用户名: 密码: 验证码:
艾比湖流域土壤有机质与影响因素响应系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤有机质(SOM)是陆地生态系统中碳循环的重要源和汇,是土壤的一个重要组成,它能够提高土壤的肥力和生产力并能够固定碳应对大气CO2浓度的升高。土壤有机质含量是评价生态恢复效果、抑制碳排放和保持土壤质量的重要依据,土壤有机质的变化在土地荒漠化、草场退化和区域生态环境恶化等广受关注的环境问题中起着关键作用。鉴于土壤有机质的重要性,研究土壤有机质与影响因素空间分布特征及其响应关系是十分必要的。
     目前,土壤有机质与影响因素响应关系的分析方法局限于经典统计分析工具,未能将土壤有机质与诸多影响因素置于多元统计分析框架下,并且通常假定响应关系是线性和空间平稳的。但大量研究显示土壤有机质及影响因素一般均具有空间变异性,因而土壤有机质与影响因素的响应关系亦可能具有空间变异性,即空间非平稳性和非线性特征。尽管有个别文献报告了相关成果,但研究缺乏系统性。
     本论文以艾比湖流域为例,将土壤有机质与土壤质地类型、植被群落类型、土壤剖面深度、土壤酸碱性、电导率和重金属含量为影响因素构建了艾比湖流域土壤有机质响应关系的多元统计分析框架,揭示土壤有机质的非线性和空间非平稳性,为其他区域的研究提供参考和借鉴。首先,分析艾比湖流域土壤有机质在水平和垂直空间分布的变异特征;其次,建立土壤有机质与土壤因子的多元线性回归模型及空间展开模型,旨在多元线性框架下分析土壤有机质对土壤因子的线性响应关系和空间变化特征。然后,以探索土壤有机质与土壤因子的非线性响应关系为目的,建立可加模型;最后,利用空间变系数模型研究了土壤有机质与土壤因子的空间非平稳性。
     本文的主要结论如下:
     (1)艾比湖流域土壤有机质在水平和垂直空间分布不均匀,具有空间异质性。随着土壤深度变化,土壤有机质分布呈现不同的空间变异特征,流域内1—80cm呈现孔穴特征,但在81—120cm土壤有机质含量变化较为连续,呈现出流域东西两端高中间低;流域内土壤有机质沿土壤深度垂直分布模式表现出分异特征,流域中部SOM随土壤深度增加而降低,但在流域东部和西部SOM随土壤深度增加呈升高趋势;经验正交函数分解(EOF)方法得到,艾比湖流域东部和西部有机质含量随着土壤深度增加而呈现线性增加,但在流域中部土壤有机质含量沿土壤深度方向呈线性递减的趋势,并以60cm土壤深度为阈值产生分异。
     (2)土壤酸碱性、电导率与土壤有机质含量线性负相关,而土壤重金属与有机质含量呈现线性正相关,并且在不同土壤深度影响程度有差异;土壤有机质与土壤因子的响应关系具有显著非线性特征,并且不同土壤深度的非线性模式变化不同;土壤有机质含量与土壤因子的回归关系是空间非平稳的,而且不同土壤深度的空间非平稳特征亦有差异。
     (3)模型残差的全局和局部诊断结果说明,线性回归模型拟合残差具有显著的非线性和空间相关性;可加模型的拟合残差不具有显著的非线性;空间展开模型和空间变系数模型拟合残差的空间相关性均不显著。多元线性回归模型拟合效果较差,可加模型能够有效地探索变量间非线性响应关系;空间变系数模型能够充分揭示变量间响应关系的空间变异性;此外,基于局部线性拟合方法的空间变系数模型还能够有效探索变量的局部非线性响应关系。
     (4)艾比湖流域生态景观破碎化、斑块化、干旱区植被根际沉积特点以及土壤剖面成土演化过程的空间异质性,主导土壤有机质在浅层和深层土壤呈现出不同模式的空间分异特征。
     论文在分析方法和建模方面主要有以下创新:
     (1)在土壤要素垂直分布相关性和变异性分析方法方面提出了垂直滞后相关系数以测度土壤要素沿土壤深度垂直方向相关性的强弱。
     (2)以局部回归技术为基础建立了土壤有机质与土壤因子的可加模型和空间变数模型,旨在分析空间变量回归关系的非线性和空间非平稳性。
     (3)应用空间数据模型残差的局部回归分析方法,诊断残差序列的趋势性和非线性;利用局部线性方法拟合残差的非参数回归模型,并以残差序列光滑曲线为依据,评价线性回归模型、空间展开模型、可加模型和空间变系数模型在艾比湖流域土壤有机质与土壤因子非线性响应关系方面的分析效果。
Soil organic matter (SOM) is an important source and sink of carbon cycling interrestrial ecosystems, which is an important attribute of the soil, it can improve soilfertility and productivity and fixed carbon response to elevated atmospheric CO2concentration. SOM content is an important basis for evaluation of ecologicalrestoration effect, to curb carbon emissions and maintain soil quality. And it is plays akey role in desertification, grassland degradation and regional ecological environmentdeteriorating in environmental issues of wide public concern. In view of theimportance of soil organic matter, it is very necessary to study the spatial distributioncharacteristics and response relationship between soil organic matter and influencingfactors.
     Currently, SOM and its influencing factors analysis is limited to the classicalstatistical analysis tools, failed to soil organic matter and many influencing factors inthe multivariate statistical analysis framework, and revealed that response relationshipis linear and smooth space. It will provide refence and studies for other regions.However, a large number of studies have shown that soil organic matter and itsinfluencing factors are generally spatial variability, thus the response relationship ofsoil organic matter and soil factor may also have spatial variability, which is spatialnon-stationary and nonlinear. Although the individual reports in the literature relatedoutcomes, it is the lack of systematic research.
     Ebinur Lake Basin soil organic matter content and soil texture type, vegetationcommunity types, the depth of the soil profile, soil pH, soil conductivity and soilheavy metal content and other factors response relationship of nonlinear and spatialnon-stationary would be included in multivariate statistical analysis framework. Firstly, I have analyzed the distribution of the horizontal and vertical space variabilityfor the Ebinur Lake watershed soil organic matter; Secondly, multiple linearregression model and spatial expand model have been made between soil organicmatter and soil factors, aimed to analysis the linear response and spatial variationcharacteristics of soil organic matter and soil factors with multivariate statisticalanalysis framework. Then, it is a purpose to explore the nonlinear responserelationship of soil organic matter and soil factors, and established the additive model;Finally, I have applied the spatially varying coefficient model to study spatialnon-stationary.
     The main conclusions are as follows:
     (1)The results show spatial variability of SOM content exhibits differentcharacteristics with changes in soil depth; SOM display a patchy pattern in the1–80cm soil layer in the Ebinur Lake Basin. However, the SOM content changes arerelatively continuous in the81–120cm soil layer, and the SOM content is higher in theeastern and western parts of the region than in the central region of the Ebinur LakeBasin. The spatial variation patterns satisfy the hole model in the1–80cm soil layer,while the exponent model is fitted well in the81–120cm soil layer in thesemi-variogram. Also, the results of the EOF analysis illustrate the vertical spatialdistribution of SOM shows different characteristics with the soil depth across theEbinur Lake Basin. The SOM content decreases as the soil depth increases in thecentral part of the Basin. However, the SOM content displays an increasing trend withincreasing soil depth in the eastern and western regions of the Ebinur Lake Basin. Inthe Ebinur Lake Basin, the patterns of spatial variation in the SOM are extremelysignificantly different between the shallow soil layers when compared to the deepersoil layers.
     (2)The soil pH, conductivity and SOM are linear negatively correlated, and theheavy metal content and SOM are linear positively correlated, while the degree of correlation is varying across soil depths. The results of additive model analysis showthat there are nonlinear relationship between the SOM content and soil factors, andthe nonlinear patterns are dramatic changes in different soil depths. The regressionrelationships of SOM and soil factors are spatial non-stationary and the patterns arevarying across the soil depths.
     (3)The global and local diagnostic results of the model residual indicate thatlinear regression model fitting residual with significant nonlinearity and spatialcorrelation. The fitting residual of Additive model residual was not significantnonlinear; and the fitting residual spatial correlation of spatially expand model andspatially varying coefficient model was not significant. Multiple linear regressionmodel are less effective, additive model was able to effectively explore the nonlinearresponse relationship between the variables; spatially varying coefficient model canfully reveal the spatial variability of response relationship; In addition, spatiallyvarying coefficient model based on local linear fitting method can effectively analysisthe local nonlinear response relationship of the variables.
     (4)This characteristic is strongly relevant to the patches of the arid oasisecological landscape and the features of the vegetation rhizodeposition. Also, thespatial heterogeneity during evolution of the soil profiles in the Basin suggests asignificant restraining effect on vertical spatial variability of the SOM with soil depth.
     Papers have some innovations in analytical methods and modeling:
     (1) The correlation and variability analysis method of vertical distribution of thesoil elements proposed vertical lag correlation coefficient to measure the strength ofthe soil elements along the soil depth vertical direction correlation.
     (2)Additive model and spatially varying coefficient model based on localregression techniques between SOM and soil factor objected to analyze nonlinear andspatial non-stationary of the regression relationship.
     (3)Local regression analysis method of spatial data analysis model residuals had been used to diagnosis trend and nonlinear of the residuals, the paper applied locallinear method to fit nonparametric regression model of the residuals, and based on theresidual series of smooth curves had been used to evaluate the analysis effect of thenonlinear response relations on linear regression model, spatially expand model,additive model and spatially varying coefficient model between soil organic matterand soil factor in the Ebinur Lake Basin.
引文
[1]王静,张玉龙,张玉玲,苏敏,虞娜,范庆锋.辽宁地区保护地土壤有机质含量及其影响因素的研究[J].土壤通报,2012,43(2):330-335.
    [2]赵海超,王圣瑞,焦立新,杨苏文,崔超男.洱海沉积物有机质及其组分空间分布特征[J].环境科学研究,2013,26(3):243-249.
    [3]李婷,张世熔,刘浔,徐小逊,黄元仿,孙丹峰,李保国.沱江流域中游土壤有机质的空间变异特点及其影响因素[J].土壤学报,2011,48(4):863-868.
    [4]宋莎,李廷轩,王永东,张锡洲.县域农田土壤有机质空间变异及其影响因素分析[J].土壤,2011,43(1):44-49.
    [5]石陶然,张远,于涛,张彦.滇池沉积物不同分子量溶解性有机质分布及其与Cu和Pb的相互作用[J].环境科学研究,2013,26(2):137-144.
    [6] Garcia-Salgado S,Garcia-Casillas D, Quijano-Nieto M A, Bonilla-Simon M M. Arsenic andheavy metal uptake and accumulation in native plant species from soils polluted by miningactivities[J]. Water,Air,&Soil Pollution,2012,223(2):559-572.
    [7] Zeng F, Ali S, Zhang H, Ouyang Y, Qiu B, Wu F, Zhang G. The influence of pH and organicmatter content in paddy soil on heavy metal availability and their uptake by rice plants[J].Environmental Pollution,2011,59(1):84-91.
    [8] Alexandra N Kravchenko, Donald G Bullock. Correlation of corn and soybean grain yieldwithtopography and soil properties [J]. Agronomy Journal,2000,92(1):75-83.
    [9] Bahman Eghball, James S Schepers. Spatial and temporal variability of soil nitrate and cornyield [J]. Agronomy Journal,2003,95(2):339-346.
    [10] Post W, M Kwon, K C. Soil carbon sequestration and land-use change: processes andpotential [J]. Glob Change Biol,2000,6,317-327.
    [11] Wang Y F, Fu B J, lv Y. H, et al. Effects of vegetation restoration on soil organic carbonsequestration at multiple scales in semi-arid Loess Plateau, China[J]. Catena,2011,85,58-66.
    [12] Fu X L, Shao M A, Wei X R., et al. Soil organic carbon and total nitrogen as affected byvegetation types in Northern Loess Plateau of China [J]. Geoderma,2010,155,31-35.
    [13] Vesterdal L, Ritte E, Gundersen P. Change in soil organic carbon following afforestation offormer arable land. Forest Ecology Management,2002,169,137-147.
    [14] Axel D, Jens S, Annette F. Impact of tropical land-use change on soil organic carbon stocks-a meta-analysis [J]. Global Change Biology,2011,17,1658-670.
    [15]王美丽,李军,朱兆洲,郭笑笑.土壤溶解性有机质的研究进展[J].矿物岩石地球化学通报,2010,29(3):304-310.
    [16]穆叶赛尔·吐地,吉力力·阿不都外力,姜逢清.天山北坡东西段林沿土壤有机质含量特征对比分析[J].水土保持研究,2013,20(1):70-75.
    [17]谢锦升,杨玉盛,解明曙,杨少红,杨智杰.土壤轻组有机质研究进展[J].福建林学院学报,2006,26(3):281-288.
    [18]梁爱珍,张晓平,杨学明,方华军.土壤粗有机质的研究进展[J].地理科学进展,2006,25(3):128-136.
    [19]焦坤,李忠佩.土壤溶解有机质的含量动态及转化特征的研究进展[J].土壤,2005,37(6):593-601.
    [20]李爱民,冉炜,代静玉.天然有机质与矿物间的吸附及其环境效应的研究进展[J].岩石矿物学杂志,2005,24(6):671-680.
    [21]武天云,Jeff. J.Schoenau,李凤民,钱佩源,张树清,Sukhadev. S.Malhi,王方.土壤有机质概念和分组技术研究进展[J].应用生态学报,2004,15(4):717-722.
    [22]牛永绮,陈兰生.土壤有机质测定方法的进展[J].干旱环境监测,1998,12(2):97-100.
    [23] Kazumi K, Yosuke M, Kenji T, et al. A study of the carbon dynamics of Japanese grasslandand forest using14C and13C Nuclear Instruments and Methods in Physics Research B [J].2011,268,1106-1109
    [24]周毅.可持续发展战略.北京:北京科学技术出版社,2002
    [25]柳劲松,王丽华,宁秀娟.环境生态学基础〔M].北京:化学工业出版社,2003
    [26] Matthias Mvller, Christine Alewell, Frank Hagedorn.Effective retention of litter-deriveddissolved organic carbon in organic layers [J]. Soil Biology and Biochemistry,2009,41,1066-1074.
    [27] Brian D S, Robert B H, Thomas A T, et al. Changes in dissolved organic matter with depthsuggest the potential for postharvest organic matter retention to increase subsurface soilcarbon pools [J]. Forest Ecology and Management,2009,258,2347-352
    [28] Mikhailova E A, Bryant R B, DeGloria S D, et al. Modelling soil organic matter dynamicsafter conversion of native grassland to long-term continuous fallow using the Century model[J]. Ecol Modelling,2000,132(3):247-257
    [29] Yu-Hui Huang, Yue-Lin Li, Yin Xiao, et al. Controls of litter quality on the carbon sink insoils through partitioning the products of decomposing litterin a forest succession series inSouth China [J], Forest Ecology and Management,2011,261:1170-1177.
    [30] Kalbitz K, Kaiser K. Contribution of dissolved organic matter to carbon storage in forestmineral soils [J]. Journal of Plant Nutrition and Soil Science,2008,(171):52–60.
    [31]李婧.土壤有机质测定方法综述[J].分析试验室,2008,(S1),154-156.
    [32]解宏图,付时丰,张旭东,王晶.土壤有机质稳定性特征与影响因子研究综述[J].土壤通报,2003,34(5):459-462.
    [33] Batjes N H. Total carbon and nitrogen in soils of the world. European Journal of Soil Science,1996,47(2):151-163.
    [34] Wright A L, Hons F M. Soil carbon and nitrogen storage in aggregates from different tillageand crop regimes. Soil Science Society ofAmerica Journal,2005,69(1):141-147.
    [35]刘云慧,宇振荣,张风荣,宋春梅,刘云.县域土壤有机质动态变化及其影响因素分析[J].植物营养与肥料学报,2005,12(3):294-301.
    [36]李维福,解宏图,何红波,白震,张旭东.颗粒有机质的来源、测定及其影响因素[J].生态学杂志,2007,26(11):1849-1856.
    [37]张建杰,张强,杨治平,陈明昌,李勇,陈德利.山西临汾盆地土壤有机质和全氮的空间变异特征及其影响因素[J].土壤通报,2010,41(4):839-844.
    [38]庞学勇,包维楷,吴宁.森林生态系统土壤可溶性有机质(碳)影响因素研究进展[J].应用与环境生物学报,2009,15(3):390-398.
    [39]韩丹,程先富,谢金红,邓良.大别山区江子河流域土壤有机质的空间变异及其影响因素[J].土壤学报,2012,49(2):403-408.
    [40]刘世英.土壤有机质含量的地域性及影响因素研究[J].甘肃农业科技,1992,30(6):27-28.
    [41]孔宏敏,何园球.红壤旱地有机质的积累规律及其影响因素[J].土壤,2003,35(5):401-407.
    [42]刘世全,高丽丽,蒲玉琳,邓良基,张世熔.西藏土壤有机质和氮素状况及其影响因素分析[J].水土保持学报,2004,18(6):54-57.
    [43]胡克林,余艳,张凤荣,王茹.北京郊区土壤有机质含量的时空变异及其影响因素[J].中国农业科学,2006,30(4):764-771.
    [44]朱静,黄标,孙维侠,杨荣清,邹忠,丁峰,苏健平,黄耀,金洋,毕葵森.长江三角洲典型地区农田土壤有机质的时空变异特征及其影响因素[J].土壤,2006,38(2):158-165.
    [45]宋云,李德志,李红,周燕,柯世朕,王春叶,孙玉冰,李立科,赵鲁青.崇明三岛土壤有机质和全氮的空间分布特征及影响因素分析[J].河南农业大学学报,2009,43(2):204-209.
    [46]张建杰,李富忠,胡克林,张强,郭彩霞,黄元仿.太原市农业土壤全氮和有机质的空间分布特征及其影响因素[J].生态学报,2009,29(6):3163-3172.
    [47]宋莎,李廷轩,王永东,张锡洲.县域农田土壤有机质空间变异及其影响因素分析[J].土壤,2011,43(1):44-49.
    [48]杨树春,卢庆治,宋传真,袁玉松,王红军,胡圣标.库车前陆盆地中生界烃源岩有机质成熟度演化及影响因素[J].石油与天然气地质,2005,26(6):770-777.
    [49]钟远平,唐将,王力.三峡库区土壤有机质区域分布及影响因素[J].水土保持学报,2006,20(5):73-76.
    [50]王立成,王成善,李亚林,魏玉帅.藏南地区海相白垩系富有机质沉积的影响因素浅析[J].地学前缘,2009,16(5):107-117.
    [51]李孝良,陈效民,周炼川,吴广凤.西南喀斯特石漠化过程中土壤有机质组分及其影响因素[J].山地学报,2010,28(1):56-62.
    [52]马辉英.艾比湖流域土壤背景值研究[D].乌鲁木齐:新疆大学,2011.
    [53]曹启民,吴鹏飞,赵春梅,覃姜薇,蒋菊生.海南植胶区土壤有机质纬度分布特征及其气候影响因素[J].广东农业科学,2012,39(7):85-87.
    [54]王磊,孙成,郭会琴.土壤有机质对疏水性有机污染物的非线性吸附及其影响因素[J].土壤,2012,44(3):366-373.
    [55]刘逊,邓小华,周米良,黎娟,田茂成,田峰,冯晓华,吴秋明.湘西植烟土壤有机质含量分布及其影响因素[J].核农学报,2012,26(7):1037-1042.
    [56]李可让.土地利用变化和温室气体净排放与陆地生态系统碳循环[M].北京:气象出版社,2002:22-28.
    [57]王文静,魏静,马文奇,杨玉荣,郭彩娟.氮肥用量和秸秆根茬碳投入对黄淮海平原典型农田土壤有机质积累的影响[J].生态学报,2010,30(13):3591-3598.
    [58]李启权,岳天祥,范泽孟,杜正平.中国表层土壤有机质空间分布模拟分析方法研究[J].自然资源学报,2010,25(8):1385-1399.
    [59] Kuzel S, Nydl V, Kolár L, Tichy R. Spatial variability of cadmium, pH, organic matter in soiland its dependence on sampling scales [J]. Water Air and Soil Pollution,1994,78(1-2):51-59.
    [60] Mishra T K, Banerjee S K. Spatial variability of soil pH and organic matter under Shorearobusta in lateritic region. Indian Journal of Forestry,1995,18(2):144-152.
    [61] Cambardella C A, Mooman T B, Novak J M, Parkin T B, Karlen D L, Turco R F, Konopka AE. Field-scale variability of soil Properties in central low a soils. Soil Science SocietyAmerica Journal,1994,58(5):1501-1511.
    [62]杨奇勇,杨劲松,余世鹏.禹城市耕地土壤盐分与有机质的指示克里格分析[J].生态学报,2011,31(8):2196-2202.
    [63]祖元刚,李冉,王文杰,苏冬雪,王莹,邱岭.我国东北土壤有机碳、无机碳含量与土壤理化性质的相关性[J].生态学报,2011,31(18):5207-5216.
    [64]许仁良,王建峰,张国良,戴其根.秸秆、有机肥及氮肥配合使用对水稻土微生物和有机质含量的影响[J].生态学报,2010,30(13):3584-3590.
    [65]张春华,王宗明,任春颖,张柏,宋开山,刘殿伟.松嫩平原玉米带土壤有机质和全氮空间变异特征[J].地理研究,2011,30(2):256-268.
    [66]黄元仿,周志宇,苑小勇,张红艳.干旱荒漠区土壤有机质空间变异特征[J].生态学报,2004,24(12):2776-2781.
    [67]高菊生,曹卫东,李冬初,徐明岗,曾希柏,聂军,张文菊.长期双季稻绿肥轮作对水稻产量及稻田土壤有机质的影响[J].生态学报,2011,31(16):4542-4548.
    [68]韩路,王海珍,彭杰,陈家利,庞明.塔里木荒漠河岸林植物群落演替下的土壤理化性质研究[J].生态环境学报,2010,19(12):2808-2814.
    [69]王库.基于地理权重回归模型的土壤有机质空间预测[J].土壤通报,2013,44(1):21-28.
    [70]苏建红,朱新萍,王新军,贾宏涛,赵成义,胡玉昆,李丽君.长期围栏封育对亚高山草原土壤有机碳空间变异的影响[J].干旱区研究,2012,29(6):997-1002.
    [71]杨海峰,钱亦兵,蒋超,赵锐锋.古尔班通古特沙漠南缘主要土壤化学特征的空间异质性[J].中国沙漠,2010,30(2):319-325.
    [72]赵明松,张甘霖,王德彩,李德成,潘贤章,赵玉国.徐淮黄泛平原土壤有机质空间变异特征及主控因素分析[J].土壤学报,2013,50(1):1-11.
    [73]杨奇勇,杨劲松.不同尺度下耕地土壤有机质和全氮的空间变异特征[J].水土保持学报,2010,24(3):100-104.
    [74]王淑英,路苹,王建立,杨柳,杨凯,于同泉.不同研究尺度下土壤有机质和全氮空间变异特征—以北京市平谷区为例[J].生态学报,2008,28(10):4957-4964.
    [75]苏晓燕,赵永存,杨浩,陆访仪,孙维侠,王火焰,黄标,胡文友.不同采样点数量下土壤有机质含量空间预测方法对比[J].地学前缘,2011,18(6):34-40.
    [76]赵鲁全.1985-2005年聊城市土壤有机质的时空变异分析[J].环境科学研究,2011,24(4):421-427.
    [77]朱书法,刘丛强,陶发祥,王中良,朴河春.贵州喀斯特地区棕色石灰土与黄壤有机质剖面分布及稳定碳同位素组成差异[J].土壤学报,2007,44(1):169-173.
    [78]陈庆强,沈承德,孙彦敏,彭少麟,易惟熙,李志安,姜漫涛.鼎湖山土壤有机质深度分布的剖面演化机制[J].土壤学报,2005,42(1):1-8.
    [79]薛妍,武志杰,张丽莉,宫平,董欣欣,聂彦霞.土壤含水量、pH及有机质对DMPP硝化抑制效果的影响[J].应用生态学报,2012,23(10):2663-2669.
    [80]江强明.溶液pH条件影响针铁矿对溶解性有机质的吸附机理研究[J].武汉理工大学学报,2011,33(10):108-112.
    [81]夏栋,许文年,赵娟,祝顺波.植被混凝土护坡基材pH、有机质及其与速效养分的相关性分析[J].水土保持研究,2010,17(6):224-227.
    [82]王龙,王子芳,金昆,高明.pH和有机质对三种不同土壤镁吸附特性的影响[J].西南大学学报(自然科学版),2009,31(7):150-155.
    [83]李福燕,李许明,吴鹏飞,陈柳燕,郭彬,漆智平.海南省农用地土壤重金属含量与土壤有机质及pH的相关性[J].土壤,2009,41(1):49-53.
    [84]郭瑾,彭永臻.pH值对SBR生物反应器出水溶解态有机质含量与构成的影响[J].环境科学,2008,29(6):1538-1543.
    [85]胡宁静,骆永明,宋静.长江三角洲地区典型土壤对镉的吸附及其与有机质、pH和温度的关系[J].土壤学报,2007,44(3):437-443.
    [86]郭宗祥,左其东,李梅,闵蕴秋,许金凤,沈文忠,顾红亚.江苏省太仓市耕地地力调查与质量评价—土壤pH、有机质、全氮、有效磷、速效钾和CEC的变化[J].土壤,2007,39(2):318-321.
    [87]林大松,徐应明,孙国红,戴晓华.土壤pH、有机质和含水氧化物对镉、铅竞争吸附的影响[J].农业环境科学学报,2007,27(2):510-515.
    [88]阎顺国,田贵仓,朱兴运,柴来智.河西盐渍化草地盐分组成及pH与有机质关系的通径分析[J].草业科学,1992,9(1):31-34.
    [89]徐尚平,陶澍,曹军.内蒙古土壤pH值、粘粒和有机质含量的空间结构特征[J].土壤通报,2001,32(4):145-148.
    [90]邓玉龙,张乃明.设施土壤pH值与有机质演变特征研究[J].生态环境,2006,15(2):367-370.
    [91]汪吉东,张永春,俞美香,沈明星,许仙菊.不同有机无机肥配合施用对土壤活性有机质含量及pH值的影响[J].江苏农业学报,2007,23(6):573-578.
    [92]杨世琦,杨正礼.黄土高原生态系统演替进程中土壤有机质和pH值变化规律[J].水土保持研究,2008,15(2):159-163.
    [93]朱登胜,吴迪,宋海燕,何勇.应用近红外光谱法测定土壤的有机质和pH值[J].农业工程学报,2008,24(6):196-199.
    [94]陈婵婵,肖斌,余有本,巩雪峰.陕南茶园土壤有机质和pH值空间变异及其与速效养分的相关性[J].西北农林科技大学学报(自然科学版),2009,37(1):182-188.
    [95]戴万宏,黄耀,武丽,俞佳.中国地带性土壤有机质含量与酸碱度的关系[J].土壤学报,2009,46(5):851-860.
    [96]魏孝荣,邵明安.黄土高原小流域土壤pH、阳离子交换量和有机质分布特征[J].应用生态学报,2009,20(11):2710-2715.
    [97]胡宁静,骆永明,宋静,吴龙华,章海波.长江三角洲地区典型土壤对铅的吸附及其与有机质、pH和温度的关系[J].土壤学报,2010,47(2):246-252.
    [98]刘雪,王兴润,张增强.pH和有机质对铬渣污染土壤中Cr赋存形态的影响[J].环境工程学报,2010,4(6):29-32.
    [99]罗华元,王绍坤,常寿荣,程昌新,彭漫江.烤烟钾含量与土壤pH、有机质和速效钾含量的关系[J].中国烟草科学,2010,31(3):9-32.
    [100]祝惠,阎百兴,张丰松,路永正,王莉霞.粒级、pH和有机质对汞在松花江沉积物表面吸附-解吸的影响[J].环境科学,2010,31(10):2315-2320.
    [101]宫彦章,刘月秀,刘姝媛,叶金盛,曾曙才.广东省林地土壤有效态锌、镉含量及其与有机质和pH的关系[J].华南农业大学学报,2011,32(1):15-18.
    [102]陈秀玲,李志忠,靳建辉,刘建华,吴美榕,钟俊龙.福州城市土壤pH值、有机质和磁化率特征研究[J].水土保持通报,2011,31(5):176-181.
    [103]郭泉水,康义,赵玉娟,洪明,孔倩倩,聂必红.三峡库区消落带土壤氮磷钾、pH值和有机质变化[J].林业科学,2012,48(3):7-10.
    [104]张为政.松嫩平原羊草草地植被退化与土壤盐渍化的关系[J].植物生态学报,1994,40(1):50-55.
    [105]杨允菲,郑慧莹.松嫩平原碱斑进展演替实验群落的比较分析[J].植物生态学报,1998,44(3):23-30.
    [106]敬芸仪,邓良基,张世熔.主要紫色土电导率特征及其影响因素研究[J].土壤通报,2006,37(3):617-619.
    [107]杜新民,吴忠红,张永清,裴雪霞.不同种植年限日光温室土壤盐分和养分变化研究[J].水土保持学报,2007,21(2):78-80.
    [108]王小燕,周华荣,翟斌.干旱区山麓带植物群落特征指数与土壤因子关系初探[J].干旱区资源与环境,2010,14(4):122-129.
    [109]黄绍文,王玉军,金继运,唐继伟.我国主要菜区土壤盐分、酸碱性和肥力状况[J].植物营养与肥料学报,2011,18(4):906-918.
    [110]李从娟,李彦,马健.古尔班通古特沙漠土壤化学性质空间异质性的尺度特征[J].土壤学报,2011,48(2):302-310.
    [111]刘继龙,马孝义,付强,张振华.不同土层土壤特性空间变异性关系的联合多重分形研究[J].农业机械学报,2012,43(5):37-42.
    [112] Garcia-Salgado S, Garcia-Casillas D, Quijano-Nieto M A, Bonilla-Simon M M. Arsenicand heavy metal uptake and accumulation in native plant species from soils polluted bymining activities [J] Water, Air,&Soil Pollution,2012223(2):559-572.
    [113] Kashem M, Singh B, Kubota H, Sugawara R, Kitajima N, Kondo T, Kawai S. Zinctolerance and uptake by Arabidopsis hallerissp.gemmifera grown in nutrient solution[J].Environmental Science and Pollution Research,2010,17(5):1174-1176.
    [114] Lu L, Tian S, Zhang M, Zhang J, Yang X, Jiang H. The role of Ca pathway in Cd uptakeand translocation by the hyperaccumulator Sedum alfredii [J]. Journal of HazardousMaterials,2010,183(1-3):22-28.
    [115]沈亚婷.土壤溶解性有机质对植物吸收-输送-贮存重金属的影响研究现状与进展[J].岩矿测试,2012,31(4):571-575.
    [116]郭微,戴九兰,王仁卿.溶解性有机质影响土壤吸附重金属的研究进展[J].土壤通报,2012,43(3):761-768.
    [117]王浩,章明奎.有机质积累和酸化对污染土壤重金属释放潜力的影响[J].土壤通报,2009,40(3):538-541.
    [118]李福燕,李许明,吴鹏飞,陈柳燕,郭彬,漆智平.海南省农用地土壤重金属含量与土壤有机质及pH的相关性[J].土壤,2009,41(1):49-53.
    [119] Li, T, Di, Z, Yang, X, Sparks, D. L.Effects of dissolved organic matter from the rhizosphereof thehyperaccumulator Sedum alfredii on sorption of zinc and cadmium by different soils[J].Journal of Hazardous Materials,2011,192(3):1616-1622.
    [120] Li T, Di Z, Islam E, Jiang H, Yang X. Rhizosphere characteristics of zinc hyperaccumulatorSedum alfredii involved in zinc accumulation[J]. Journal of Hazardous Materials,2011,185(2-3):818-823.
    [121] Luo J, Zhang H, Zhao F J, Davison W. Distinguishing diffusional and plant control of Cdand Ni uptake by hyperaccumulator and nonhyperaccumulator plants[J]. EnvironmentalScience&Technology,2010,44(17):6636-6641.
    [122]曹会聪,王金达,张学林.东北地区污染黑土中重金属与有机质的关联作用[J].环境科学研究,2007,20(1):36-41.
    [123]章明奎,方利平,周翠.污染土壤中有机质结合态重金属的研究[J].生态环境,2005,14(5):650-653.
    [124]李廷强,杨肖娥.土壤中水溶性有机质及其对重金属化学与生物行为的影响[J].应用生态学报,2004,15(6):1083-1087.
    [125]张敏,钱天鸣.运河(杭州段)底质有机质与重金属元素相关性的探讨[J].环境污染与防治,2000,24(2):32-44.
    [126]李波,青长乐,周正宾,杨青敏.肥料中氮磷和有机质对土壤重金属行为的影响及在土壤治污中的应用[J].农业环境保护,2000,20(6):375-377.
    [127]罗冬莲,阮金山,许翠娅,廖登远.福建主要贝类养殖区表层沉积物重金属和有机质的含量及其相关性[J].海洋环境科学,2004,23(1):33-36.
    [128]章明奎,王丽平.重金属污染对土壤有机质积累的影响[J].应用生态学报,2007,18(7):1479-1483.
    [129]郑顺安,王丽平,章明奎.非污染土壤中颗粒态有机质对重金属的富集作用[J].科技通报,2008,24(4):548-552.
    [130]王浩,章明奎.污染土壤中有机质和重金属互相作用的模拟研究[J].浙江大学学报(农业与生命科学版),2009,35(4):460-466.
    [131]高文文,刘景双,王洋.有机质对冻融黑土重金属Zn赋存形态的影响[J].中国生态农业学报,2010,18(1):147-151.
    [132]孙花,谭长银,黄道友,万大娟,刘利科,杨燕,余霞.土壤有机质对土壤重金属积累、有效性及形态的影响[J].湖南师范大学自然科学学报,2011,(4):82-87.
    [133]郑顺安,郑向群,刘书田,姚秀荣.再生水灌溉下紫色水稻土颗粒态有机质中重金属的富集特征[J].水土保持学报,2012,26(2):246-250.
    [134] Cressie N, Wikle C.2011. Statistics for Spatio-Temporal Data. Hoboken, NJ: Wiley.
    [135] North G R, Bell T L, Cahalan R F, Moeng F J. Sampling errors in the estimation ofempirical orthogonal functions. Monthly Weather Review,1982,110(7):699-706.
    [136] Richman M B. Rotation of principal components. International Journal of Climatology,1986,6(3):293-335.
    [137] Dommenget D, Latif M. A Cautionary Note on the Interpretation of EOFs. Journal ofClimate,2002,15(2):216-225.
    [138] E Casetti. Expansion method, dependency, and multimodeling. in M. M. Fischer A. Getis,editors, Handbook of Applied Spatial Analysis: Software Tools, Methods and Applications,pages461-486.Springer, Heidelberg,2010.
    [139] Nelson TA.2012. Trends in spatial statistics. The Professional Geographer,64(1):83-94.
    [140] Getis A.2008. A history of the concept of spatial autocorrelation: A geographer’sperspective. Geographical Analysis40:297–309.
    [141] Brunsdon C, Stewart A. Fotheringham A S, Charlton M E.1996. Geographically WeightedRegression: A Method for Exploring Spatial Nonstationarity, Geographical Analysis,28(4):281-298.
    [142] Beale1C M, Lennon J J, Yearsley J M, Brewer M J, Elston D A.2010. Regression analysisof spatial data. Ecology Letters,13(2):246–264.
    [143] Fischer M M, Getis A, editors.2010. Handbook of Applied Spatial Analysis.Heidelberg:Springer-Verlag.
    [144] Fotheringham A S.2009. The problem of spatial autocorrelation and local spatial statistics.Geographical Analysis,41:398-403.
    [145] Lloyd C D.2011. Local Models for Spatial Analysis, Second Edition. Boca Raton: CRCPress.
    [146] Anselin L.1995. Local indictors of spatial association—LISA. Geographical Analysis,27:93-115.
    [147] Ord J K, Getis A.1995. Local spatial autocorrelation statistics: distributional issues andapplication. Geographical Analysis,27:286-306.
    [148] Boots B.2006. Local conguration measures for categorical spatial data: Binary regularlattices. Journal of Geographical Systems,8:1–24.
    [149] LeSage J P.1997. Regression analysis of spatial data. Journal of Regional Analysis andPolicy,27:83-94.
    [150] Getis A, Griffith D A.2002. Comparative Spatial Filtering in Regression Analysis.Geographical Analysis,34(2):130–140.
    [151] LeSage J P.1997. Bayesian estimation of spatial autoregressive models. InternationalRegional Science Review,20:113–129.
    [152] Fotheringham AS, Brunsdon C, Charlton M E.2002. Geographically Weighted Regression:TheAnalysis of Spatially Varying Relationships. Chichester: Wiley.
    [153] Zhang H G, Mei C L.2011. Local least absolute deviation estimation of spatially varyingcoefficient models: robust geographically weighted regression approaches. InternationalJournal of Geographical Information Science,25(9):1467-1489.
    [154] Ruppert D, Ward M P, Carroll R J.2003. Semiparametric Regression. Cambridge:Cambridge University Press.
    [155] Loader C.1999. Local regression and likelihood. New York: Springer.
    [156] Chen D C, Lu C T, Kou Y F, Chen F.2008. On detecting spatial outliers. Geoinformatica,12(4):455-475.
    [157] Atkinson P M, Tate N J.2000. Spatial scale problems and geostatistical solutions: a review.Professional Geographer,52:607-623.
    [158] Miller J A, Hanhamb R Q.2011. Spatial nonstationarity and the scale of speciesenvironment relationships in the Mojave Desert, California, USA. International Journal ofGeographical Information Science,25(3):423-438.
    [159] Sherman M.2011. Spatial Statistics and Spatio-Temporal Data: Covariance Functions andDirectional Properties. Chichester: Wiley.
    [160] Baddeley A, Turner R, Muller J, Hazelton M.2005. Residual analysis for spatial pointprocesses (with discussion). Journal of the Royal Statistical Society: Series B,67:617–666.
    [161] Hastie T J, Tibshirani R J.1990.GeneralizedAdditive Models.London:Chapman&Hall
    [162] Friedman J H, Stuetzle W.1981. Projection pursuit regression. Journal of the AmericanStatistical Association76:817-23
    [163] Hardle W, Hall P, Ichimura H.1993. OPtimal smoothing in single index models. Annals ofStatistics21:157-78.
    [164] Opsomer J D, Ruppert D.1997. Fitting a bivariate additive model by local polynomialregression. Annals of statistics25:186-211.
    [165] Hastie T J.1996. Pseudo splines.Journal of the Royal statistical society.series B58:379-96
    [166] Smith M, Wong C, Kohn R.1998. Additive nonparametric regression with autocorrelatederrors. Journal of the Royal statistical society.Series B60:311-31.
    [167] Lin X, Zhang D.1999. Inference in generalized additive mixed models by ueing smoothingsplines. Journal of the Royal statistical society, series B61:381-400
    [168] Cantoni E, Hastie T.2002. Degrees of freedom tests for smoothing splines. Biometrika89:251-65.
    [169] Linton O B, Hardle W.1996. Estimation of additive regression models with known links.Biometrika83:529-40.
    [170] Schwartz J.1994. Air pollution and hospital admissionfor the elderly in Birmingham,Alabama.American Journal of Epidemiology139:589-98.
    [171] Beck N, Jackman S.1998. Beyond linearity by default: Generalized additive models.Ameerican Journal of Political Science42:596-627.
    [172] Davis J M, Speckman P.1999. A model for predicting maximum and8-hr average ozone inHouston. Atmospheric Enviroment33:2487-2500.
    [173] Engels E A, Rosenberg P S, Biggar R J.1999. Zoster incidence in humanimmunodeficiency virus-infected hemophiliacs and homosexual men,1984-1997. Journalof infectious Diseases180:1784-9.
    [174] Roland J, Keyghobadi N, Fownes S.2000. Alpine parnassius butterfly dispersal: Effects oflandscape and population size. Ecology81:1642-53.
    [175] Fan J, I Gijbels.1996. Local Polynomial Modeling and Its Applications. London:Chapman&Hall.
    [176] Fan J, W Zhang.1999. Statistical estimation in varying coefficient models. The Annals ofStatistics,27:1491--1518.
    [177] Fotheringham A S, Charlton M E, Brounsdon C F. Measuring spatial variations inrelationships with geographically weighted regression[C]. In Recent Developments inSpatial Analysis, Edited by Fischer MM, Getis A. London: Springer,1997, pp.60--82.
    [178] Fotheringham A S, Charlton M E, Brounsdon C F. Two techniques for exploringnonstationarity in geographical data [J]. Journal of Geographical Systems,1997,4:59--82.
    [179] Brunsdon C, Fotheringham AS, Charlton M.Geographically weighted regression-modellingspatial nonstationarity [J]. The Statistican,1998,47:431--443.
    [180] Fotheringham A S, Charlton M E, Brounsdon C F. Geographically weighted regression: anatural evolution of the expansion method for spatial data analysis[J]. Environment andPlanningA,1998,30:1905--1927.
    [181] Brunsdon C, Fotheringham A S, Charlton M.Some notes on parametric significance testsfor geographically weighted regression [J]. Journal of Regional Science,1999,39:497--524.
    [182] Fotheringham A S, Brunsdon C, Charlton M.Geographically Weighted Regression: TheAnalysis of Spatially Varying Relationships [M]. Chichester: Wiley,2002.
    [183] Leung Y, Mei C L, Zhang W X. Statistical tests for spatial nonstationarity based on thegeographically weighted regression model [J]. Environment and Planning A,2000,32:9--32.
    [184] Leung Y, Mei C L, Zhang W X. Testing for spatial autocorrelation among the residuals ofthe geographically weighted regression [J]. Environment and Planning A,2000,32:871--890.
    [185] Uchida T, Miyamoto K. A general framework for estimation and inference ofgeographically weighted regression models:1. Local-specific kernel bandwidths and a testfor locational heterogeneity [J]. Environment and PlanningA,2002,34:733--754.
    [186] Uchida T, Miyamoto K. A general framework for estimation and inference ofgeographically weighted regression models:2. Spatial association and model specificationtests [J]. Environment and PlanningA,2002,34:883--904.
    [187] Mei CL, Wang N, Zhang W X. Testing the importance of the explanatory variables in amixed geographically weighted regression model [J]. Environment and Planning A,2006,38:587--598.
    [188] Wheeler D, Tiefelsdorf M. Multicollinearity and correlation among local regressioncoefficients in geographically weighted regression[J]. Journal of Geographical Systems,2005,7:161--187.
    [189] Wheeler D. Diagnostic tools and a remedial method for collinearity in geographicallyweighted regression [J]. Environment and PlanningA,2007,39:2464--2481.
    [190] Farber S. A systematic investigation of cross-validation in GWR model estimation:empirical analysis and Monte Carlo simulations [J]. Journal of Geographical Systems,2007,9:371--396.
    [191] Wheeler D, Calder C A. An assessment of coefficient accuracy in linear regression modelswith spatially varying coefficients [J]. Journal of Geographical Systems,2007,9:145--166.
    [192] Wheeler D C. Simultaneous coefficient penalization and model selection in geographicallyweighted regression: the geographically weighted lasso [J]. Environment and Planning A,2009,41:722--742.
    [193] Wang N, Mei C L, Yan X D. Local linear estimation of spatially varying coefficient models:an improvement on the geographically weighted regression technique [J]. Environment andPlaaningA,2008,40:986--1005.
    [194] Zhang L J, Gove J H, Heath L S. Spatial residual analysis of six modeling techniques [J].Ecological Modelling,2005,186:154--177.
    [195] Shen S L, Mei C L, Zhang Y J.2011. Spatially varying coefficient models: testing forspatial heteroscedasticity and reweighting estimation of the coefficients. Environment andPlanningA,43,1723--1745.
    [196] Zhang H G, Mei C L.2011. Local least absolute deviation estimation of spatially varyingcoefficient models: robust geographically weighted regression approaches. InternationalJournal of Geographical Information Science,25,1467--1489.
    [197] Farber S, Wheeler D C.2011. A simulation-based study of geographically weightedregression as a method for investigating spatially varying relationships. Environment andPlanningA,43,2992--3010.
    [198] Waller L A, Zhu L, Gotway C A, et al.Quantifying geographic variations in associationsbetween alchohol distribution and violence: a comparison of geographically weightedregression and spatially varying coefficient models [J]. Stochastic Environmental Researchand RiskAssessment,2007,21:573--588.
    [199] Zhang L J, Ma Z H, Guo L. Spatially assessing model errors of four regression techniquesfor three types of forest stands [J]. Forestry,2008,81:209--225.
    [200] Guo L, Ma Z H, Zhang L J. Comparison of bandwidth selection in application ofgeographically weighted regression: a case study [J]. Canadian Journal of Forest Research,2008,38:2526--2534.
    [201] Wheeler D C, Waller L A. Comparing spatially varying coefficient models: a case studyexamining violent crime rates and their relationships to alcohol outlets and illegal drugarrests [J]. Journal of Geographical Systems,2009,11:1--22.
    [202] Brunsdon C, McClatchey J, Unwin D J. Spatial variations in the average rainfall-altituderelationship in Great Britain: an approach using geographically weighted regression[J].International Journal of Climatology,2001,21:455--466.
    [203] Chang L F, Lin C H, Su M D. Application of geographic weighted regression to establishflood-damage functions reflecting spatial variation [J]. Water SA,2008,34:209--215.
    [204] Cho W K T, Gimpel J G. Rough terrain: spatial variation in campaign contributing andvolunteerism[J]. American Journal of Political Science,2010,54:74--89.
    [205] Erdogan S. Modelling the spatial distribution of DEM error with geographically weightedregression: an experimental study [J]. Computers and Geosciences,2010,36:34--43.
    [206] Fotheringham A S, Charlton M, Brunsdon C. Spatial variations in school performance: alocal analysis using geographically weighted regression [J]. Geographical andEnvironmental Modelling,2001,5:43--66.
    [207] Lazarus B E, Schaberg P G, Hawley G J, et al. Landscape-scale spatial patterns of winterinjury to red spruce foliage in a year of heavy region-wide injury [J]. Canadian Journal ofForest Research,2006,36:142--152.
    [208] Luo J, Wei Y H D. Modelling spatial variations of urban growth patterns in Chinese cities:The Case of Nanjing [J].Landscape and Urban Planning,2009,91:51--64.
    [209] Tu J, Xia Z G. Examining spatially varying relationships between land use and waterquality using geographically weighted regression1: Model design and evaluation [J].Science of the Total Environment,2008,407:358--378.
    [210] Wang Q, Ni J, Tenhunen J. Application of a geographically-weighted regression analysis toestimate net primary production of Chinese forest ecosystems[J]. Global Ecology andBiogeography,2005,14:379--393.
    [211] Windle M J S, Rose G A, Devillers R, et al. Exploring spatial non-stationarity of fisheriessurvey data using geigraphically weighted regression (GWR): an example from theNorthwestAtlantic [J]. ICES Journal of Marine Science,2010,67:145--154.
    [212] Yu DL, Peterson N A, Reid R J. Exploring the impact of non-normality on spatialnon-stationarity in geographically weighted regression analyses: tobacco outlet density inNow Jersey [J]. GIScience and Remote Sensing,2011,46:1548--1603.
    [213] Zhang L J, Shi H J. Local modelling of tree growth by geographically weighted regression[J]. Forest Science,2004,50:225--244.
    [214] Zhao F, Park N. Using geographically weighted regression models to estimate annualaverage daily traffic [J] Transportation Research Record: Journal of the TransportationResearch Board,2004,1879:99--107.
    [215] Su S, Xiao R, Zhang Y.2012. Multi-scale analysis of spatially varying relationshipsbetween agricultural landscape patterns and urbanization using geographically weightedregression. Applied Geography32,360--375.
    [216] Lu J, Zhang L.2012. Geographically Local Linear Mixed Models for Tree Height-DiameterRelationship. Forest Science,58,75--84.
    [217] Li S C, Zhao Z Q, Xie M M, Wang Y L.2010. Investigating spatial non-stationary andscale-dependent relationships between urban surface temperature and environmental factorsusing geographically weighted regression. Environmental Modelling&Software,25,1789--1800.
    [218] Harrisa P, Fotheringhama A S, Jugginsb S.2010. Robust geographically weightedregression: a technique for quantifying spatial relationships between freshwateracidification critical loads and catchment attributes. Annals of the Association of AmericanGeographers,100,286--306.
    [219] Gao J B, Li S C.2011. Detecting spatially nonstationary and scaledependent relationshipsbetween urban landscape fragmentation and related factors using geographically weightedregression. Applied Geography,31,292--302.
    [220]李艳红,姜黎,佟林.新疆艾比湖流域生态环境空间分异特征研究[J].干旱区资源与环境,2007,21(11):59-62.
    [221]吴敬禄,刘建军,王苏民.近1500年来新疆艾比湖同位素记录的气候环境演化特征[J].第四纪研究,2004.24(5):585-589.
    [222]文振旺.新疆土壤地理[M].北京:科学出版社,1965.
    [223]陈蜀江,侯平,李文华,等.新疆艾比湖湿地自然保护区综合科学考察[M].乌鲁木齐:新疆科学技术出版社.2006.
    [224]章家恩.生态学常用实验研究方法与技术[M].北京:化学工业出版社,2007,218-222.
    [225]王清奎,汪思龙,冯宗炜.土壤活性有机质及其与土壤质量的关系[J].生态学报,2005,25(3):513-519.
    [226]张忠启,史学正,于东升,王世航,徐胜祥.红壤区土壤有机质和全氮含量的空间预测方法[J].生态学报,2010,30(19):5338-5445.
    [227]钱亦兵,蒋进,吴兆宁.艾比湖地区土壤异质性及其对植物群落生态分布的影响[J].干旱区地理,2003,26(3):217-222.
    [228]金海龙,白祥,满中龙,昝梅.新疆艾比湖湿地自然保护区土壤空间异质性研究[J].干旱区资源与环境,2010,24(2):151-157.
    [229]杨云良,阎顺,贾宝全,陈利军.艾比湖流域生态环境演变与人类活动关系初探[J].生态学杂志,1996,15(6):43-49.
    [230]周华荣.新疆北疆地区景观生态类型分类初探[J].生态学杂志,1999,18(4):69-72.
    [231]李新琪,金海龙.基于CBERS-2遥感数据的艾比湖流域景观生态分类系统[J].干旱区地理,2007,30(5):736-741.
    [232] Jackson R B, Canadell J, Ehleringel J R, Mooney H A, Sala O E, Schulze E D. A globalanalysis of root distributions for terrestrial biomes. Oecologia,1996,108(3):389-411.
    [233]萨如拉,张秋良,王伟峰,谢立新.额济纳天然胡杨林土壤水分特征曲线研究[J].江西农业大学学报,2009,31(2):252-257.
    [234]杨晓东,吕光辉.新疆艾比湖湿地自然保护区胡杨根系水分再分配的估算[J].植物生态学报,2011,35(8):816-824.
    [235]秦璐,傅德平,杨军,何学敏,张雪妮,吕光辉.艾比湖湿地自然保护区典型群落土壤理化性质分析[J].干旱区资源与环境,2011,25(8):144-151.
    [236] Weare B C, Navato A, Newell R E. Empirical Orthogonal Analysis of Pacific SeaSurface Temperatures. Journal of Physical Oceanography,1976,6(5):671-678.
    [237]杨玮,何金海,王盘兴,王传辉.近42年来青藏高原年内降水时空不均匀性特征分析[J].地理学报,2011,66(3):376-384.
    [238]罗永忠,成自勇,郭小芹.近40a甘肃省气候生产潜力时空变化特征[J].生态学报,2011,31(1):221-229.
    [239]张芸,杨振京,孔昭宸,阎顺.新疆石河子草滩湖湿地沉积物地球化学特征及其古环境分析[J].地理科学,2012,32(5):616-620.
    [240]武红旗,谷海斌,陈冰,盛建东.土地开发对农田土壤养分和盐分变异特征的影响[J].土壤,2012,44(1):90-94.
    [241]王勇辉,海米提·依米提,胡江玲,杨余辉.干旱区湿地土壤有机质空间分布及关系研究—以艾比湖湿地为例[J].干旱区资源与环境,2012,26(11):98-103.
    [242]靳建辉,李志忠,凌智永,马鹏,吴美榕,齐升吉,林舒倩.新疆伊犁河谷新垦绿洲土壤盐渍化空间特征分析[J].土壤通报,2011,42(5):1057-1063.
    [243] Jackson R B, Canadell J, Ehleringel J R, Mooney H A, Sala O E., Schulze E D. A globalanalysis of root distributions for terrestrial biomes. Oecologia,1996,108(3):389-411.
    [244] Bivand R, Muller W G, Reder M. Power calculations for global and local Moran I.Computational Statistics and Data Analysis,2007,53:2859-2872.
    [245] Tiefelsdorf M. The saddlepoint approximation of Moran I and Moran I referencedistributions and their numerical approximations. Geographical Analysis,2002,34:187-206.
    [246] Sokal R R, Oden N L, Thomson B A. Local spatial autocorrelation in biological variables.Biological Journal of the Linnean Society,1998,65:41-62
    [247] Tiefelsdorf M. Modelling Spatial Processes: The Identification and Analysis of SpatialRelationships in Regression Residuals by Means of Moran I. Springer Verlag, Berlin,2000.Lecture Notes in Earth Sciences87.
    [248] Assuncao R, Reis E A. A new proposal to adjust Moran I for population density. Statisticsin Medicine,1999,18:2147-2162.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700