用户名: 密码: 验证码:
上部结构与地基基础共同作用的地基基础设计方法体系及实用软件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分共同作用的地基基础设计理论研究
     1.在地基基础设计中,过分的钢筋配筋率造成资金和资源的巨大浪费。大量现场测试结果显示:基础底板钢筋应力的实测值要远远小于钢筋强度设计值,本论文对各种可能影响因素进行详细分析后得出结论:现行设计计算方法的不合理是造成基础底板钢筋应力实测值小于设计值的根本原因,能否考虑上部结构参加工作是最主要的影响因素。
     当高层建筑的高度接近或超过基础的长和宽尺寸时,其整体工作性状更接近于深梁。计算分析结果表明:每个楼层的结构梁和板的应力是由“整体弯曲”和“局部弯曲”共同作用产生。据此,提出利用简支深梁计算基础底板钢筋应力和减少实配钢筋面积的简化方法,并与一些工程实例进行对比。
     2.本论文通过5个工程实测结果和两个算例,定量地分析了结构形式为框剪、框架、剪力墙和筒体的上部刚度对基础变形、地基反力及底板钢筋应力的影响范围,进一步论证上部结构刚度的增长有一个临界高度(层数),上部刚度-层数关系曲线能客观地反映上部结构刚度由增加到趋于极限的过程。
     简支深梁差异变形、底部最大水平应力及差异水平应力随梁高变化曲线上存在三个转折点。利用高层建筑与深梁工作性状的一致性,可以将H=0.3L、0.5L、0.7L(H为基础底板以上结构高度,L为基础长度)作为判别剪力墙、框剪、框架结构刚度影响范围的界限高度;对于筒体及其它形式的超高层结构,还需进一步研究,目前,可将基础长度小于60m的筒体结构刚度影响界限高度初定为H=1.5~2.0L,基础长度大于60m的筒体结构刚度影响界限高度初定为H=1.0~1.5L,最多不超过100m。
     确定上部结构刚度的影响范围,既能丰富对共同作用机理的认识,又能减少整体计算的工作量。
     3.利用工程地质勘察报告提供的有限地质数据,合理地构造三维地质模型,可为上部结构与地基基础整体计算创造基本条件。本论文通过水平方向和深度方向的连续化处理,将整个场区的土体分割成连续的三棱柱体,可以通过线性差值,自动获得半无限空间内任意位置的土体物理力学指标,并能够自动构造出标准钻孔。
     第二部分共同作用的地基基础设计方法体系研究
     1.本部分系统地论述上部结构与地基基础共同作用整体设计的有限元方法,并作重要补充,提出解决“现行规范中基础内力和变形计算采用的荷载组合不统一”问题的具体方法,可以协调一致地整体计算基础变形与内力。
     2.提出上部结构与地基基础共同作用的简化计算方法,计算整体弯曲可采用“简化深梁法”,计算局部弯曲可采用“改进倒梁法”。还对常规的基础构件设计方法进行说明,提出一个自动判别钢筋混凝土内筒区域的方法,可帮助计算机自动完成内筒筒体对基础底板的冲切和剪切承载力计算。
     3.将基础施工图设计研究的重点放在提高计算机辅助设计的智能化和效率上,以减轻设计人员的工作强度。本论文在基础梁选筋归并、配筋平面图表示方法和基础梁模板自动布图三个方面提出独特思路。
     第三部分共同作用的地基基础辅助设计软件研究
     1.比较系统地说明建立计算模型时应考虑的内容和需要设置的软件功能。分析目前国内应用较多的相关软件特点及数据接口内容,为技术人员合理地选择提供参考。
     2.为提高上部结构与地基基础共同作用整体分析的效率,提出一个快速迭代方法,可以消除地基刚度矩阵满阵和不对称给计算带来的不便。对影响计算结果的计算参数也进行说明。
     3.对后处理中的计算结果可视化和参数化绘图等问题进行研究。
     总之,本论文的研究工作为上部结构与地基基础共同作用理论进行地基基础设计,提供比较全面、实用的方法体系和相应的软件,期望早日用之实践。
It has been recognized that the theory of superstructure-foundation-soil interaction is a well-known major branch of geotechnical engineering. However, the geotechnical engineer can get still no any more benefit using this theory in design and practice. On the contrary, some risks may be suffered due to the incomplete design theory and method
    It is the first time in China that the design method of
    superstructure-foundation-soil interaction is taken as a system to study. This dissertation, based on the author's experiences in foundation design, software development and applications for many years, attempts to enrich the design theory considering interaction between superstructure and foundation supplement the present design methods and develop the corresponding compute aid design programme for providing the effective guidance and service to designers.
    This dissertation includes three parts as follows:
    Part 1
    Study on Theory of Foundation Design Considering Superstructure-Foundation-Soil Interaction
    1. An excess use of steel in foundation design causes a huge waste of funds and resources. Many field experimental results have been shown that the measured value of stresses of steel bar in foundation slab is much less than the design value. The conclusion has been obtained by the detailed analysis on various possible influencing factors that the basic reason is the unreasonable design and calculated methods in which the main influencing factor lies on if considering the interaction or not.
    While the height of a high-rise building is close to or over the length and
     width of foundation, the whole performance will approach to that in deep beam. The calculated and analyzed results have shown that the stress of frame beam and slab in each floor is generated by interaction of whole and local buckling. From this reason, a method called simply deep beam is presented to calculate the stress of steel bar in foundation slab and this method can reduce the actual area of steel. For checking its feasibility the comparison between calculated and measured results has been made in some engineering cases.
     2. Based on the quantitative analysis for 5 engineering cases with field experiment data and 2 calculation examples, the influence range of superstructure stiffness on foundation deformation, foundation pressure and the stress of steel bar in foundation slab can be obtained when the building is constructed by frame-shear, frame, shear wall or tube structure. It is confirmed that there is a critical height (number of floors) for the increase of superstructure stiffness. The relationship between superstructure stiffness and number of floors can objectively reflects the process of superstructure stiffness
     Differential deformation, maximum horizontal stress at bottom and differential horizontal stress in the simply supported deep beam obviously change with number of floors. There are three turning points along the deformation-number of floors curve. For practical convenience to reflect the consistency of the working performance between high-rise building and deep beam, H=0.3L、0.5L、0.7L (H is the structural height above foundation slab and L is the foundation length) can be taken as the critical height for influence range of stiffness of shear wall, frame and frame structure. Future study on tube structure and other form of high-rise structure is needed. Currently, the height within influence range of tube structure with the foundational length less than 60 m would be preliminarily fixed as H=1.5~2.0L, while H=1.0~1.5L for those with the foundational length more than 60 m in order to study.
     To determine the influence range of superstructure stiffness can not only provide a better understanding on the mechanism of interaction, but also reduce the overall calculating workload.
     3. Based on the limited geological data provided by an engineering geological survey report, a 3D geological model can be constructed to create the basic condition for the overall calculation of superstructure-foundation-soil interaction. In this paper, using the continuous processing method along the horizontal and vertical direction, the solid body of the whole site can be divided into continuous triangular prisms. Thus, the linear increment can be used to obtain the physical and mechanical indices of solid body at any position within semi-infinite space automatically and also construct a standard drilling hole automatically.
     Part 2 Study on Method System of Foundation Design Considering Superstructure-Foundation-Soil Interaction
     1.This paper systematically states the finite element overall design method considering superstructure-foundation-soB interaction, complements some important contents and proposes a concrete method to deal with the inconsistency of load combination between interior force and deformation of foundation in present design code. Thus, using this method presented in this paper the interior force and deformation in foundation corresponding to match design code can be calculated.
     2.This paper proposes a simple method for considering superstructure-foundation-soil interaction in which the simplified deep beam method is used to calculate the whole buckling and the improved inverted beam method to calculate the local buckling. Furthermore, the general design methods for foundation components is also illustrated. It should be noted that the other proposal can automatically identify the inner tube area of reinforced concrete and help computer automatically calculate the punching and sheering bearing capacity of foundation slab to the inner tube.
     3.The focus of primary study on design of foundation construction drawing design is how to improve the intelligence and efficiency of computer aided design in order to reduce the designers' labor.
     This section has an unique perspective at three aspects of 1. integrating and selecting steel of foundation beam, 2.method of reinforcement of whole foundation plane and 3.automatic layout on pattern of foundation beam for construction drawing.
     Part 3 Study on Aided Design Software of Foundation Considering Superstructure-Foundation-Soil Interaction
     1. This part systematically illustrates the contents and functions required to set up the calculation model and analyze the features and data interface of the present domestic corresponding softwares, which is for engineers' reference.
     2. A high-speed iterative method is presented to increase the efficiency of overall analysis on superstructure-foundation-soil interaction, which can eliminate the inconvenience caused by full rank of foundation stiffness matrix and asymmetry. Besides, some illustrations are given for the parameters influencing the calculating results.
     3. The visualization of calculating results and parameterized drawing and so on in post treatment are also studied.
     In one word, this dissertation provides the theory of foundation design, method system of foundation design and aided design software of foundation considering superstructure-foundation-soil interaction in order to be used in engineering practice in the near future.
引文
[1]Auvient, G. and Rodriguez, J. F., Friction piles in consolidating soils, Proceedings of the fifteenth international conference on soil mechanics and geotechnical engineering, 2001
    
    [2]Chamecki, S., Structural Rigidity in Calculating Settlements, J.Soil Mech. And Found. Div., ASCE, 1956
    
    [3]Christian, J.T., Soil Structure-Interaction For Tall Buildings. Pianning and Design of Tall Buildings, Tehigh U, Vol. 1a, 1972
    
    [4]Cooke, R.W., The Settlement of Friction Pile Foundation, Proc.Conf.Tall Building, Kuala Lumpur, 1974
    
    [5]Coyle, H.M. and Reese, L.C., Load Transfer for Axially Loads Piles In Clay, Proc. ASCE, 1966 (SM2)
    
    [6]Cunha, R. P., Pereira, J. H. F., Soares, J. M., Mota, N. M. B., Poulos, H.G, Back analyses of field loading tests on deep foundations in a tropical clay, Proceedings of the fifteenth international conference on soil mechanics and geotechnical engineering, 2001
    
    [7]Cunha, R.P., Poulos, H.G., Small, J.C., Investigation of design alternatives for a piled raft case history, Journal of geotechnical and geoenvironmental engineering, Vol.127, No.8, 2001
    
    [8]Davidson, J.L., Evaluation of Static Capacity Prediction between SPT94 and Pileuf Load Test Data—Final rept, 1997
    
    [9]Gong, J., Zhao, X. H., Zhang, B. L., A study on largest scale super-high riverscape deluxe residential building-foundation interaction in China, Sixth Proc. Conference on Tall Building, Hong Kong, 2005
    
    [10]Gusmao Filho, J.A., Limit stiffness in soil structure interaction of buildings, Proc. 14th Int. Conf. SMFE, 1997
    
    [11] Haddadin, M.J., Mats and Combined Footings Analysis by the Finite Element Methods, Proc. ACL, Vol.68, 1971
    
    [12]Hain, S.J. and Lee, I.K., Rational Analysis of Faft Foundation, J. Geotech. Engg. Div. ASCE, Vol. 100, 1974
    
    [13]Hooper, J.A. and Wood, L.A., Foundation Analysis of a Cross-Wall Structure, Proc. Int. Conf. on Performance Big. Struct., Glasgow, 1976
    
    [14] Hooper, J.A., Observations on the Behaviour of a Piled-Raft Foundation on London Clay, Proc. ICE. 55 (2), 1973
    
    [15]Horikoshi, K. and Randolph, M.F., Optimum design of piled raft foundations, Proc. 14th Int. Conf. SMFE, 1997
    [16]Karinski, Y.S., Dancygier, A.N. and Leviathan, I., An Analytical Model to Evaluate the Static Soil Pressure on a Buried Structure, Engineering structures, Vol.25, 2003
    
    [17]Katzenbach, R. and Moormann, Chr., Recommendations for the design and construction of piled rafts, Proceedings of the fifteenth international conference on soil mechanics and geotechnical engineering, 2001
    
    [18]Katzenbach , R. , Arslan , U., Gutwald , J., Holzhauser, i. and Quick, H., Soil-structure-interaction of the 300 m high Commerzbank tower in Frankfurt am Main Measurements and numerical studies , Proc.14th Int. Conf. Soil Mechanical. FoundationEngineering, Hamburg, 1997
    
    [19]King, G.J.W.King and Chandrsekam, V.S., Interactive Analysis of aRafted Multistorey Space Frame Resting on an Inhomogeneous Clay Straturm, Proc. Int. Conf. On Finite Element Methods in Engineering. Australia, 1974
    
    [20]Lamach, W.J. and Wood, L.A., The Effects of Soil Structure Interaction on Settlements, Int. Symp. On Computer Aided Design, Univ. of Warwick, 1972
    
    [21]Lee, S.J. and Lee, L.K., A Theoretical Study of the Interaction of Structure and Foundation, J. Struct. Div., Proc.ASCE, Vol.96, 1970
    
    [22]Lin, D.G., Bergado, D.T., Balasubramaniam, A.S., Adhikari, T.L., Soil structure interaction of piled raft foundation in Bangkok subsoil, Soil Mechanics and Geotechnical Engineering Eleventh Asian Regional Conference, Vol.1, 1999
    
    [23]Mandolini, A. and Viggiani, C, Settlement of piled foundations, Geotechnique 47, No.4, 1997
    
    [24]Meyerhof, G.G., Some Recent Foundation Research and Its Application to Design, Struct. Engn., Vol.31, 1953
    
    [25]Mylonakis, G. and Gazetas, G, Settlement and additional internal forces of grouped piles in layered soil, Geotechnique 48, No.1, 1998
    
    [26]Mylonakis, G, Winkler modulus for axially loaded piles, Geotechnique 51, No.5, 2001
    
    [27]Poulos, H. G, Approximate computer analysis of pile groups subjected to loads and ground movements, International Journal for Numerical and Analytical Methods in Geomechanics, Vol.23, No. 10-25, 1999
    
    [28]Poulos, H.G., Piled raft foundations: design and applications, Geotechnique, Vol.51, No.2, 2001
    
    [29]Poulos, H.G., Piles Subjected to Externally-Imposed Soil, Research rept, 1994
    
    [30]Poulos, H. G, Pile testing - from the designer's viewpoint, 2nd International STATNAMIC Seminar, 1998
    [31]Poulos, H.G., Settlement Prediction for Bored Pile Groups, Research rept, 1993
    
    [32]Poulos, H.G., Small, J.C., Ta, L.D., Sinha, J. & Chen, L., Comparison of some methods for analysis of piled rafts, Proc. 14th Int. Conf. SMFE, 1997
    
    [33]Poulos, H.G., Soil Structure Interaction-General Report (Preliminary), Proc. 10th Int. Conf. SMFE, 1981
    
    [34]Poulos, H.G., The significance of ground characterization for foundation deformation prediction, Fourteenth Southeast Asian Geotechnical Conference, Vol.1, 2001
    
    [35]Poulos, H.G. and Davis, E.H., Pile foundation analysis and design, 1980
    
    [36]Price, G. and Wardle, I.F., Queen Elizabeth II Conference Center: Monitoring of Loading Shearing between Piles and Raft, Proc, ICE, Part 1, 1986
    
    [37]Provenzano, P., Soil-structure interaction: A neural-fuzzy model to deal with uncertainties in footing settlement prediction, First International Structural Engineering and Construction Conference, 2001
    
    [38]Przemienieki, J.S., Theory of Matrix Structural Analysis, 1968
    
    [39]Randolph, R.W. & Worth, P.C., Analysis of Deformation of Vertically Loaded Piles, J.Geotech.Eng.Div.ASCE., 12, 1978
    
    [40]Sinha, J. and Poulos, H.G., Piled raft foundation systems in swelling and shrinking soil, Proc. 14th Int. Conf. SMFE, 1997
    
    [41]Small, John C, E.H. DAVIS MEMORIAL LECTURE 2001 Soil-Structure Interaction, Australian Geomechanics, Vol.37, no.1, 2002
    
    [42] Sogge, Robert L., Microcomputer Analysis of Laterally Loaded Piles, 1984
    
    [43]Sommer, H., A Method of Calculation of Settlements, Contact Pressures and Bending Moments in a Foundation Including the Flexural Rigidity of the Superstructure, Proc.6th ICSMFE., Montreal, Vol.2, 1965
    
    [44]Stavridis, L. T, Simplified Analysis of Layered Soil-Structure Interaction, Journal of Structural Engineering, Vol.128, no. 1/3, 2002
    
    [45]Wardle, L.J. and Frazer, R.A., Methods for Raft Foundation Design Including Soil-Structure Interaction, Proc, Symp. on Raft Foundations, Perth, Australia, 1975
    
    [46] White, B.C. and Ebeling, R.M., SOIL STRUCT-ALPHA for Personal Computers. Report 1.Visual Modeler, 2001
    
    [47]X. H. ZHAO et al, THEORY OF DESIGN OF PILED RAFT & PILED BOX FOUNDATIONS FOR TALL BUILDINGS IN SHANGHAI, 1998
    [48] Xu, K. J. and Poulos, H. G., Behaviour of pile group containing defective piles, Proceedings of the fifteenth international conference on soil mechanics and geotechnical engineering, 2001
    [49] Zeinkeiwicz, O.C. and Cheung, Y.K., Plates and Tanks on Elastic Foundation an Application of Finite Element Method, J.Soilds and Struct., Vol. 1, 1965
    [50] Zhao, X.H., Gong, J., Zhang, B.L., A study on super-long pile-foundation interaction for super-tall buildings in Shanghai, 2006 (2004年已校对样本)
    [51] 北京高层建筑箱形基础研究小组,北京前三门604#工程箱形基础试验研究报告,1978
    [52] 北京高层建筑箱基试验研究小组,北京中医医院病房楼工程箱形基础测试研究报告,1978
    [53] 陈卫,地基基础工程大型应用软件全面突破的一个标志—理正基础CAD系统构成,《第九届全国建筑工程计算机应用学术会议论文集》,哈尔滨建筑大学,1998
    [54] 陈卫,整体预应力板柱结构——箱形基础与地基相互作用的测试研究与理论分析,硕士学位论文,北京工业大学,1990
    [55] 刁学优、鲍自均、程家铭,某高层办公室(10)层套箱基础——框架体系协同作用的测试研究,建筑结构学报,1988(5)
    [56] 董建国、赵锡宏,《高层建筑地基基础——共同作用理论与实践》,同济大学出版社,1997
    [57] 方世敏,上部结构与地基基础共同作用的子结构分析方法,建筑结构学报,1980(4)
    [58] 《钢筋混凝土承台设计规程》(CECE 88:97),中国工程建设标准化协会,1997
    [59] 《高层建筑箱形与筏形基础技术规范》(JGJ 6—99),中国建筑工业出版社,1999
    [60] 国家建委建筑科学研究院地基所、上海市政工程设计研究所、同济大学地基教研组、上海市第四建筑公司、上海市民用建筑设计院,上海康乐路十二层住宅箱形基础测试研究报告,1976
    [61] 何颐华、方寿生、钱力航、王素琼,高层建筑箱形基础基底反力确定法,建筑结构学报,1980(1)
    [62] 侯光瑜,高层建筑箱形基础工作机理,《21世纪高层建筑基础工程》,中国建筑工业出版社,2000
    [63] 《混凝土结构设计规范》(GB 50010—2002),中国建筑工业出版社,2002
    [64] 《混凝土结构施工图整体表示方法制图规则和构造详图》(96G101),中国建筑标准设计研究所,1996
    [65] 《建筑地基处理技术规范》(JGJ 79—2002),中国建筑工业出版社,2002
    [66] 《建筑地基基础设计规范》(GBJ 7—89),中国建筑工业出版社,1989
    [67] 《建筑地基基础设计规范》(GB 50007—2002),中国建筑工业出版社,2002
    [68] 《建筑桩基技术规范》(JGJ 94—94),中国建筑工业出版社,1995
    [69] 梁向春、陈卫,围绕不同设计阶段需求而组织的桩基计算机辅助设计系统,《第九届全国建筑工程计算机应用学术会议论文集》,哈尔滨建筑大学,1998
    [70] 刘金砺、迟铃泉,高层建筑地基基础的变刚度调平设计,《21世纪高层建筑基础工程》,中国建筑工业出版社,2000
    [71] 龙驭球,《新型有限元引论》,清华大学出版社,1992
    [72] 龙志飞、岑松,《有限元法新论原理·程序·进展》,中国水利水电出版社,2001
    [73] 齐良锋,高层建筑桩筏基础共同工作原位测试及理论分析,博士学位论文,西安建筑科技大学,2002
    [74] 钱力航、孔繁峰,《高层建筑箱形与筏形基础技术规范》的新内容与21世纪基础工程技术的思考,《21世纪高层建筑基础工程》,中国建筑工业出版社,2000
    [75] 《上海市地基基础设计规范》(DGJ08—11—1999),上海市工程建设标准化办公室,1999
    [76] 商业部设计院、华北第二建筑工程公司、保定冷库筹建处、国家建委建筑科学研究院地基所,保定冷库箱形基础测试研究报告,1976
    [77] 史佩栋、高大钊、钱力航,高层建筑基础工程科技发展现状与展望,《21世纪高层建筑基础工程》,中国建筑工业出版社,2000
    [78] 史佩栋主编,《实用桩基工程手册》,中国建筑工业出版社,1999
    [79] 孙更生、郑大同,《软土地基与地下工程》,中国建筑工业出版社,1984
    [80] 王勖成、邵敏,《有限单元法基本原理与数值方法》,清华大学出版社,1988
    [81] 叶于政、孙家乐,高层建筑箱形基础与地基和上部结构共同工作机理的初步探讨和采用弹性杆的简化计算法,北京工业大学学报,1980(3)
    [82] 郁彦,《高层建筑结构抗震概念设计》,中京建筑事务所,1997
    [83] 袁聚云、赵锡宏、董建国,考虑土体各向异性的上部结构与地基基础共同作用分析,《中国土木工程学会第八届土力学及岩土工程学术会议论文集》,万国学术出版社,1999
    [84] 宰金珉,《复合桩基理论与应用》,知识产权出版社、中国水利水电出版社,2004
    [85] 宰金珉,高层建筑地基与基础设计中的几个问题,《21世纪高层建筑基础工程》,中国建筑工业出版社,2000
    [86] 宰金珉、宰金璋,《高层建筑基础分析与设计——土与结构物共同作用的理论与应用》,中国建筑工业出版社,1993
    [87] 张惠英、廖顺雨、吕宝宽,保定海关办公楼的两次基础设计及其比较,《21世纪高层建筑基础工程》,中国建筑工业出版社,2000
    [88] 张问清、赵锡宏等,上海四幢高层建筑箱形基础测试的综合研究,岩土工程学报,1980(1)
    [89] 张问清、赵锡宏,逐步扩大子结构法计算高层结构刚度的基本原理,建筑结构学报,1980(4)
    [90] 苗天德、呈昌钧,关于弹性板弯曲变形的Reissner理论,应用数学与力学,第一卷第二期
    [91] 赵锡宏,高层建筑与地基基础共同作用研究的回顾,《21世纪高层建筑基础工程》,中国建筑工业出版社,2000
    [92] 赵锡宏、张问清、曹名葆、殷永安、钱宇平、杨伟方,上海四平大楼箱形基础测试研究报告,同济大学土力学及基础工程研究室,1981
    [93] 赵锡宏等,《带群房的高层建筑与地基基础共同作用的设计理论与实践》,同济大学出版社,1999
    [94] 赵锡宏等,《上海高层建筑桩筏与桩箱基础设计理论》,同济大学出版社,1989
    [95] 赵锡宏、董建国、袁聚云、陈光敬、张保良,确定桩基沉降的综合分析方法,
    [96] 《中国土木工程学会第八届土力学及岩土工程学术会议论文集》,万国学术出版社,1999
    [97] 朱百里,补偿式摩擦桩基—法兰克福展览会大楼,《岩土工程师》,第3期,1990
    [98] 朱百里、曹名葆、魏道垛,框架结构与地基基础共同作用的数值分析,同济大学学报,1981 (4)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700