Wang Z, Telci D, Griffin M. Importance of syndecan-4and syndecan-2in osteoblast cell adhesionand survival mediated by a tissue transglutaminase-fibronectin complex. Exp Cell Res.2011;317(3):367-381.
    [25] Cowles EA, DeRome ME, Pastizzo G, Brailey LL, Gronowicz GA. Mineralization and theexpression of matrix proteins during in vivo bone development. Calcif Tissue Int.1998;62(1):74-82.
    [26] Whyte MP. Hypophosphatasia and the role of alkaline phosphatase in skeletal mineralization.Endocr Rev.1994;15(4):439-461.
    [27] Oxlund H, Mosekilde L, Ortoft G. Reduced concentration of collagen reducible cross links inhuman trabecular bone with respect to age and osteoporosis. Bone.1996;19(5):479-484.
    [28] Linton JM, Martin GR, Reichardt LF. The ECM protein nephronectin promotes kidneydevelopment via integrin alpha8beta1-mediated stimulation of Gdnf expression. Development.2007;134(13):2501-2509.
    [29] Knight CG, Morton LF, Onley DJ, Peachey AR, Messent AJ, Smethurst PA, Tuckwell DS, FarndaleRW, Barnes MJ. Identification in collagen type I of an integrin alpha2beta1-binding site containingan essential GER sequence. J Biol Chem.1998;273(50):33287-33294.
    [30] Lian J, Stewart C, Puchacz E, Mackowiak S, Shalhoub V, Collart D, Zambetti G, Stein G. Structureof the rat osteocalcin gene and regulation of vitamin D-dependent expression. Proc Natl Acad SciU S A.1989;86(4):1143-1147.
    [31] Hauschka PV, Lian JB, Cole DE, Gundberg CM. Osteocalcin and matrix Gla protein: vitaminK-dependent proteins in bone. Physiol Rev.1989;69(3):990-1047.
    [32] Price PA. Gla-containing proteins of bone. Connect Tissue Res.1989;21(1-4):51-57; discussion57-60.
    [33] Zimmerman CM, Padgett RW. Transforming growth factor beta signaling mediators andmodulators. Gene.2000;249(1-2):17-30.
    [34] Declercq HA, Verbeeck RM, De Ridder LI, Schacht EH, Cornelissen MJ. Calcification as anindicator of osteoinductive capacity of biomaterials in osteoblastic cell cultures. Biomaterials.2005;26(24):4964-4974.
    [1] Felix R, Hofstetter W, Cecchini MG. Recent developments in the understanding of thepathophysiology of osteopetrosis. Eur J Endocrinol.1996;134(2):143-156.
    [2] Roodman GD. Advances in bone biology: the osteoclast. Endocr Rev.1996;17(4):308-332.
    [3] Friedenstein AJ, Piatetzky S, II, Petrakova KV. Osteogenesis in transplants of bone marrow cells. JEmbryol Exp Morphol.1966;16(3):381-390.
    [4] Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP. Osteogenic differentiation of purified,culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem.1997;64(2):295-312.
    [5] Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU. In vitro chondrogenesis of bonemarrow-derived mesenchymal progenitor cells. Exp Cell Res.1998;238(1):265-272.
    [6] Matsuo K, Irie N. Osteoclast-osteoblast communication. Arch Biochem Biophys.2008;473(2):201-209.
    [7] Boyle WJ, Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, ColomberoA, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian YX,Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J. Osteoprotegerin ligand is acytokine that regulates osteoclast differentiation and activation. Cell.1998;93(2):165-176.
    [8] Kong YY, Boyle WJ, Penninger JM. Osteoprotegerin ligand: a regulator of immune responses andbone physiology. Immunol Today.2000;21(10):495-502.
    [9] Suda T, Takahashi N, Udagawa N, Jimi E, Gillespie MT, Martin TJ. Modulation of osteoclastdifferentiation and function by the new members of the tumor necrosis factor receptor and ligandfamilies. Endocr Rev.1999;20(3):345-357.
    [10] Hofbauer LC, Khosla S, Dunstan CR, Lacey DL, Boyle WJ, Riggs BL. The roles ofosteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. J BoneMiner Res.2000;15(1):2-12.
    [11] Teitelbaum SL. Bone resorption by osteoclasts. Science.2000;289(5484):1504-1508.
    [12] Suda T, Nakamura I, Jimi E, Takahashi N. Regulation of osteoclast function. J Bone Miner Res.1997;12(6):869-879.
    [13] Takahashi N, Akatsu T, Udagawa N, Sasaki T, Yamaguchi A, Moseley JM, Martin TJ, Suda T.Osteoblastic cells are involved in osteoclast formation. Endocrinology.1988;123(5):2600-2602.
    [14] Udagawa N, Takahashi N, Akatsu T, Sasaki T, Yamaguchi A, Kodama H, Martin TJ, Suda T. Thebone marrow-derived stromal cell lines MC3T3-G2/PA6and ST2support osteoclast-like celldifferentiation in cocultures with mouse spleen cells. Endocrinology.1989;125(4):1805-1813.
    [15] Suda T, Udagawa N, Nakamura I, Miyaura C, Takahashi N. Modulation of osteoclastdifferentiation by local factors. Bone.1995;17(2Suppl):87S-91S.
    [16] Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R, Nguyen HQ, Wooden S,Bennett L, Boone T, Shimamoto G, DeRose M, Elliott R, Colombero A, Tan HL, Trail G, Sullivan J,Davy E, Bucay N, Renshaw-Gegg L, Hughes TM, Hill D, Pattison W, Campbell P, Sander S, Van G,Tarpley J, Derby P, Lee R, Boyle WJ. Osteoprotegerin: a novel secreted protein involved in theregulation of bone density. Cell.1997;89(2):309-319.
    [17] Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Goto M, Mochizuki SI, Tsuda E,Morinaga T, Udagawa N, Takahashi N, Suda T, Higashio K. A novel molecular mechanismmodulating osteoclast differentiation and function. Bone.1999;25(1):109-113.
    [18] Tan KB, Harrop J, Reddy M, Young P, Terrett J, Emery J, Moore G, Truneh A. Characterization of anovel TNF-like ligand and recently described TNF ligand and TNF receptor superfamily genes andtheir constitutive and inducible expression in hematopoietic and non-hematopoietic cells. Gene.1997;204(1-2):35-46.
    [19] Yamaguchi K, Kinosaki M, Goto M, Kobayashi F, Tsuda E, Morinaga T, Higashio K.Characterization of structural domains of human osteoclastogenesis inhibitory factor. J Biol Chem.1998;273(9):5117-5123.
    [20] Kwon BS, Wang S, Udagawa N, Haridas V, Lee ZH, Kim KK, Oh KO, Greene J, Li Y, Su J, GentzR, Aggarwal BB, Ni J. TR1, a new member of the tumor necrosis factor receptor superfamily,induces fibroblast proliferation and inhibits osteoclastogenesis and bone resorption. FASEB J.1998;12(10):845-854.
    [21] Khosla S. Minireview: the OPG/RANKL/RANK system. Endocrinology.2001;142(12):5050-5055.
    [22] Bu R, Borysenko CW, Li Y, Cao L, Sabokbar A, Blair HC. Expression and function of TNF-familyproteins and receptors in human osteoblasts. Bone.2003;33(5):760-770.
    [23] Capparelli C, Morony S, Warmington K, Adamu S, Lacey D, Dunstan CR, Stouch B, Martin S,Kostenuik PJ. Sustained antiresorptive effects after a single treatment with human recombinantosteoprotegerin (OPG): a pharmacodynamic and pharmacokinetic analysis in rats. J Bone MinerRes.2003;18(5):852-858.
    [24] Lacey DL, Tan HL, Lu J, Kaufman S, Van G, Qiu W, Rattan A, Scully S, Fletcher F, Juan T, KelleyM, Burgess TL, Boyle WJ, Polverino AJ. Osteoprotegerin ligand modulates murine osteoclastsurvival in vitro and in vivo. Am J Pathol.2000;157(2):435-448.
    [25] Hofbauer LC, Heufelder AE. Osteoprotegerin and its cognate ligand: a new paradigm ofosteoclastogenesis. Eur J Endocrinol.1998;139(2):152-154.
    [26] O'Brien EA, Williams JH, Marshall MJ. Osteoprotegerin ligand regulates osteoclast adherence tothe bone surface in mouse calvaria. Biochem Biophys Res Commun.2000;274(2):281-290.
    [27] Goater JJ, O'Keefe RJ, Rosier RN, Puzas JE, Schwarz EM. Efficacy of ex vivo OPG gene therapyin preventing wear debris induced osteolysis. J Orthop Res.2002;20(2):169-173.
    [28] Hofbauer LC. Osteoprotegerin ligand and osteoprotegerin: novel implications for osteoclastbiology and bone metabolism. Eur J Endocrinol.1999;141(3):195-210.
    [29] Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K,Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T.Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factorand is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A.1998;95(7):3597-3602.
    [30] Anderson DM, Maraskovsky E, Billingsley WL, Dougall WC, Tometsko ME, Roux ER, Teepe MC,DuBose RF, Cosman D, Galibert L. A homologue of the TNF receptor and its ligand enhance T-cellgrowth and dendritic-cell function. Nature.1997;390(6656):175-179.
    [31] Wong BR, Rho J, Arron J, Robinson E, Orlinick J, Chao M, Kalachikov S, Cayani E, Bartlett FS,3rd, Frankel WN, Lee SY, Choi Y. TRANCE is a novel ligand of the tumor necrosis factor receptorfamily that activates c-Jun N-terminal kinase in T cells. J Biol Chem.1997;272(40):25190-25194.
    [32] Gao YH, Shinki T, Yuasa T, Kataoka-Enomoto H, Komori T, Suda T, Yamaguchi A. Potential roleof cbfa1, an essential transcriptional factor for osteoblast differentiation, in osteoclastogenesis:regulation of mRNA expression of osteoclast differentiation factor (ODF). Biochem Biophys ResCommun.1998;252(3):697-702.
    [33] Aubin JE, Bonnelye E. Osteoprotegerin and its ligand: A new paradigm for regulation ofosteoclastogenesis and bone resorption. Medscape Womens Health.2000;5(2):5.
    [34] Burgess TL, Qian Y, Kaufman S, Ring BD, Van G, Capparelli C, Kelley M, Hsu H, Boyle WJ,Dunstan CR, Hu S, Lacey DL. The ligand for osteoprotegerin (OPGL) directly activates matureosteoclasts. J Cell Biol.1999;145(3):527-538.
    [35] Fuller K, Murphy C, Kirstein B, Fox SW, Chambers TJ. TNFalpha potently activates osteoclasts,through a direct action independent of and strongly synergistic with RANKL. Endocrinology.2002;143(3):1108-1118.
    [36] Dougall WC, Glaccum M, Charrier K, Rohrbach K, Brasel K, De Smedt T, Daro E, Smith J,Tometsko ME, Maliszewski CR, Armstrong A, Shen V, Bain S, Cosman D, Anderson D, MorrisseyPJ, Peschon JJ, Schuh J. RANK is essential for osteoclast and lymph node development. GenesDev.1999;13(18):2412-2424.
    [37] Theoleyre S, Wittrant Y, Tat SK, Fortun Y, Redini F, Heymann D. The molecular triadOPG/RANK/RANKL: involvement in the orchestration of pathophysiological bone remodeling.Cytokine Growth Factor Rev.2004;15(6):457-475.
    [38] Hofbauer LC, Heufelder AE. Clinical review114: hot topic. The role of receptor activator ofnuclear factor-kappaB ligand and osteoprotegerin in the pathogenesis and treatment of metabolicbone diseases. J Clin Endocrinol Metab.2000;85(7):2355-2363.
    [39] Hsu H, Lacey DL, Dunstan CR, Solovyev I, Colombero A, Timms E, Tan HL, Elliott G, Kelley MJ,Sarosi I, Wang L, Xia XZ, Elliott R, Chiu L, Black T, Scully S, Capparelli C, Morony S,Shimamoto G, Bass MB, Boyle WJ. Tumor necrosis factor receptor family member RANKmediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc NatlAcad Sci U S A.1999;96(7):3540-3545.
    [1] Schaller MD, Parsons JT. Focal adhesion kinase and associated proteins. Curr Opin Cell Biol.1994;6(5):705-710.
    [2] Richardson A, Parsons JT. Signal transduction through integrins: a central role for focal adhesionkinase? Bioessays.1995;17(3):229-236.
    [3] Anselme K. Osteoblast adhesion on biomaterials. Biomaterials.2000;21(7):667-681.
    [4] Cowles EA, Brailey LL, Gronowicz GA. Integrin-mediated signaling regulates AP-1transcriptionfactors and proliferation in osteoblasts. J Biomed Mater Res.2000;52(4):725-737.
    [5] Giancotti FG, Ruoslahti E. Integrin signaling. Science.1999;285(5430):1028-1032.
    [6] Liu X, Morra M, Carpi A, Li B. Bioactive calcium silicate ceramics and coatings. BiomedPharmacother.2008;62(8):526-529.
    [7] Zreiqat H, Valenzuela SM, Nissan BB, Roest R, Knabe C, Radlanski RJ, Renz H, Evans PJ. Theeffect of surface chemistry modification of titanium alloy on signalling pathways in humanosteoblasts. Biomaterials.2005;26(36):7579-7586.
    [8] Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell.1992;69(1):11-25.
    [9] Ruoslahti E. RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol.1996;12:697-715.
    [10] Siebers MC, ter Brugge PJ, Walboomers XF, Jansen JA. Integrins as linker proteins betweenosteoblasts and bone replacing materials. A critical review. Biomaterials.2005;26(2):137-146.
    [11] Albelda SM, Buck CA. Integrins and other cell adhesion molecules. FASEB J.1990;4(11):2868-2880.
    [12] Lee M, Lee HJ, Seo WD, Park KH, Lee YS. Sialylation of integrin beta1is involved inradiation-induced adhesion and migration in human colon cancer cells. Int J Radiat Oncol BiolPhys.2010;76(5):1528-1536.
    [13] Liu S, Calderwood DA, Ginsberg MH. Integrin cytoplasmic domain-binding proteins. J Cell Sci.2000;113(Pt20):3563-3571.
    [14] Schaller MD, Borgman CA, Cobb BS, Vines RR, Reynolds AB, Parsons JT. pp125FAK astructurally distinctive protein-tyrosine kinase associated with focal adhesions. Proc Natl Acad SciU S A.1992;89(11):5192-5196.
    [15] Jones G, Machado J, Jr., Tolnay M, Merlo A. PTEN-independent induction of caspase-mediated celldeath and reduced invasion by the focal adhesion targeting domain (FAT) in human astrocytic braintumors which highly express focal adhesion kinase (FAK). Cancer Res.2001;61(15):5688-5691.
    [16] Lietha D, Cai X, Ceccarelli DF, Li Y, Schaller MD, Eck MJ. Structural basis for the autoinhibitionof focal adhesion kinase. Cell.2007;129(6):1177-1187.
    [17] Schlaepfer DD, Hauck CR, Sieg DJ. Signaling through focal adhesion kinase. Prog Biophys MolBio.1999;71(3-4):435-478.
    [18] Zhao J, Guan JL. Signal transduction by focal adhesion kinase in cancer. Cancer Metastasis Rev.2009;28(1-2):35-49.
    [19] Klemke RL, Cai S, Giannini AL, Gallagher PJ, de Lanerolle P, Cheresh DA. Regulation of cellmotility by mitogen-activated protein kinase. J Cell Biol.1997;137(2):481-492.
    [20] Chen HC, Appeddu PA, Parsons JT, Hildebrand JD, Schaller MD, Guan JL. Interaction of focaladhesion kinase with cytoskeletal protein talin. J Biol Chem.1995;270(28):16995-16999.
    [21] Brown MC, Perrotta JA, Turner CE. Identification of LIM3as the principal determinant of paxillinfocal adhesion localization and characterization of a novel motif on paxillin directing vinculin andfocal adhesion kinase binding. J Cell Biol.1996;135(4):1109-1123.
    [22] Smilenov LB, Mikhailov A, Pelham RJ, Marcantonio EE, Gundersen GG. Focal adhesion motilityrevealed in stationary fibroblasts. Science.1999;286(5442):1172-1174.
    [23] Dedhar S. Integrin mediated signal transduction in oncogenesis: an overview. Cancer MetastasisRev.1995;14(3):165-172.
    [24] Ilic D, Damsky CH, Yamamoto T. Focal adhesion kinase: at the crossroads of signal transduction. JCell Sci.1997;110(Pt4):401-407.
    [25] Kim YS, Koh JM, Lee YS, Kim BJ, Lee SH, Lee KU, Kim GS. Increased circulating heat shockprotein60induced by menopause, stimulates apoptosis of osteoblast-lineage cells via up-regulationof toll-like receptors. Bone.2009;45(1):68-76.
    [26] Hamilton DW, Brunette DM. The effect of substratum topography on osteoblast adhesion mediatedsignal transduction and phosphorylation. Biomaterials.2007;28(10):1806-1819.
    [27] Huh JE, Nam DW, Baek YH, Kang JW, Park DS, Choi DY, Lee JD. Formononetin accelerateswound repair by the regulation of early growth response factor-1transcription factor through thephosphorylation of the ERK and p38MAPK pathways. Int Immunopharmacol.2011;11(1):46-54.
    [28] Newbern JM, Li X, Shoemaker SE, Zhou J, Zhong J, Wu Y, Bonder D, Hollenback S, Coppola G,Geschwind DH, Landreth GE, Snider WD. Specific functions for ERK/MAPK signaling duringPNS development. Neuron.2011;69(1):91-105.
    [29] Datta NS, Kolailat R, Fite A, Pettway G, Abou-Samra AB. Distinct roles for mitogen-activatedprotein kinase phosphatase-1(MKP-1) and ERK-MAPK in PTH1R signaling during osteoblastproliferation and differentiation. Cell Signal.2010;22(3):457-466.
    [30] You H, Yang H, Zhu Q, Li M, Xue J, Gu Y, Lin S, Ding F. Advanced oxidation protein productsinduce vascular calcification by promoting osteoblastic trans-differentiation of smooth muscle cellsvia oxidative stress and ERK pathway. Ren Fail.2009;31(4):313-319.
    [31] Rivadeneira J, Di Virgilio AL, Barrio DA, Muglia CI, Bruzzone L, Etcheverry SB. Cytotoxicity ofa vanadyl(IV) complex with a multidentate oxygen donor in osteoblast cell lines in culture. MedChem.2010;6(1):9-23.
    [32] Boyce BF, Xing L. Biology of RANK, RANKL, and osteoprotegerin. Arthritis Res Ther.2007;9Suppl1:S1.
    [33] Kim JY, Yu SJ, Oh HJ, Lee JY, Kim Y, Sohn J. Panaxydol induces apoptosis through an increasedintracellular calcium level, activation of JNK and p38MAPK and NADPH oxidase-dependentgeneration of reactive oxygen species. Apoptosis.2011;16(4):347-358.
    [34] Clark EA, Brugge JS. Integrins and signal transduction pathways: the road taken. Science.1995;268(5208):233-239.
    [35] Seger R, Krebs EG. The MAPK signaling cascade. FASEB J.1995;9(9):726-735.
    [36] Bernstein LR, Ferris DK, Colburn NH, Sobel ME. A family of mitogen-activated proteinkinase-related proteins interacts in vivo with activator protein-1transcription factor. J Biol Chem.1994;269(13):9401-9404.
    [37] Monson JM, Friedman J, McCarthy BJ. DNA sequence analysis of a mouse pro alpha1(I)procollagen gene: evidence for a mouse B1element within the gene. Mol Cell Biol.1982;2(11):1362-1371.
    [38] Owen TA, Bortell R, Yocum SA, Smock SL, Zhang M, Abate C, Shalhoub V, Aronin N, Wright KL,van Wijnen AJ, et al. Coordinate occupancy of AP-1sites in the vitamin D-responsive and CCAATbox elements by Fos-Jun in the osteocalcin gene: model for phenotype suppression of transcription.Proc Natl Acad Sci U S A.1990;87(24):9990-9994.
    [39] Schule R, Umesono K, Mangelsdorf DJ, Bolado J, Pike JW, Evans RM. Jun-Fos and receptors forvitamins A and D recognize a common response element in the human osteocalcin gene. Cell.1990;61(3):497-504.
    [40] Craig AM, Denhardt DT. The murine gene encoding secreted phosphoprotein1(osteopontin):promoter structure, activity, and induction in vivo by estrogen and progesterone. Gene.1991;100:163-171.
    [41] Machwate M, Jullienne A, Moukhtar M, Marie PJ. Temporal variation of c-Fos proto-oncogeneexpression during osteoblast differentiation and osteogenesis in developing rat bone. J CellBiochem.1995;57(1):62-70.
    [42] Papachristou DJ, Batistatou A, Sykiotis GP, Varakis I, Papavassiliou AG. Activation of theJNK-AP-1signal transduction pathway is associated with pathogenesis and progression of humanosteosarcomas. Bone.2003;32(4):364-371.
    [1] Aubin JE. Bone stem cells. J Cell Biochem Suppl.1998;30-31:73-82.
    [2] Wlodarski KH. Properties and origin of osteoblasts. Clin Orthop Relat Res.1990(252):276-293.
    [3] Burg KJ, Porter S, Kellam JF. Biomaterial developments for bone tissue engineering. Biomaterials.2000;21(23):2347-2359.
    [4] Bauer TW, Muschler GF. Bone graft materials. An overview of the basic science. Clin Orthop RelatRes.2000(371):10-27.
    [5] Glowacki J, Mulliken JB. Demineralized bone implants. Clin Plast Surg.1985;12(2):233-241.
    [6] Tang L, Hung CP, Schuman EM. A role for the cadherin family of cell adhesion molecules inhippocampal long-term potentiation. Neuron.1998;20(6):1165-1175.
    [7] Moore WR, Graves SE, Bain GI. Synthetic bone graft substitutes. ANZ J Surg.2001;71(6):354-361.
    [8] Lacefield WR. Materials characteristics of uncoated/ceramic-coated implant materials. Adv DentRes.1999;13:21-26.
    [9] Sykaras N, Iacopino AM, Marker VA, Triplett RG, Woody RD. Implant materials, designs, andsurface topographies: their effect on osseointegration. A literature review. Int J Oral MaxillofacImplants.2000;15(5):675-690.
    [10] Wataha JC. Materials for endosseous dental implants. J Oral Rehabil.1996;23(2):79-90.
    [11] Ducheyne P. Titanium and calcium phosphate ceramic dental implants, surfaces, coatings andinterfaces. J Oral Implantol.1988;14(3):325-340.
    [12] Bose S, Roy M, Das K, Bandyopadhyay A. Surface modification of titanium for load-bearingapplications. J Mater Sci Mater Med.2009;20Suppl1:S19-24.
    [13] von Wilmowsky C, Bauer S, Lutz R, Meisel M, Neukam FW, Toyoshima T, Schmuki P, Nkenke E,Schlegel KA. In vivo evaluation of anodic TiO2nanotubes: an experimental study in the pig. JBiomed Mater Res B Appl Biomater.2009;89(1):165-171.
    [14] Aita H, Hori N, Takeuchi M, Suzuki T, Yamada M, Anpo M, Ogawa T. The effect of ultravioletfunctionalization of titanium on integration with bone. Biomaterials.2009;30(6):1015-1025.
    [15] Yang C. The effect of calcium phosphate implant coating on osteoconduction. Oral Surg Oral MedOral Pathol Oral Radiol Endod.2001;92(6):606-609.
    [16] Hulshoff JE, Jansen JA. Initial interfacial healing events around calcium phosphate (Ca-P) coatedoral implants. Clin Oral Implants Res.1997;8(5):393-400.
    [17] Hulshoff JE, van Dijk K, de Ruijter JE, Rietveld FJ, Ginsel LA, Jansen JA. Interfacial phenomena:an in vitro study of the effect of calcium phosphate (Ca-P) ceramic on bone formation. J BiomedMater Res.1998;40(3):464-474.
    [18] Griffith LG, Naughton G. Tissue engineering--current challenges and expanding opportunities.Science.2002;295(5557):1009-1014.
    [19] Aumailley M, Gayraud B. Structure and biological activity of the extracellular matrix. J Mol Med(Berl).1998;76(3-4):253-265.
    [20] Bosman FT, Stamenkovic I. Functional structure and composition of the extracellular matrix. JPathol.2003;200(4):423-428.
    [21] Anselme K. Osteoblast adhesion on biomaterials. Biomaterials.2000;21(7):667-681.
    [22] Whittaker CA, Hynes RO. Distribution and evolution of von Willebrand/integrin A domains:widely dispersed domains with roles in cell adhesion and elsewhere. Mol Biol Cell.2002;13(10):3369-3387.
    [23] Burke RD. Invertebrate integrins: structure, function, and evolution. Int Rev Cytol.1999;191:257-284.
    [24] Hughes AL. Evolution of the integrin alpha and beta protein families. J Mol Evol.2001;52(1):63-72.
    [25] Hynes RO, Zhao Q. The evolution of cell adhesion. J Cell Biol.2000;150(2):F89-96.
    [26] Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell.1992;69(1):11-25.
    [27] Ruoslahti E. RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol.1996;12:697-715.
    [28] Vigneault F, Zaniolo K, Gaudreault M, Gingras ME, Guerin SL. Control of integrin genesexpression in the eye. Prog Retin Eye Res.2007;26(2):99-161.
    [29] Albelda SM, Buck CA. Integrins and other cell adhesion molecules. FASEB J.1990;4(11):2868-2880.
    [30] Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell.2002;110(6):673-687.
    [31] Humphries JD, Byron A, Humphries MJ. Integrin ligands at a glance. J Cell Sci.2006;119(Pt19):3901-3903.
    [32] Cowles EA, Brailey LL, Gronowicz GA. Integrin-mediated signaling regulates AP-1transcriptionfactors and proliferation in osteoblasts. J Biomed Mater Res.2000;52(4):725-737.
    [33] Sinha RK, Tuan RS. Regulation of human osteoblast integrin expression by orthopedic implantmaterials. Bone.1996;18(5):451-457.
    [34] Gronowicz G, McCarthy MB. Response of human osteoblasts to implant materials:integrin-mediated adhesion. J Orthop Res.1996;14(6):878-887.
    [35] Bennett JH, Carter DH, Alavi AL, Beresford JN, Walsh S. Patterns of integrin expression in ahuman mandibular explant model of osteoblast differentiation. Arch Oral Biol.2001;46(3):229-238.
    [36] Schneider G, Burridge K. Formation of focal adhesions by osteoblasts adhering to differentsubstrata. Exp Cell Res.1994;214(1):264-269.
    [37] Rapuano BE, Wu C, MacDonald DE. Osteoblast-like cell adhesion to bone sialoprotein peptides. JOrthop Res.2004;22(2):353-361.
    [38] Verrier S, Pallu S, Bareille R, Jonczyk A, Meyer J, Dard M, Amedee J. Function of linear andcyclic RGD-containing peptides in osteoprogenitor cells adhesion process. Biomaterials.2002;23(2):585-596.
    [39] Plow EF, Haas TA, Zhang L, Loftus J, Smith JW. Ligand binding to integrins. J Biol Chem.2000;275(29):21785-21788.
    [40] Kamata T, Liddington RC, Takada Y. Interaction between collagen and the alpha(2) I-domain ofintegrin alpha(2)beta(1). Critical role of conserved residues in the metal ion-dependent adhesionsite (MIDAS) region. J Biol Chem.1999;274(45):32108-32111.
    [41] Ruoslahti E, Pierschbacher MD. New perspectives in cell adhesion: RGD and integrins. Science.1987;238(4826):491-497.
    [42] D'Souza SE, Ginsberg MH, Plow EF. Arginyl-glycyl-aspartic acid (RGD): a cell adhesion motif.Trends Biochem Sci.1991;16(7):246-250.
    [43] Franceschi RT. The developmental control of osteoblast-specific gene expression: role of specifictranscription factors and the extracellular matrix environment. Crit Rev Oral Biol Med.1999;10(1):40-57.
    [44] Petit V, Thiery JP. Focal adhesions: structure and dynamics. Biol Cell.2000;92(7):477-494.
    [45] O'Toole TE. Integrin signaling: building connections beyond the focal contact? Matrix Biol.1997;16(4):165-171.
    [46] Schaller MD, Parsons JT. Focal adhesion kinase and associated proteins. Curr Opin Cell Biol.1994;6(5):705-710.
    [47] Richardson A, Parsons JT. Signal transduction through integrins: a central role for focal adhesionkinase? Bioessays.1995;17(3):229-236.
    [48] Giancotti FG, Ruoslahti E. Integrin signaling. Science.1999;285(5430):1028-1032.
    [49] Carvalho RS, Kostenuik PJ, Salih E, Bumann A, Gerstenfeld LC. Selective adhesion of osteoblasticcells to different integrin ligands induces osteopontin gene expression. Matrix Biol.2003;22(3):241-249.
    [50] Stephansson SN, Byers BA, Garcia AJ. Enhanced expression of the osteoblastic phenotype onsubstrates that modulate fibronectin conformation and integrin receptor binding. Biomaterials.2002;23(12):2527-2534.
    [51] Moursi AM, Globus RK, Damsky CH. Interactions between integrin receptors and fibronectin arerequired for calvarial osteoblast differentiation in vitro. J Cell Sci.1997;110(Pt18):2187-2196.
    [52] Mizuno M, Fujisawa R, Kuboki Y. Type I collagen-induced osteoblastic differentiation ofbone-marrow cells mediated by collagen-alpha2beta1integrin interaction. J Cell Physiol.2000;184(2):207-213.
    [53] Keselowsky BG, Collard DM, Garcia AJ. Surface chemistry modulates fibronectin conformationand directs integrin binding and specificity to control cell adhesion. J Biomed Mater Res A.2003;66(2):247-259.
    [54] Garcia AJ, Vega MD, Boettiger D. Modulation of cell proliferation and differentiation throughsubstrate-dependent changes in fibronectin conformation. Mol Biol Cell.1999;10(3):785-798.
    [55] Koo LY, Irvine DJ, Mayes AM, Lauffenburger DA, Griffith LG. Co-regulation of cell adhesion bynanoscale RGD organization and mechanical stimulus. J Cell Sci.2002;115(Pt7):1423-1433.
    [56] Maheshwari G, Brown G, Lauffenburger DA, Wells A, Griffith LG. Cell adhesion and motilitydepend on nanoscale RGD clustering. J Cell Sci.2000;113(Pt10):1677-1686.
    [57] Aota S, Nomizu M, Yamada KM. The short amino acid sequence Pro-His-Ser-Arg-Asn in humanfibronectin enhances cell-adhesive function. J Biol Chem.1994;269(40):24756-24761.
    [58] Takada Y, Kamata T, Irie A, Puzon-McLaughlin W, Zhang XP. Structural basis of integrin-mediatedsignal transduction. Matrix Biol.1997;16(4):143-151.
    [59] Coppolino MG, Dedhar S. Bi-directional signal transduction by integrin receptors. Int J BiochemCell Biol.2000;32(2):171-188.
    [60] Garcia AJ, Takagi J, Boettiger D. Two-stage activation for alpha5beta1integrin binding tosurface-adsorbed fibronectin. J Biol Chem.1998;273(52):34710-34715.
    [61] Carman CV, Springer TA. Integrin avidity regulation: are changes in affinity and conformationunderemphasized? Curr Opin Cell Biol.2003;15(5):547-556.
    [62] Rodriguez-Fernandez JL. Why do so many stimuli induce tyrosine phosphorylation of FAK?Bioessays.1999;21(12):1069-1075.
    [63] Simon KO, Nutt EM, Abraham DG, Rodan GA, Duong LT. The alphavbeta3integrin regulatesalpha5beta1-mediated cell migration toward fibronectin. J Biol Chem.1997;272(46):29380-29389.
    [64] Choi CK, Vicente-Manzanares M, Zareno J, Whitmore LA, Mogilner A, Horwitz AR. Actin andalpha-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin IImotor-independent manner. Nat Cell Biol.2008;10(9):1039-1050.
    [65] Geiger B, Bershadsky A, Pankov R, Yamada KM. Transmembrane crosstalk between theextracellular matrix--cytoskeleton crosstalk. Nat Rev Mol Cell Biol.2001;2(11):793-805.
    [66] Damsky CH, Ilic D. Integrin signaling: it's where the action is. Curr Opin Cell Biol.2002;14(5):594-602.
    [67] de Ruijter JE, ter Brugge PJ, Dieudonne SC, van Vliet SJ, Torensma R, Jansen JA. Analysis ofintegrin expression in U2OS cells cultured on various calcium phosphate ceramic substrates.Tissue Eng.2001;7(3):279-289.
    [68] ter Brugge PJ, Torensma R, De Ruijter JE, Figdor CG, Jansen JA. Modulation of integrinexpression on rat bone marrow cells by substrates with different surface characteristics. Tissue Eng.2002;8(4):615-626.
    [69] ter Brugge PJ, Dieudonne S, Jansen JA. Initial interaction of U2OS cells with noncoated andcalcium phosphate coated titanium substrates. J Biomed Mater Res.2002;61(3):399-407.
    [70] Sinha RK, Morris F, Shah SA, Tuan RS. Surface composition of orthopaedic implant metalsregulates cell attachment, spreading, and cytoskeletal organization of primary human osteoblasts invitro. Clin Orthop Relat Res.1994(305):258-272.
    [71] Shah AK, Sinha RK, Hickok NJ, Tuan RS. High-resolution morphometric analysis of humanosteoblastic cell adhesion on clinically relevant orthopedic alloys. Bone.1999;24(5):499-506.
    [72] Kilpadi KL, Chang PL, Bellis SL. Hydroxylapatite binds more serum proteins, purified integrins,and osteoblast precursor cells than titanium or steel. J Biomed Mater Res.2001;57(2):258-267.
    [73] Okamoto K, Matsuura T, Hosokawa R, Akagawa Y. RGD peptides regulate the specific adhesionscheme of osteoblasts to hydroxyapatite but not to titanium. J Dent Res.1998;77(3):481-487.
    [74] ter Brugge PJ, Jansen JA. Initial interaction of rat bone marrow cells with non-coated and calciumphosphate coated titanium substrates. Biomaterials.2002;23(15):3269-3277.
    [75] Di Silvio L, Dalby MJ, Bonfield W. Osteoblast behaviour on HA/PE composite surfaces withdifferent HA volumes. Biomaterials.2002;23(1):101-107.
    [76] Ellingsen JE. A study on the mechanism of protein adsorption to TiO2. Biomaterials.1991;12(6):593-596.
    [77] Matsuura T, Hosokawa R, Okamoto K, Kimoto T, Akagawa Y. Diverse mechanisms of osteoblastspreading on hydroxyapatite and titanium. Biomaterials.2000;21(11):1121-1127.
    [78] Zeng H, Chittur KK, Lacefield WR. Analysis of bovine serum albumin adsorption on calciumphosphate and titanium surfaces. Biomaterials.1999;20(4):377-384.
    [79] Scotchford CA, Ball M, Winkelmann M, Voros J, Csucs C, Brunette DM, Danuser G, Textor M.Chemically patterned, metal-oxide-based surfaces produced by photolithographic techniques forstudying protein-and cell-interactions. II: Protein adsorption and early cell interactions.Biomaterials.2003;24(7):1147-1158.
    [80] Lange R, Luthen F, Beck U, Rychly J, Baumann A, Nebe B. Cell-extracellular matrix interactionand physico-chemical characteristics of titanium surfaces depend on the roughness of the material.Biomol Eng.2002;19(2-6):255-261.
    [81] Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R. Specific proteins mediate enhancedosteoblast adhesion on nanophase ceramics. J Biomed Mater Res.2000;51(3):475-483.
    [82] Boyan BD, Hummert TW, Dean DD, Schwartz Z. Role of material surfaces in regulating bone andcartilage cell response. Biomaterials.1996;17(2):137-146.
    [83] Anselme K, Bigerelle M, Noel B, Dufresne E, Judas D, Iost A, Hardouin P. Qualitative andquantitative study of human osteoblast adhesion on materials with various surface roughnesses. JBiomed Mater Res.2000;49(2):155-166.
    [84] Webster TJ, Schadler LS, Siegel RW, Bizios R. Mechanisms of enhanced osteoblast adhesion onnanophase alumina involve vitronectin. Tissue Eng.2001;7(3):291-301.
    [85] Ingber DE. Tensegrity II. How structural networks influence cellular information processingnetworks. J Cell Sci.2003;116(Pt8):1397-1408.
    [86] Thomas CH, Collier JH, Sfeir CS, Healy KE. Engineering gene expression and protein synthesis bymodulation of nuclear shape. Proc Natl Acad Sci U S A.2002;99(4):1972-1977.
    [87] Takebe J, Champagne CM, Offenbacher S, Ishibashi K, Cooper LF. Titanium surface topographyalters cell shape and modulates bone morphogenetic protein2expression in the J774A.1macrophage cell line. J Biomed Mater Res A.2003;64(2):207-216.
    [88] Vogler EA. Structure and reactivity of water at biomaterial surfaces. Advances in Colloid andInterface Science.1998;74:69-117.
    [89] Uedayukoshi T, Matsuda T. CELLULAR-RESPONSES ON A WETTABILITY GRADIENTSURFACE WITH CONTINUOUS VARIATIONS IN SURFACE COMPOSITIONS OFCARBONATE AND HYDROXYL-GROUPS. Langmuir.1995;11(10):4135-4140.
    [90] Olivares-Navarrete R, Raz P, Zhao G, Chen J, Wieland M, Cochran DL, Chaudhri RA, Ornoy A,Boyan BD, Schwartz Z. Integrin alpha2beta1plays a critical role in osteoblast response tomicron-scale surface structure and surface energy of titanium substrates. Proc Natl Acad Sci U S A.2008;105(41):15767-15772.
    [91] Park JH, Wasilewski CE, Almodovar N, Olivares-Navarrete R, Boyan BD, Tannenbaum R,Schwartz Z. The responses to surface wettability gradients induced by chitosan nanofilms onmicrotextured titanium mediated by specific integrin receptors. Biomaterials.2012;33(30):7386-7393.
    [92] Dalton BA, McFarland CD, Gengenbach TR, Griesser HJ, Steele JG. Polymer surface chemistryand bone cell migration. J Biomater Sci Polym Ed.1998;9(8):781-799.
    [93] Webb K, Hlady V, Tresco PA. Relationships among cell attachment, spreading, cytoskeletalorganization, and migration rate for anchorage-dependent cells on model surfaces. J Biomed MaterRes.2000;49(3):362-368.
    [94] Takebe J, Itoh S, Okada J, Ishibashi K. Anodic oxidation and hydrothermal treatment of titaniumresults in a surface that causes increased attachment and altered cytoskeletal morphology of ratbone marrow stromal cells in vitro. J Biomed Mater Res.2000;51(3):398-407.
    [95] Yang J, Shi G, Bei J, Wang S, Cao Y, Shang Q, Yang G, Wang W. Fabrication and surfacemodification of macroporous poly(L-lactic acid) and poly(L-lactic-co-glycolic acid)(70/30) cellscaffolds for human skin fibroblast cell culture. J Biomed Mater Res.2002;62(3):438-446.
    [96] Liao H, Andersson AS, Sutherland D, Petronis S, Kasemo B, Thomsen P. Response of ratosteoblast-like cells to microstructured model surfaces in vitro. Biomaterials.2003;24(4):649-654.
    [97] Zhao G, Raines AL, Wieland M, Schwartz Z, Boyan BD. Requirement for both micron-andsubmicron scale structure for synergistic responses of osteoblasts to substrate surface energy andtopography. Biomaterials.2007;28(18):2821-2829.
    [98] Lopes MA, Monteiro FJ, Santos JD, Serro AP, Saramago B. Hydrophobicity, surface tension, andzeta potential measurements of glass-reinforced hydroxyapatite composites. J Biomed Mater Res.1999;45(4):370-375.
    [99] Hallab NJ, Bundy KJ, O'Connor K, Moses RL, Jacobs JJ. Evaluation of metallic and polymericbiomaterial surface energy and surface roughness characteristics for directed cell adhesion. TissueEng.2001;7(1):55-71.
    [100] Ponsonnet L, Reybier K, Jaffrezic N, Comte V, Lagneau C, Lissac M, Martelet C. Relationshipbetween surface properties (roughness, wettability) of titanium and titanium alloys and cellbehaviour. Mat Sci Eng C-Bio S.2003;23(4):551-560.
    [101] Liu X, Ma PX. Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng.2004;32(3):477-486.
    [102] Walivaara B, Aronsson BO, Rodahl M, Lausmaa J, Tengvall P. Titanium with different oxides: invitro studies of protein adsorption and contact activation. Biomaterials.1994;15(10):827-834.
    [103] Kilpadi DV, Weimer JJ, Lemons JE. Effect of passivation and dry heat-sterilization on surfaceenergy and topography of unalloyed titanium implants. Colloids and Surfaces a-Physicochemicaland Engineering Aspects.1998;135(1-3):89-101.
    [104] Nygren H. Initial reactions of whole blood with hydrophilic and hydrophobic titanium surfaces.Colloids and Surfaces B-Biointerfaces.1996;6(4-5):329-333.
    [105] Faucheux N, Schweiss R, Lutzow K, Werner C, Groth T. Self-assembled monolayers withdifferent terminating groups as model substrates for cell adhesion studies. Biomaterials.2004;25(14):2721-2730.
    [106] Fabrizius-Homan DJ, Cooper SL. Competitive adsorption of vitronectin with albumin, fibrinogen,and fibronectin on polymeric biomaterials. J Biomed Mater Res.1991;25(8):953-971.
    [107] McFarland CD, Thomas CH, DeFilippis C, Steele JG, Healy KE. Protein adsorption and cellattachment to patterned surfaces. J Biomed Mater Res.2000;49(2):200-210.
    [108] Steele JG, Dalton BA, Johnson G, Underwood PA. Polystyrene chemistry affects vitronectinactivity: an explanation for cell attachment to tissue culture polystyrene but not to unmodifiedpolystyrene. J Biomed Mater Res.1993;27(7):927-940.
    [109] Scotchford CA, Gilmore CP, Cooper E, Leggett GJ, Downes S. Protein adsorption and humanosteoblast-like cell attachment and growth on alkylthiol on gold self-assembled monolayers. JBiomed Mater Res.2002;59(1):84-99.
    [110] Steele JG, McFarland C, Dalton BA, Johnson G, Evans MD, Howlett CR, Underwood PA.Attachment of human bone cells to tissue culture polystyrene and to unmodified polystyrene: theeffect of surface chemistry upon initial cell attachment. J Biomater Sci Polym Ed.1993;5(3):245-257.
    [111] Underwood PA, Steele JG, Dalton BA. Effects of polystyrene surface chemistry on the biologicalactivity of solid phase fibronectin and vitronectin, analysed with monoclonal antibodies. J Cell Sci.1993;104(Pt3):793-803.
    [112] Pitt WG, Fabriziushoman DJ, Mosher DF, Cooper SL. VITRONECTIN ADSORPTION ONPOLYSTYRENE AND OXIDIZED POLYSTYRENE. Journal of Colloid and Interface Science.1989;129(1):231-239.
    [113] Grinnell F, Feld MK. Fibronectin adsorption on hydrophilic and hydrophobic surfaces detected byantibody binding and analyzed during cell adhesion in serum-containing medium. J Biol Chem.1982;257(9):4888-4893.
    [114] Jonsson U, Ivarsson B, Lundstrom I, Berghem L. Adsorption behavior of fibronectin onwell-characterized silica surfaces. Journal of Colloid and Interface Science.1982;90(1):148-163.
    [115] Lewandowska K, Balachander N, Sukenik CN, Culp LA. Modulation of fibronectin adhesivefunctions for fibroblasts and neural cells by chemically derivatized substrata. J Cell Physiol.1989;141(2):334-345.
    [116] Altankov G, Groth T. Reorganization of substratum-bound fibronectin on hydrophilic andhydrophobic materials is related to biocompatibility. J Mater Sci-Mater M.1994;5(9-10):732-737.
    [117] Culp LA. Molecular composition and origin of substrate-attached material from normal andvirus-transformed cells. J Supramol Struct.1976;5(2):239-255.
    [118] Kasemo B, Lausmaa J. Biomaterial and implant surfaces: on the role of cleanliness, contamination,and preparation procedures. J Biomed Mater Res.1988;22(A2Suppl):145-158.
    [119] Callen BW, Lowenberg BF, Lugowski S, Sodhi RN, Davies JE. Nitric acid passivation ofTi6Al4V reduces thickness of surface oxide layer and increases trace element release. J BiomedMater Res.1995;29(3):279-290.
    [120] Kilpadi DV, Raikar GN, Liu J, Lemons JE, Vohra Y, Gregory JC. Effect of surface treatment onunalloyed titanium implants: spectroscopic analyses. J Biomed Mater Res.1998;40(4):646-659.
    [121] Stanford CM, Keller JC, Solursh M. Bone cell expression on titanium surfaces is altered bysterilization treatments. J Dent Res.1994;73(5):1061-1071.
    [122] Vezeau PJ, Koorbusch GF, Draughn RA, Keller JC. Effects of multiple sterilization on surfacecharacteristics and in vitro biologic responses to titanium. J Oral Maxillofac Surg.1996;54(6):738-746.
    [123] Kilpadi DV, Lemons JE, Liu J, Raikar GN, Weimer JJ, Vohra Y. Cleaning and heat-treatmenteffects on unalloyed titanium implant surfaces. Int J Oral Maxillofac Implants.2000;15(2):219-230.
    [124] Shelton RM, Rasmussen AC, Davies JE. Protein adsorption at the interface between chargedpolymer substrata and migrating osteoblasts. Biomaterials.1988;9(1):24-29.
    [125] MacDonald DE, Deo N, Markovic B, Stranick M, Somasundaran P. Adsorption and dissolutionbehavior of human plasma fibronectin on thermally and chemically modified titanium dioxideparticles. Biomaterials.2002;23(4):1269-1279.
    [126] Margel S, Vogler EA, Firment L, Watt T, Haynie S, Sogah DY. Peptide, protein, and cellularinteractions with self-assembled monolayer model surfaces. J Biomed Mater Res.1993;27(12):1463-1476.
    [127] Qiu Q, Sayer M, Kawaja M, Shen X, Davies JE. Attachment, morphology, and protein expressionof rat marrow stromal cells cultured on charged substrate surfaces. J Biomed Mater Res.1998;42(1):117-127.
    [128] Hallab NJ, Bundy KJ, O'Connor K, Clark R, Moses RL. Cell adhesion to biomaterials:correlations between surface charge, surface roughness, adsorbed protein, and cell morphology. JLong Term Eff Med Implants.1995;5(3):209-231.
    [129] Suzuki T, Yamamoto T, Toriyama M, Nishizawa K, Yokogawa Y, Mucalo MR, Kawamoto Y,Nagata F, Kameyama T. Surface instability of calcium phosphate ceramics in tissue culturemedium and the effect on adhesion and growth of anchorage-dependent animal cells. J BiomedMater Res.1997;34(4):507-517.
    [130] Healy KE, Thomas CH, Rezania A, Kim JE, McKeown PJ, Lom B, Hockberger PE. Kinetics ofbone cell organization and mineralization on materials with patterned surface chemistry.Biomaterials.1996;17(2):195-208.
    [131] Thomas CH, McFarland CD, Jenkins ML, Rezania A, Steele JG, Healy KE. The role of vitronectinin the attachment and spatial distribution of bone-derived cells on materials with patterned surfacechemistry. J Biomed Mater Res.1997;37(1):81-93.
    [132] Klinger A, Steinberg D, Kohavi D, Sela MN. Mechanism of adsorption of human albumin totitanium in vitro. J Biomed Mater Res.1997;36(3):387-392.
    [133] Valagao Amadeu do Serro AP, Fernandes AC, de Jesus Vieira Saramago B, Norde W. Bovineserum albumin adsorption on titania surfaces and its relation to wettability aspects. J Biomed MaterRes.1999;46(3):376-381.
    [134] Hasenbein ME, Andersen TT, Bizios R. Micropatterned surfaces modified with select peptidespromote exclusive interactions with osteoblasts. Biomaterials.2002;23(19):3937-3942.
    [135] Krause A, Cowles EA, Gronowicz G. Integrin-mediated signaling in osteoblasts on titaniumimplant materials. J Biomed Mater Res.2000;52(4):738-747.
    [136] Geissler U, Hempel U, Wolf C, Scharnweber D, Worch H, Wenzel K. Collagen type I-coating ofTi6Al4V promotes adhesion of osteoblasts. J Biomed Mater Res.2000;51(4):752-760.
    [137] Becker D, Geissler U, Hempel U, Bierbaum S, Scharnweber D, Worch H, Wenzel KW.Proliferation and differentiation of rat calvarial osteoblasts on type I collagen-coated titanium alloy.J Biomed Mater Res.2002;59(3):516-527.
    [138] Gronthos S, Stewart K, Graves SE, Hay S, Simmons PJ. Integrin expression and function onhuman osteoblast-like cells. J Bone Miner Res.1997;12(8):1189-1197.
    [139] Huang H, Zhao Y, Liu Z, Zhang Y, Zhang H, Fu T, Ma X. Enhanced osteoblast functions on RGDimmobilized surface. J Oral Implantol.2003;29(2):73-79.
    [140] Hersel U, Dahmen C, Kessler H. RGD modified polymers: biomaterials for stimulated celladhesion and beyond. Biomaterials.2003;24(24):4385-4415.
    [141] Kantlehner M, Schaffner P, Finsinger D, Meyer J, Jonczyk A, Diefenbach B, Nies B, HolzemannG, Goodman SL, Kessler H. Surface coating with cyclic RGD peptides stimulates osteoblastadhesion and proliferation as well as bone formation. Chembiochem.2000;1(2):107-114.
    [142] Schliephake H, Scharnweber D, Dard M, Rossler S, Sewing A, Meyer J, Hoogestraat D. Effect ofRGD peptide coating of titanium implants on periimplant bone formation in the alveolar crest. Anexperimental pilot study in dogs. Clin Oral Implants Res.2002;13(3):312-319.
    [143] Ferris DM, Moodie GD, Dimond PM, Gioranni CW, Ehrlich MG, Valentini RF. RGD-coatedtitanium implants stimulate increased bone formation in vivo. Biomaterials.1999;20(23-24):2323-2331.
    [144] Cutler SM, Garcia AJ. Engineering cell adhesive surfaces that direct integrin alpha5beta1bindingusing a recombinant fragment of fibronectin. Biomaterials.2003;24(10):1759-1770.
    [145] LeBaron RG, Athanasiou KA. Extracellular matrix cell adhesion peptides: functional applicationsin orthopedic materials. Tissue Eng.2000;6(2):85-103.
    [146] Rezania A, Healy KE. The effect of peptide surface density on mineralization of a matrixdeposited by osteogenic cells. J Biomed Mater Res.2000;52(4):595-600.
    [147] Houseman BT, Mrksich M. The microenvironment of immobilized Arg-Gly-Asp peptides is animportant determinant of cell adhesion. Biomaterials.2001;22(9):943-955.
    [148] Bruck SD. The effect of the physiological environment on the mechanical properties ofbiomaterials in cardiovascular applications. Biomater Med Devices Artif Organs.1978;6(4):341-359.
    [149] Vroman L, Adams AL, Klings M. Interactions among human blood proteins at interfaces. FedProc.1971;30(5):1494-1502.
    [150] Maniatopoulos C, Sodek J, Melcher AH. Bone formation in vitro by stromal cells obtained frombone marrow of young adult rats. Cell Tissue Res.1988;254(2):317-330.
    [151] Cheng SL, Lai CF, Fausto A, Chellaiah M, Feng X, McHugh KP, Teitelbaum SL, Civitelli R,Hruska KA, Ross FP, Avioli LV. Regulation of alphaVbeta3and alphaVbeta5integrins bydexamethasone in normal human osteoblastic cells. J Cell Biochem.2000;77(2):265-276.
    [152] Nesti LJ, Caterson EJ, Wang M, Chang R, Chapovsky F, Hoek JB, Tuan RS.TGF-beta1-stimulated osteoblasts require intracellular calcium signaling for enhanced alpha5integrin expression. Ann N Y Acad Sci.2002;961:178-182.
    [153] Schwartz MA, Denninghoff K. Alpha v integrins mediate the rise in intracellular calcium inendothelial cells on fibronectin even though they play a minor role in adhesion. J Biol Chem.1994;269(15):11133-11137.
    [154] Thomsen P, Gretzer C. Macrophage interactions with modified material surfaces. Current Opinionin Solid State&Materials Science.2001;5(2-3):163-176.
    [155] Yamada KM, Pankov R, Cukierman E. Dimensions and dynamics in integrin function. Braz J MedBiol Res.2003;36(8):959-966.
    [156] Yamada KM. Integrin signaling. Matrix Biol.1997;16(4):137-141.
    [157] Mann BK, Tsai AT, Scott-Burden T, West JL. Modification of surfaces with cell adhesion peptidesalters extracellular matrix deposition. Biomaterials.1999;20(23-24):2281-2286.
    [158] Dee KC, Andersen TT, Bizios R. Design and function of novel osteoblast-adhesive peptides forchemical modification of biomaterials. J Biomed Mater Res.1998;40(3):371-377.
    [159] Dee KC, Rueger DC, Andersen TT, Bizios R. Conditions which promote mineralization at thebone-implant interface: a model in vitro study. Biomaterials.1996;17(2):209-215.
    [160] Danen EH, Sonnenberg A. Integrins in regulation of tissue development and function. J Pathol.2003;200(4):471-480.
    [161] Healy KE, Rezania A, Stile RA. Designing biomaterials to direct biological responses. Ann N YAcad Sci.1999;875:24-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700