用户名: 密码: 验证码:
早龄期混凝土结构性能时变规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于水泥水化过程在早龄期尚未完成,混凝土强度和粘结性能随混凝土龄期不断变化,混凝土结构性能也在不断变化,早龄期混凝土结构与正常使用阶段的混凝土结构有着本质的不同。系统研究早龄期混凝土结构的受力特征和结构性能的时变规律,对钢筋混凝土结构施工期的安全性分析与控制以及钢筋混凝土结构全寿命分析具有重要的理论意义和实际价值。
     早龄期混凝土结构承载性能分析需要解决三个主要问题:混凝土强度随龄期的时变规律;早龄期钢筋与混凝土粘结—滑移本构关系的建立;早龄期钢筋混凝土结构构件承载力计算方法。论文围绕“材料性能—粘结性能—承载力性能”这一主线,采用现场调查、试验研究和数值模拟的方法,系统研究了早龄期钢筋混凝土受弯构件和偏压构件承载性能的时变规律。主要的研究工作如下:
     对西安市、咸阳市及其周边县市近年来新建混凝土结构的抗力进行了调查测试,取得了混凝土强度和钢筋性能以及各类钢筋混凝土构件主要几何尺寸的实测数据,应用概率统计方法对进行了统计分析,给出了混凝土强度、钢筋性能和构件尺寸特征的统计参数。有针对性地调查分析了制备方式和浇筑工艺及施工水平对混凝土强度的影响、生产水平对钢筋性能的影响以及施工水平对构件几何参数的影响。
     采用试验研究和现场调查相结合的方法,研究了粉煤灰混凝土早期强度的时变规律和影响因素,分析了养护时间对粉煤灰混凝土强度时变规律的影响,对比了28天标准养护、同条件养护和实际结构混凝土强度的异同,分析了实际结构中不同构件类型混凝土强度增长的差异。
     通过试验研究了粉煤灰混凝土90天抗压强度与回弹值和碳化深度之间的关系,分析了粉煤灰混凝土300天内自然碳化的发展规律,建立了粉煤灰混凝土早龄期回弹法的测强曲线,为回弹法应用于早龄期粉煤灰混凝土的强度检测提供了科学依据。
     对各种粘结性能试验方法进行了分析,确定了早龄期粉煤灰混凝土粘结性能的试验方案。采用拉拔试验和梁式试验方法,系统研究了粉煤灰混凝土粘结性能随龄期的时变规律和主要影响因素(混凝土强度、粉煤灰掺量、钢筋种类及直径、试验方法等),给出了早龄期粉煤灰混凝土极限粘结应力的计算公式,回归分析建立了早龄期粉煤灰混凝土的粘结滑移本构关系。对拉拔试验及梁式试验进行了数值模拟,有限元分析结果与试验结果吻合较好。
     对早龄期受弯构件进行了承载力试验研究,分析了早龄期钢筋混凝土受弯构件的受力特征和破坏机理。建立了早龄期钢筋混凝土受弯和偏压构件的有限元分析模型,结合试验结果和有限元分析结果,运用极限平衡理论,建立了早龄期钢筋混凝土构件正截面承载力的计算方法,并分析了早龄期钢筋混凝土构件承载力的时变规律。
Because the cement hydration process has not been completed at early age, the concrete strength and bond properties with the changing age of concrete, concrete structure properties are constantly changing, early age concrete structure and concrete structure during normal use are essentially different. The force characteristics of early age concrete structural elements is systemly studied and time-varying resistance model is established, which has important theoretical and practical value to reinforced concrete construction security analysis and control and life cycle analysis of reinforced concrete structures.
     There are three main problems to be solved for the bearing capacity calculation of early age reinforced concrete structures: the time-varying law of concrete strength changing with age; the establishment of bond - slip constitutive of early age fly ash concrete; the calculation method of the early age reinforced concrete structures bearing. Thesis, this paper around the "material properties - bond performance - capacity performance" of the main line, using on-site investigations, experimental research and numerical simulation method, the system of the early age of reinforced concrete beam and the bearing capacity of eccentrically compressed time-varying law. The main research work are as follows:
     Taking the typical multi-storey and high-rise residential buildings in Xi’an and Xianyang city and their periphery county city as research objects, more than 1000 residences built in recent four years are investigated, the actual data measured are obtained such date as concrete and steel strength as well as the dimension parameters of all kinds of RC members. According to the statistics analysis, probability distributions and statistics parameters of the resistance of building materials and structural members are studied. At the same time, some influencing factor of material function and dimension parameters are analyzed.
     Adopting combine methods of experimental studies and field investigations, the increase of the early strength of fly ash concrete and the impact of curing time on the increase law is studied, the increase law differences of the cubic concrete compressive strength, the same condition curing strength and the actual structural strength is compared, and the increase law differences of the different type component strength is compared.
     The relationship among compressive strength, rebound values and the carbonation depth within 90 days after pouring is analyzed, the carbonization development law of the fly ash concretes in early 300 days under the natural condition is established through the experiment, the rebound regression equation of different fly ash content is established, which provided a scientific basis for the rebound method used in early age fly ash concrete strength testing.
     According to various advantages and disadvantages of bonding performance test method to determine the early age properties of fly ash concrete bond test program. Through the pull-out test on bonding properties of fly ash concrete time-varying with the age rule is analyzed, combined with fly ash concrete beam test of the main factors affecting bond behavior (strength of concrete, fly ash, steel type and diameter, test methods, etc.) were systematically studied to establish the early age of fly ash concrete ultimate bond stress formula, regression analysis, the early age of fly ash concrete bond-slip constitutive relation. The finite element analysis model built on the pullout test and beam test carried out numerical simulation, finite element analysis and experimental results agree well.
     On the basis of finite element analysis of early age flexural members, the force characteristics of early age reinforced concrete flexural member and compression members are analyzed. For the force characteristics of early age reinforced concrete beam, the use of limit equilibrium theory, the capacity calculation model of early age RC flexural member is established. Through the test verification, the calculation model is in good agreement with the experimental results. On this basis, the bearing capacity time-varying law of early age reinforced concrete flexural strength and compression members is analyzed.
引文
[1]全国建筑施工安全生产形势分析报告(2004、2005和2006年度).北京:中华人民共和国建设部.
    [2]李继华,林忠民,李明顺等.建筑结构概率极限状态设计[M].北京:中国建筑工业出版社,1990.
    [3]王传志,滕智明.钢筋混凝土结构理论[M].北京:中国工业建筑出版社,1985: 254-295
    [4]车宏业,颜德垣,程文襄.混凝土结构(上册)[M].北京:中国建筑工业出版社1998(2): 33-34.
    [5] P·K·Mehta.Concrete, Structure, Properties and Materials,1986
    [6]滕志明.钢筋混凝土基本构件[M].北京:清华大学出版社1987.
    [7]过镇海.钢筋混凝土原理[M].北京:清华大学出版社1999.
    [8] Bolotin,V V.Wahrscheinilchkeits Method Cnzur Berechnung Von-Konstruktionen,VEB Verlag FurBauwesen,Germany,1986
    [9]高向玲.高性能混凝土与钢筋粘结性能的试验研究及数值模拟[D].同济大学博士学位论文, 2003
    [10] C. A. Menzel. Some factors influencing results of pull-out bond test[J] ACI , Journal V.35, 1939:517-502
    [11] R. E. Untraner and R. L. Henry. Influence of normal pressure on bond strength reinforcing [J] .ACI , Journal,V. 23, 1965 (5):577-585
    [12] S. Sorotz and H. Holzenbein. Influence of rib dimensions of reinforcing bars on bond and bend ability[J].ACI , Journal, V. 76, 1979(1):111-125
    [13] B. S. Hamad. Bond strength improvement of reinforcing bars specially designed rib geometries[J] .ACI Structural , Journal , V. 92, 1995 (1):3-13
    [14] R. M. Mains. Measurement of the distribution of tensile and bond stresses along reinforcing bars[J] .ACI Journal,V. 23, 1951(3):225-252
    [15]徐有邻.变形钢筋砼粘结性能的试验研究[z].北京:中国建筑科学研究.1990.
    [16]王传志.腾智明.钢筋砼结构理论[M ]北京:建筑工业出版社.1985.254- 299.
    [17]中国建筑科学研究院.钢筋砼结构研究报告选(二)[R]北京:建筑工业出版社.1981. 255- 288.
    [18]杜锋、肖建庄、高向玲钢筋与混凝土间粘结试验方法研究[J]结构工程师2006(2)
    [19]赵军,金朝晖,马玉欣.混凝土结构中钢筋的粘结锚固[J].平顶山工学院学报2003(9): 3-4
    [20]管品武,孟会英,李丽.钢筋与混凝土间粘结锚固性能及粘结作用机理[J].郑州工业大学学报,2001(9): 65-66 [21」张伟平,张誊.锈胀开裂后钢筋混凝土粘结滑移本构关系研究[J].土木工程学报,2001(10): 40-43
    [22]洪小健,赵鸣.加载速率对锈蚀钢筋与混凝土粘结性能的影响[J].同济大学学报, 2002(7): 792-796
    [23] Obada Kayali, Stephen R. Yeomans. Bond of ribbed galvanized reinforcing steel in concrete, [J] Cement and Concrete Composites, 2000,22: 459-467
    [24] Kyle Stanish, R D Hooton, S.J. Pantazopoulou. Corrosion effects on bond strength in reinforced concrete, ACI Structural Journal, 1999,11/12: 915-920
    [25]杜锋,肖建庄,高向玲.钢筋与混凝土间粘结试验方法研究[J].结构工程师,2006
    [26]徐有邻,邵卓民,沈文都.钢筋混凝土粘结锚固性能的试验研究[J].中国建筑科学研究院结构所,1981
    [27]徐有邻,刘立新,管品武.螺旋肋钢丝粘结锚固性能的试验研究[J]混凝土与水泥制品,1998(4)24-29
    [28]狄生林.钢筋混凝土握裹力-滑移关系的试验研究.东南大学土木工程系,1981年
    [29]徐善华.混凝土结构退化模型与耐久性评估[D].西安,西安建筑科技大学博士学位论文,2003.
    [30]戚乐为,赵鸿铁,梁若筠.粘结滑移问题的界面应力元模型[J].海河大学学报,2004
    [31]赵兰浩,李同春,牛志伟.钢筋混凝土粘结滑移问题的单弹簧联结单元法[J].华中科技大学学报,2008
    [32]卓家寿,章青.不连续介质力学问题的界面元法[M].北京:科学出版社,2000.13-72
    [33]章青,卓家寿.加锚岩体的界面应力元模型[J].岩土工程学报,1998,20(5):50-53
    [34]高培正.动力弹塑性刚体界面元法[J].工程力学,1996,13(4):135-144
    [35] E .L .Kemp and W.J .Wilhelm.Investigation of the parameters influencing bond cracking [J]. ACI,Journal,V. 76, 1979 (1):47-71
    [36]陈定外译.结构用欧洲规范(ENV)--混凝土结构设计,1995
    [37]美国钢筋混凝土房屋建筑规范(ACI1992公布修订版),中国建筑科学研究院结构所,1993
    [38]英国混凝土结构规范(BS8110修订版),中国建筑科学研究院结构所译, 1993
    [39] R . Tepfers . Cracking of concrete cover along anchored deformed reinforcing bars [J] Magazine of Concrete Research. V. 31, No. 106,1979:3-12
    [40] M. R. Esfahani and B. V. Rangan. Local bond strength of reinforcing bars in normal strength and high-strength concrete(HSC) [J].ACI Structural , Journal,V. 95, 1998 (2):96-106
    [41]王传志.滕智明.钢筋混凝土结构原理北京[M].中国建筑工业出版社, 1985
    [42]徐有邻.变形钢筋—混凝土粘结锚固性能的试验研究[D].清华大学博士论文,1990
    [43] H. W. Reinhard, J. Blaauwenradd, E.Vos. Prediction of bond between steel and concrete by numerical analysis, Materials and Structures, 1984(7/8): 1245-1256
    [44] Teng Zhiming, Lu Hueizhong, Zhang Jinping. Inclined Strut Bond Model for Finite Element Analysis of RC Structures. 1988: 1519-1527
    [45] S .M .Mirza and J .Houde .Study of bond stress-slip relationships in reinforcedconcrete [J]. ACI Structural Journal,V. 76, 1979 (1):19-46
    [46] S. Somayaji and S. P. Shah. Bond stress versus slip relationship and cracking response of tension members[J]. ACI. Journal, V. 78, 1981(3):217-224
    [47] E .L .Kemp . Bond in reinforced concrete behavior and design criteria[J].ACI. journal, V. 83, 1986 (1):50-57
    [48] L. A. Lutz and P. Gergely. Mechanics of bondslip of deformed bars in concrete[J].ACI , Journal,V. 64, 1967(11):711-721
    [49] N. M. Hawkins, I. J. Liu, F. L. Jeang. Local bond strength of concrete for cyclic reversed Loadings [J].Proceeding of the International Conference on Bond in Concrete, 1982:151-161
    [50] D. Darwin, et al. Development length criteria: bars not confined by transverse reinforcement. ACI Structural Journal, V. 89, 1992 (3):347-359
    [51]徐有邻、邵卓民、沈文都,钢筋与混凝土的粘结锚固强度,建筑科学,1988 (4 )。
    [52]滕智明.钢筋与混凝土之间的粘结力.清华大学建筑工程系, 1978
    [53]粘结锚固专题研究组.钢筋混凝土粘结锚固的研究及设计建议[J]建筑结构1986 (4 ): 2-12
    [54] Xiaohui Wang, Xila Liu A strain-softening model for steel-concrete bond [J]Cement and Concrete Resecarch 33 (2003)1669-1673
    [55] D.H.Jiang.et al. Study of the transfer of tensile forces by bond.ACT Journal, Proceedings, V.81, 1984(3):251-259
    [56]宋玉普,赵国藩.钢筋与混凝土间的粘结滑移性能研究[J].大连工学院学报, 1987 (2 ): 94-100
    [57]王传志,滕智明.钢筋混凝土结构理论[M].北京:中国工业建筑出版社,1985
    [58]金芷生,朱万福,庞同和.钢筋与混凝土粘结性能研究[J].南京工学院学报.1985(2)73-85
    [59]同济大学五七公社.钢筋混凝土受弯及偏心受压构件的强度计算.吉林建筑技术通讯,1977,2.
    [60]自生翔.钢筋混凝土构件的正截面强度计算,吉林建筑技术通讯,1977,2.
    [61]偏心受压构件强度专题研究组.钢筋混凝土偏心受压构件正截面强度的试验研究.钢筋混凝土结构研究报告选集,中国建筑工业出版社,1981.
    [62]钢筋混凝土结构设计规范修订组.钢筋混凝土构件正截面强度计算.建筑结构.1984,3.
    [63] P·K·Mehta.Concrete, Structure, Properties and Materials,1986
    [64]沈旦申.粉煤灰混凝土.中国铁道工业出版社,1989
    [65] MacGregor, Mirza and Ellingwood. Statistical analysis of resistance of reinforced and prestressed concrete members[J]. ACI Journal Proceedings,1983, 80(3) :167-176.
    [66]方东平,祝宏毅,耿川东等.施工期钢筋混凝土结构特性的计算研究[J].土木工程学报,2000 ,33(6):57-62
    [67]方东平,祝宏毅,耿川东等.施工期钢筋混凝土结构特性的实验研究[J].土木工程学报,2001,34 (2 ):7 -10
    [68]赵国藩,金伟良,贡金鑫.结构可靠度理论[M].北京:中国建筑工业出版社,2000.
    [69] Webster F A.Reliability of Multistory Slab Structures Against Progressive Collapse during Construction[J]. ACI Journal. 1980, 77(5): 449-457
    [70] N J Gardner. Shoring,Reshoring and safety[J]. Concrete International,1985,7(4): 28 -3 4
    [71] A M EI-Shahhat, D.V. Rosowsky and W.F.Chen. Construction Safety of multistory concretebuildings[J]. ACI S.J.1993, 90(4): 335 -341
    [72] M.Stewart. Structural reliability and error control in reinforced concrete design and construction[J].Structural Safety,1993,12(3): 277–292
    [73] A.M. EI-Shahhat,D.V. Rosowsky and W.F.Chen.Partial factor design for reinforced concrete buildings during construction[J]. ACI Struct.J,1994,91 (4 ): 475- 495
    [74]巴松涛,贡金鑫,佟晓利.钢筋混凝土结构施工期可靠性分析方法[J].大连理工大学学报. 40(4),2000.7.
    [75]胡晓鹏,牛荻涛,薛国辉.住宅结构抗力的调查与统计分析.哈尔滨工业大学学报,2008.
    [1]李继华,林忠民,李明顺等.建筑结构概率极限状态设计[M].中国建筑工业出版社,1990.
    [2]牛建刚,牛荻涛.住宅结构楼面荷载的调查与统计分析.西安建筑科技大学学报.2006,2.
    [3]胡晓鹏.结构构件抗力的调查统计与住宅结构可靠性分析(D).西安建筑科技大学硕士论文,2005.
    [4]王传志.腾智明.钢筋砼结构理论[M ]北京:建筑工业出版社.1985.254- 299.
    [5]车宏业,颜德垣,程文襄.混凝土结构(上册)[M].北京:中国建筑工业出版社1998(2): 33-34.
    [6]滕志明.钢筋混凝土基本构件[M].北京:清华大学出版社1987.
    [7]过镇海.钢筋混凝土原理[M].北京:清华大学出版社1999.
    [8]钻芯法检测混凝土强度技术规程(CECS03:88).
    [9]混凝土结构设计规范(GB50010-2002).中国建筑工业出版社,2002.
    [10]李小朝.咸阳地区钢筋混凝土结构性能的调查与统计分析(D).西安建筑科技大学硕士论文,2008.
    [1]马志霞,李金奎等.不同掺量粉煤灰混凝土强度试验研究.河北建筑科技学院学报,2005(12).
    [2]富强.粉煤灰混凝土强度增长规律初探.混凝土.2005(7).
    [3]赵楠.多层钢筋混凝土框架结构施工期可靠性分析.西安建筑科技大学硕士学位论文.2008.
    [4]尚连飞,张亚梅,孙伟.粉煤灰混凝土抗压强度计算模型.建筑技术.2000(1).
    [5]汪荣鑫.数理统计[M].西安交通大学出版社,2002.
    [6]杨军.混凝土的碳化性能与气渗性能研究[D].山东科技大学,2004.
    [7]钻芯法检测混凝土强度技术规程(CECS03:88).中国建筑工业出版社,1988.
    [1]杨军.混凝土的碳化性能与气渗性能研究[D].山东科技大学,2004.
    [2]杨利伟,王天稳.混凝土碳化的影响因素及其控制措施[J].建筑技术开发,2005,(2).
    [3]普通混凝土长期性能和耐久性能试验方法(GBJ82-85).中国建筑工业出版社,1985.
    [4]牛荻涛.混凝土结构耐久性与寿命预测[D].科学出版社,2003.
    [5]回弹法检测混凝土抗压强度技术规程(JGJ/T23-2001).中国建筑工业出版社,2001.
    [6]汪荣鑫.数理统计[M].西安交通大学出版社,2002.
    [1]中华人民共和国国家标准.水运工程混凝土试验规程(JTJ2270-98).北京:中国建筑工业出版社,1998.
    [2]中华人民共和国国家标准.混凝土结构试验方法标准(GB50152-92).北京:中国建筑工业出版社,1992.
    [3]王传志,滕智明.钢筋混凝土结构原理.北京[M].中国建筑工业出版社, 1985.
    [4]中华人民共和国国家标准.普通混凝土力学性能试验方法(GBJ81-85).北京:中国工业出版社,1985.
    [1]洪小健.粘结滑移试验中的粘结应力的拟合方式[J].结构工程师,2000(3):41-46
    [2]滕志明主编.钢筋混凝土基本构件.第二版.北京:清华大学出版社,1987.
    [3]张伟平,张誊.锈胀开裂后钢筋混凝土粘结滑移本构关系研究[J].土木工程学报
    [4]高向玲.高性能混凝土与钢筋粘结性能的试验研究及数值模拟.同济大学博士学位论文
    [5] S. Somayaji and S. P. Shah. Bond stress versus slip relationship and cracking response of tension members[J]. ACI. Journal, V. 78, 1981(3):217-224
    [6]赵羽习,金伟良.钢筋与混凝土粘结本构关系的试验研究.建筑结构学报2002(2):32-37
    [7]管品武,孟会英,李丽.钢筋与混凝土间粘结锚固性能及粘结作用机理[J].郑州工业大学学报,2001(9):65-66
    [8]徐有邻.变形钢筋-混凝土粘结锚固性能的试验研究[D].清华大学博士论文,1990
    [9]杜锋,肖建庄,高向玲.钢筋与混凝土间粘结试验方法研究[J].结构工程师,2006
    [10]徐有邻,沈文都,钢筋混凝上粘结锚性能的试验研究[J]建筑结构学报,1994(3):23-33
    [11]混凝土基本力学性能研究组.混凝土的几个基本力学指标.国家建委建筑科学研究院主编.钢筋混凝土结构研究报告选集.北京:中国建筑工业出版社,1977.21~36.
    [1]混凝土基本力学性能研究组.混凝土的几个基本力学指标.国家建委建筑科学研究院主编.钢筋混凝土结构研究报告选集.北京:中国建筑工业出版社,1977.21~36.
    [2]滕志明主编.钢筋混凝土基本构件.第二版.北京:清华大学出版社,1987.
    [3] ANSYS Therory Reference,Electronic Release,SAS IP,Inc.,1998.
    [4] ANSYS Element Reference,Electronic Release,SAS IP,Inc.,1998.
    [5] ANSYS Modeling and Meshing Reference,Electronic Release,SAS IP,Inc.,1998.
    [6] ANSYS Basic Analysis Procedures Reference,Electronic Release,SAS IP,Inc.,1998.
    [7]混凝土结构设计规范(DB50010-2002),中华人民共和国建设部,2002.2.
    [1]徐善华.混凝土结构退化模型与耐久性评估[D].西安,西安建筑科技大学博士学位论文,2003.
    [2]《混凝土结构试验方法标准》(GB50152-92).中华人民共和国建设部,1992
    [3] ANSYS Basic Analysis Procedures Reference,Electronic Release,SAS IP,Inc.,1998.
    [4] ANSYS Element Reference,Electronic Release,SAS IP,Inc.,1998.
    [5] ANSYS Therory Reference,Electronic Release,SAS IP,Inc.,1998.
    [6] ANSYS Modeling and Meshing Reference,Electronic Release,SAS IP,Inc.,1998.
    [7]混凝土结构设计规范(DB50010-2002),中华人民共和国建设部,2002.2.
    [1]史庆轩等.锈蚀钢筋混凝土偏心受压构件承载力试验研究.工业建筑,2001,31 (5).
    [2]徐善华.混凝土结构退化模型与耐久性评估[D].西安,西安建筑科技大学博士学位论文,2003.
    [3] ANSYS Therory Reference,Electronic Release,SAS IP,Inc.,1998.
    [4] ANSYS Element Reference,Electronic Release,SAS IP,Inc.,1998.
    [5] ANSYS Modeling and Meshing Reference,Electronic Release,SAS IP,Inc.,1998.
    [6] ANSYS Basic Analysis Procedures Reference,Electronic Release,SAS IP,Inc.,1998.
    [7]混凝土结构设计规范(DB50010-2002),中华人民共和国建设部,2002.2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700