用户名: 密码: 验证码:
舰船水下爆炸数值仿真及抗爆结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代战争中,对舰攻击武器的射程、精度和打击威力都有了极大提高,舰船面临的威胁日益严重。提高舰船生命力一直是舰船结构动力学的重要研究课题之一。为了增强舰船抗打击能力,至少需要完成三项复杂的工作:首先需要对作用于舰体的爆炸载荷进行研究,分析爆炸压力场的传播和分布特性;其次是深入研究和理解舰船结构在爆炸载荷作用下的响应破坏机理;最后是探讨提高舰船结构抗爆能力的有效途径,提出切实可行的抗爆措施。
     舰船爆炸问题按爆炸源划分,可以分为空中爆炸和水下爆炸两类;按与船体的相对位置关系可以分为接触爆炸和非接触爆炸。爆炸是炸药在极短的时间内,化学能量的剧烈释放过程,舰船在爆炸载荷作用下的响应具有高度非线性特征,并涉及到材料的失效破坏。同时流固耦合问题在舰船爆炸计算中不容忽视。因此试图通过建立精确的数学模型而使得舰船爆炸问题得到完全解析是不可能的。目前可行的方法是实验研究和数值仿真研究。特别是近十年来,数值仿真技术得到了飞速发展,舰船爆炸问题的数值仿真已经能够实现。另一方面,由于舰船爆炸实验费用巨大,不便于进行系列实验研究,从而分析总结规律,而且爆炸实验的实施也存在相当的难度,因此数值仿真研究已经发展成为舰船爆炸的主要研究手段之一。
     本文通过对显式非线性有限元技术的消化吸收,对舰船水下非接触爆炸进行了数值仿真研究。归纳了相关的数值仿真计算理论,总结了数值仿真中的关键技术。对炸药爆轰理论以及数值计算方法进行了阐述,研究了水下爆炸冲击波流场的传播及其分布特征,分析了爆炸流场与水中结构物的相互耦合作用,并在此基础上,对水下非接触爆炸冲击波载荷作用下舰船结构的响应和损伤机理进行了研究,提出了新型抗爆炸吸能结构形式,对其抗爆吸能特性进行了评估。
     本文主要研究工作及结论如下:
     1.对数值仿真计算的相关理论进行了归纳总结,在舰船水下爆炸数值仿真计算中,结构宜采用Lagrange单元描述,爆炸流场宜采用多材料Euler单元描述,两者之间采用流固耦合算法加以连接。在众多耦合算法中,ALE耦合面上结构与流场的节点相互重合,不必要进行耦合面重建分析,计算效率最高。数值仿真计算中必须考虑舰船结构单元的失效问题,单元失效应变与单元几何尺寸有关,需要根据材料拉伸数值仿真校准计算对不同尺寸单元的失效应变进行修正。
     2.炸药爆轰CJ假设结合炸药JWL状态方程,能够精确的计算炸药爆轰后的产物状态,数值计算中采用“Programmed burn”技术控制炸药单元的能量释放过程,模拟得到的炸药爆轰过程和爆轰CJ压力与实验值吻合较好,验证了本文炸药爆炸仿真计算的正确性。
     3.对水下爆炸冲击传播和衰减规律、冲击波比冲量,气泡脉动压力进行了详细论述,研究了舰船板格在水下爆炸载荷作用下的动态响应,对水下爆炸的载荷效应进行了评估。冲击波载荷具有峰值压力大,作用时间短的特点,是造成舰船局部结构变形和破裂的主要因素;气泡脉动压力对舰船局部结构的作用效果与流体静压相似,但是由于气泡脉动蕴含能量巨大,载荷频率接近舰船结构固有频率,容易引起舰船整体鞭状运动。
     4.基于流固耦合原理,需要将流场和结构作为一个总的动力学系统加以研究,在考虑流场反射和绕射的基础上,分析发现:冲击波载荷作用下,结构物表面的压力取决于入射波压力和结构变形产生的稀疏波,具体公式见(6.18)式;气泡脉动压力作用下,结构物表面的压力取决于入射波压力和结构附连水质量,具体公式见(6.19)式。
     5.应用非线性有限元动态分析技术,对水下非接触爆炸载荷作用下,舰船结构动态响应进行了数值仿真研究。计算中考虑炸药与船体的相对位置影响,分别计算了船底迎爆,舭部迎爆、舷侧迎爆三种情况,主要从结构的变形与破坏模式、组成构件的塑性变形能、内部冲击环境等方面对舰船动态响应进行了分析,给出了水下爆炸载荷在船体内的传递途径。研究发现水下爆炸载荷作用下,舰船舷侧结构相对较弱,损伤最大,结构破坏模式主要表现为船体外壳板格撕裂和内部支撑骨架的扭曲压溃变形。船体外壳连同纵骨直接受到爆炸冲击波载荷作用、横向骨架、舱壁对船体板架起到了很好的支撑作用,在冲击波载荷作用下上述三者是主要吸能构件。
     6.板格是舰船基本结构组成单元,在全船水下爆炸分析的基础上,研究了水下爆炸冲击波载荷作用下,舰船板格的破坏模式、中心最大变形、加速度响应幅值和动态应力应变状态。计算发现:在不考虑自身材料缺陷情况下板格主要表现为边缘撕裂破坏;中心最大变形主要取决于冲击波峰值与衰减时间常数的乘积;加速度响应幅值与冲击波峰值呈线性关系。
     7.从抗爆吸能角度来看,圆管具有变形行程长、结构反力和减速度稳定、宜于制造的优点,本文对侧向受缩圆管进行了专题研究,从变形过程、结构反力、塑性变形能三个方面分析了单管的能量吸收特性,并对齐排圆管与嵌套圆管的承载和吸能特性影响做了对比分析。单根侧向受压圆管的极限载荷与管壁厚度t的平方成正比,与半径R成反比。其他条件不变的情况下,为了提高单位质量圆管的极限载荷与吸能量,增加管壁厚度t是经济而有效的手段。
     8.在圆管抗爆吸能特性研究的基础上,本文提出了一种以圆管作为能量吸收单元的新型三明治抗爆炸板架结构形式。采用数值仿真方法,从抗爆和抗侵彻性能两个方面对新型板架的动态力学性能进行评估。爆炸载荷作用下,圆管的塑性变形耗散了大量冲击波能量,减小了爆炸冲击波对舰船主要构件的损伤,改善了舰船内部冲击环境,降低了冲击加速度响应峰值。另外,在抗鱼雷穿甲方面,与传统结构相比,新型结构具有明显优势。
In modern warfare, the warship facing increasingly serious threat, for the range, accuracy and combat power of anti-warship weapons have greatly improved. For the safety and vitality of a warship, the dynamic response under the action of underwater explosion (UNDEX) shock waves is an important research aspect in the field of ship structural dynamics. In order to enhance the anti-shock capability, we need to complete at least three complex tasks: The first is to study the explosive load, understanding the distribution and propagation characteristics of explosion shock loading. The second is to analyze and find out the structure dynamic response and damage mechanism of warship subjected to UNDEX loading. Finally, investigate effective and practical measures to enhance the capability of anti-explosion.
     According to the explosion source, it can be divided into aerial explosion and underwater explosions; According to the relative position between the Explosive to hull, it can be divided into contact explosion and non-contact explosion. The explosion was a chemical reaction of charge in a very short time, with a severe energy release. Highly nonlinear dynamic responses of Ship structure subjected to UNDEX loading involve the failure of material. While fluid-structure interaction problems in ship explosion in the calculation cannot be ignored. So it was no possible to get a precise mathematical model to solve this problem. At present the feasible methods have two, experiment and numerical simulation. Now the numerical simulation of ship UNDEX has become possible, with the rapid development of Numerical simulation technology. On the other hand, because the huge cost of explosion experiment, can’t take a series of experiments to investigate the rule of the structure dynamic responses. So numerical simulation has become one of the main instruments in this research field.
     Based on the solving technique of explicit non-linear finite element method, numerical simulation theory was summarized, the key technologies of the calculation was sum up, the nonlinear dynamic responses of ship structure subjected to UNDEX loading has been investigated by using finite element modeling code MSC.DYTRAN. According to the investigation in this dissertation, the major work and conclusions are listed as follows:
     The ship structure was meshed by the lagrangian CQUAD4 shell elements, the fluid was described by eulerian solid elements, the structure-fluid coupling algorithm was employ to transfer load between ship and explosion field. In many coupling algorithm, ALE coupling has a maximum calculation efficiency, profit from without rebuilding coupling interface, because the lagrangian and eulerian element have a same node at the interface. Considering the failure of material, the critical failure strain, which change according to element size, can be set by numerical simulation benchmarks tensile test.
     Based on the CJ detonation assumptions and JWL equation of state, the pressure of detonation products can be precise calculated. The“programmed burn”technique was used to model the detonation of explosive. A slab of explosive detonated at one end was calculated, the numerical simulation result show agreement with the Experiment.
     Transient dynamic response of clamped rectangular plates subjected to non-contact underwater explosion loading was analyzed based on the elaborate on the propagation, decadent, impulse of UNDEX shock wave, pulsation of bubble pressure. The local structure deformation and rupture was caused by Shock wave with the characteristics huge Peak pressure, short loading time. Warship local structure subjected to Bubble pulse pressure and fluid Static pressure has a similar Mechanics behavior. However, in some special circumstances, bubble pulse pressure will lead to ship whipping, due to the bubble pressure contains enormous energy and pulse frequency close to the natural frequency of ship.
     Based on the principle of fluid-structure interaction, should to take fluid and ship structure as a total dynamics system to study, in considering reflection and diffraction of fluid field, the conclusion can be reached that, in shock wave loading conditions, the pressure is a function of incident pressure and the structural deformation sparse wave, as described by Eq. (6.18). In bubble pulse pressure loading conditions, the pressure decided to incident pressure and additional water quality, as described by Eq. (6.19).
     On the basis of the numerical simulation method, the dynamic response of the component of a warship subjected to underwater explosion shock waves is analyzed, and the deformation damage mode of different components and the absorptive features of energy of the plastic deformation are investigated. Furthermore, the mutual relation between the explosive and relative position of the vessel is presented by the comparison of the structural damage mode. It can be drawn as follows: As for the ship subjected to underwater explosion shock waves, the outer plate, transversal frame and bulkhead mainly undertake the impact loads.
     Ship grid plate is the basic unit of structure, at the loading of UNDEX shock wave, the calculated results indicate that the tensile tearing at the support is the main failure mode of the plate under shock loading without considering the material defects of plate, the maximum central plastic deformation depended on the product of the peak pressure and the decay constant, the maximum central acceleration of plate and the peak pressure has a linear relationship.
     Tube widely used anti-shock due to the tube deformation with a long trip, structure acceleration stability, and the supply manufacturers. The loading carrying Capacity and energy absorption properties of tube has been investigated. The limit load of tube is proportional to the thickness of the wall, and inversely proportional to the radius.
     Based on the investigation of energy absorption properties of tube, the response of a novel sandwich structure design under blasting loading was numerically investigated. The sandwich structure uses thin walled tube as the core. the sandwich structure has excellent ability of anti-shock according to the numerical results.
引文
[1] P.Cole, Underwater Explosions. New Jersey: Princeton University, 1950.
    [2] "Survivability Policy for Surface Ships of the U.S. Navy," Chief of Naval Operations OPNAV Instruction9070.1. , 1988.
    [3] "Defense acquisition management policies and procedures," USA. DOD Instruction 5000.2., 1988.
    [4] "Shock testing the seawolf submarine," Department of the Navy., USA. 1998.
    [5] 高秋新, "爆炸引起的船体振荡," 舰船力学情报, vol. 9, pp. 6-14, 1992.
    [6] 彭兴宁, "船舶结构对水下非接触爆炸的响应," 舰船力学情报, vol. 3, pp. 19-25, 1994.
    [7] 陆鑫森, "××玻璃钢船体强度、振动和抗爆试验," 上海交通大学技术资料情报室 1977.
    [8] 张绮蓉,马锦华, "水下非接触爆炸对舰船总纵强度与局部强度影响的分析," 中华人民共和国国家标准 GJB2329-95.
    [9] 李珙华, "××舰弹性船模的三维水弹性理论分析及试验结果比较," 中国船舶科学研究中心, 无锡 1994.
    [10] 李国华,李玉节,张效慈, "浮动冲击平台水下爆炸冲击波谱测量与分析," 船舶力学, pp. 23-31, 2000.
    [11] S. H. G., "Hydrodynamics of Underwater Explosions," presented at Symposium Naval Hydrodyn, Washington, 1965.
    [12] G. J. B., "Depth Scaling of Underwater Explosion Phenomena.," AD-A0204731975.
    [13] M. F. Gogulya, A. Y. Dolgoborodov, and M. A. Brazhnikov, "Investigation of shock and detonation waves by optical pyrometry," International Journal of Impact Engineering, vol. 23, pp. 283-293, 1999.
    [14] A. Kria, "Underwater Explosion of Spherical Explosive," Journal of Materials Processing Technology, pp. 85-64, 1999.
    [15] K. Murata, K. Takahashi, and Y. Kato, "Precise measurements of underwater explosion phenomena by pressure sensor fluoropolymer," Journal of Materials Processing Technology, vol. 85, pp. 39-42, 1999.
    [16] M. M., "Explosion Effects and Properties: PartⅡExplosion Effects in the Water," AD-A056694 1978.
    [17] 彭金华,陈网桦,苏华,吴涛,刘荣海, "铝粉对含铝炸药水中爆炸能量输出特性的影响研究," 安全与环境学报, pp. 118-125, 2004.
    [18] 周俊祥,徐更光,王廷增, "铝化炸药水下爆炸冲击波特性分析," 爆破, vol. 22, pp. 41-43, 2005.
    [19] 周俊祥,于国辉,李澎,周霖, "RDX/Al 含铝炸药水下爆炸试验研究," 爆破, vol. 22, pp. 4-6, 2005.
    [20] 周霖,徐更光, "含铝炸药水中爆炸能量输出结构," 火炸药学报, vol. 26, pp. 30-32, 2003.
    [21] 池家春,马冰, "TNT/RDX(40/60)炸药球水中爆炸波研究," 高压物理学报, vol. 13, pp. 199-204, 1999.
    [22] 马乃耀, "黄浦水下爆破经验介绍," presented at 水下爆破文集, 1977.
    [23] 钱胜国, "近自由水面水下爆炸时水中特性," 爆炸与冲击, vol. 4, pp. 3-7, 1983.
    [24] 颜事龙, "条形药包水下爆炸能量计算," 爆破器材, vol. 26, pp. 1-2, 1997.
    [25] 颜事龙, "集中药包和条形药包水下爆炸能量测试," 爆破器材, vol. 32, pp. 23-27, 2003.
    [26] 周睿,冯顺山,吴成, "条形药包冲击波峰值超压工程计算模型," 工程爆破, vol. 7, pp. 19-23, 2001.
    [27] 王中黔, "水下爆破冲击波," in 水下爆破文集. 北京: 人民交通出版社, 1980.
    [28] 刘永明,董春海,郑福良, "水下爆炸能量测试法评析工业炸药威力," 煤矿爆破, vol. 50, pp. 20-24, 2000.
    [29] 孙金华,汪大立,颜世龙,张立, "水下爆炸测试技术在爆破器材性能测试中的应用," 淮南矿业学院学报, vol. 14, pp. 50-54, 1994.
    [30] 汪大立,张涛,张立,颜事龙, "球形装药水下爆炸初始冲击波能量计算," 淮南矿业学院学报, vol. 15, pp. 47-51, 1995.
    [31] 王建灵,赵东奎,郭炜,俞统昌, "水下爆炸能量测试中炸药入水深度的确定," 火炸药学报, vol. 2, pp. 30-31, 2002.
    [32] 王晓峰,陈鲁英, "炸药的水下爆炸威力," 化工学报火化工分册, vol. 1, pp. 30-34, 1995.
    [33] 俞统昌,王晓峰,王建灵, "炸药的水下爆炸冲击波性能," 含能材料, vol. 11, pp. 182-186, 2003.
    [34] L. Yu-jie, Z. Xiao-ci, W. Jun, Y. Yun-chuan, and L. Jian-hu, "Underwater Explosion of TNT Dynamite with a Metal Shell and Annual Gap," Journal of Ship Mechanics, vol. 9, pp. 118-125, 2005.
    [35] G. J. B., "Depth Scaling of Underwater Explosion Source Levels," AD-020473, 1975.
    [36] S. J. P., "Pressure-pulse Characteristics of Deep Explosions as Functions of Depth and Range," AD-661804, 1967.
    [37] T. S. A., "Review of the Propagation of Pressure Pulses Produced by Small Underwater Explosion Charges," NOLTR-6181, 1988.
    [38] W. F. Xie, T. G. Liu, and B. C. Khoo., "The simulation of cavitating flows induced by underwater shock and free surface interaction," Applied Numerical Mathematics.
    [39] 高勇军,王伟策,陈小波,叶序双,顾文彬, "浅层水中爆炸冲击波压力的测试与分析," 爆破, vol. 16, pp. 9-13, 1999.
    [40] 顾文彬,孙百连,阳天海,马海洋, "浅层水中沉底爆炸冲击波相互作用数字模拟," 解放军理工大学学报, vol. 4, pp. 64-68, 2003.
    [41] 顾文彬,阳天海,叶序双,刘文华,张鹏祥,孔劲松, "单个装药浅层水中沉底爆炸的数值模拟," 解放军理工大学学报, vol. 1, pp. 51-55, 2000.
    [42] 顾文彬,叶序双,刘文华,刘强, "界面对浅层水中爆炸冲击波峰值压力影响的研究," 解放军理工大学学报, vol. 2, pp. 61-63, 2001.
    [43] 刘文华,罗松林,顾文彬,王自立,叶序双,张鹏祥,阳天海, "单个球形装药浅层水中爆炸冲击波特性的研究," 工程爆破, vol. 5, pp. 1-5, 1999.
    [44] 孙百连,顾文彬,蒋建平,阳天海, "浅层水中沉底的两个装药爆炸的数值模拟研究," 爆炸与冲击, vol. 23, pp. 460-465, 2003.
    [45] 张鹏翔,顾文彬,叶序双, "浅层水中爆炸直达波压力峰值技术方法探讨," 解放军理工大学学报, vol. 3, pp. 57-59, 2002.
    [46] 苏华,陈网桦,吴涛,葛桂兰,范秀琴,刘荣海, "炸药水下爆炸冲击波参数的修正," 火炸药学报, vol. 27, pp. 46-52, 2004.
    [47] E. A. Brujan, A. Pearson, and J. R. Blake, "Pulsating buoyant bubbles close to a rigid boundary and near the null final Kelvin impulse state," International Journal of Multiphase Flow, vol. 31, pp. 302-317, 2005.
    [48] S. Menon and M. Lal., "On the dynamics and instability of bubbles formed during underwater explosions," Experimental Thermal and Fluid Science, vol. 16, pp. 305-321, 1998.
    [49] 方正,李世海,乔继延,丁汉堃, "水中爆炸气泡脉动周期的试验研究," 工程爆破, vol. 7, pp. 29-33, 2001.
    [50] 赵根,刘美山, "水中爆炸水击波及其多次脉动的观测与分析," 长江科学院院报, vol. 20, pp. 56-57, 2003.
    [51] 丁珏,刘家骢, "近水面水下爆炸初期水雾形成过程的数值研究," 爆破器材, vol. 31, pp. 1-5, 2002.
    [52] 张立,汪大立, "水下爆炸炸药能测量消除边界效应的研究," 爆破器材, vol. 24, pp. 1-6, 1995.
    [53] 周睿,冯顺山, "气泡帷幕对水中冲击波峰值压力衰减特性的研究," 工程爆破, vol. 7, pp. 13-17, 2001.
    [54] 朱锡,白雪飞,黄若波,刘润泉,赵耀, "船体板架在水下接触爆炸作用下的破口试验," 中国造船, vol. 44, pp. 46-52, 2003.
    [55] 梅志远,朱锡,刘润泉, "船用加筋板架爆炸载荷下动态响应数值分析," 爆炸与冲击, vol. 24, pp. 80-84, 2004.
    [56] R. Rajendran and K. Narasimhan., "Damage prediction of clamped circular plates subjected to contact underwater explosion," International Journal of Impact Engineering, vol. 25, pp. 373-386, 2001.
    [57] R. Rajendran and K. Narasimhan, "Linear elastic shock response of plane plates subjected to underwater explosion," International Journal of Impact Engineering, vol. 25, pp. 493-506, 2001.
    [58] R. Rajendran and K. Narasimhan, "Deformation and fracture behaviour of plate specimens subjected to underwater explosion - a review," International Journal of Impact Engineering, vol. 32, pp. 1945-1963, 2006.
    [59] C. F. Hung, P. Y. Hsu, and J. J. Hwang-Fuu, "Elastic shock response of an air-backed plate to underwater explosion," International Journal of Impact Engineering, vol. 31, pp. 151-168, 2005.
    [60] 谌勇,唐平,汪玉,杨世全, "刚塑性圆板受水下爆炸载荷时的动力响应," 爆炸与冲击, pp. 90-96, 2005.
    [61] 吴成,金俨,李华新, "固支方板对水中爆炸作用的动态响应研究," 高压物理学报, vol. 17, pp. 275-281, 2003.
    [62] 金乾坤,丁刚毅, "水下爆炸对船板冲击作用仿真," 计算机仿真, vol. 22, pp. 28-31, 2005.
    [63] Christophe Pedron and A. Combescure., "Dynamic Buckling of Stiffened Cylindrical Shells of Revolution under a Transient Lateral Pressure Shock Wave," Thin-Walled Structures, vol. 23, pp. 85-105, 1995.
    [64] J. M. Brett, G. Yiannakopoulos, and P. J. v. d. Schaaf, "Time-resolved measurement of the deformation of submerged cylinders subjected to loading from a nearby explosion.," International Journal of Impact Engineering., vol. 24, pp. 875-890, 2000.
    [65] R. W. McCoy and C. T. Sun., "Fluid-structure interaction analysis of a thick-section composite cylinder subjected to underwater blast loading. ," Composite Structures, vol. 37, pp. 45-55, 1997.
    [66] Y. S. Shin and D. T. Hooker., "Damage Response of Submerged Imperfect Cylindrical Structures to Underwater Explosion.," Computers &Structures, vol. 60, pp. 683-693, 1996.
    [67] 姚熊亮,许维军, "多发武器同时命中时潜艇冲击环境研究," 船舶工程, vol. 26, pp. 42-49, 2004.
    [68] 张振华,王乘,朱锡,黄玉盈,李振环, "潜艇艇体结构在水下爆炸冲击载荷作用下损伤研究," 振动与冲击, vol. 24, pp. 81-85, 2005.
    [69] 张振华,朱锡,冯刚,方斌, "关于圆柱壳在水下爆炸冲击波作用下二次加载现象的数值模拟研究," 海军工程大学学报, vol. 16, pp. 93-96, 2004.
    [70] 张振华,朱锡,冯刚,李玉节,刘建湖,何斌, "水下爆炸冲击波作用下自由环肋圆柱壳动态响应的数值仿真研究," 振动与冲击, vol. 24, pp. 45-48, 2005.
    [71] 刘忠族,钟伟芳,黄玉盈, "水下爆炸冲击波作用下多层圆柱壳的动响应," 华中理工大学学报, vol. 25, pp. 100-103, 1994.
    [72] 蒋伟康,万泉,黄慧珠,毛逸尘,陈红,赵治平, "一种分析受爆炸冲击的水下园柱壳结构强度的方法," 机械强度, vol. 24, pp. 355-358, 2002.
    [73] 万泉,蒋伟康, "分析小型水下圆柱壳结构冲击响应的一种近似方法," 振动与冲击, vol. 21, pp. 16-19, 2002.
    [74] 袁卫锋,吴连元, "壳体结构受水下爆炸的危害距离讨论," 福州大学学报, vol. 22, pp. 85-89, 1994.
    [75] 张效慈,李玉节,赵本立, "深水爆炸水动压力场对潜艇结构的动态影响," 中国造船, vol. 4, pp. 61-68, 1997.
    [76] Z. Zong., "A hydroplastic analysis of a free-free beam floating on water subjected to an underwater bubble," Journal of Fluids and Structures, vol. 20, pp. 359-372 2005.
    [77] L. Yu-jie, P. Jiang-qiang, L. Guo-hua, and Z. Xiao-ci, "Experimental Study of Ship Whipping Induced by Underwater Explosive Bubble," Journal of Ship Mechanics, vol. 5, pp. 75-83, 2001.
    [78] 李玉节,张效慈,吴有生,陈起富, "水下爆炸气泡激起的船体鞭状运动," 中国造船, vol. 42, pp. 1-7, 2001.
    [79] 姚熊亮,陈建平,任慧龙, "水下爆炸气泡脉动压力下舰船动态响应分析," 哈尔滨工程大学学报, vol. 21, pp. 1-5, 2000.
    [80] 李国华,李玉节,张效慈,白光荣,冯子钧,周康, "舰船设备冲击环境的能源研究," 船舶力学, vol. 2, pp. 37-54, 1998.
    [81] 李国华,李玉节,张效慈,刘新祥,冯子钧,白光荣,潘建强., "浮动冲击平台水下爆炸冲击谱测量与分析," 船舶力学, vol. 4, pp. 51-60, 2000.
    [82] 李国华,李玉节,张效慈,杨云川,冯子钧,何斌,陈辉, "气泡运动于舰船设备冲击振动关系的试验验证," 船舶力学, vol. 9, pp. 98-105, 2005.
    [83] A. P. Mouritz., "The damage to stitched GRP laminates by underwater explosion shock loading," Composites Science and Technology, vol. 55, pp. 365-375, 1995.
    [84] A. P. Mouritz., "The effect of underwater explosion shock loading on the flexural properties of GRP laminates," International Journal of Impact Engineering, vol. 18, pp. 129-139, 1996.
    [85] K. Y. Lam, Z. Zong, and Q. X. Wang., "Dynamic response of a laminated pipeline on the seabed subjected to underwater shock," Composites: Part B, vol. 34, pp. 59-66, 2003.
    [86] L. Jian-hu, W. You-sheng, Z. Ben-li, L. Yu-jie, Y. Mao-yu, and L. Guo-hua., "A Simplified Method for Analyzing the Response of GRP Ship to underwater Explosion," Journal of Ship Mechanics, vol. 4, pp. 51-58, 2000.
    [87] 刘土光,张涛,岳建军., "水下爆炸冲击波载荷作用下加筋复合材料侵潜壳体结构的动力响应," 舰船科学技术, vol. 27, pp. 26-29, 2005.
    [88] R. W. Smith, "AUSM(ALE): A Geometrically Conservative Arbitrary Lagrangian-Eulerian Flux Splitting Scheme," Journal of Computational Physics, vol. 150, pp. 268-286, 1999.
    [89] C. Wang and B. C. Khoo, "An indirect boundary element method for three-dimensional explosion bubbles," Journal of Computational Physics, vol. 194, pp. 451-480, 2004.
    [90] C. Wang, B. C. Khoo, and K. S. Yeo., "Elastic mesh technique for 3D BIM simulation with an application to underwater explosion bubble dynamics," Computers &Fluids, vol. 32, pp. 1195-1212, 2003.
    [91] E. Klaseboer, B. C. Khoo, and K. C. Hung., "Dynamics of an oscillating bubble near a floating structure," Journal of Fluids and Structures, vol. 21, pp. 395-412, 2005.
    [92] S. Y. Kadioglu, M. Sussman, S. Osher, J. P. Wright, and M. Kang., "A second order primitive preconditioner for solving all speed multi-phase flows," Journal of Computational Physics, vol. 209, pp. 477-503, 2005.
    [93] T. G. Liu, B. C. Khoo, and K. S. Yeo., "The simulation of compressible multi-medium flow Ⅱ .Applications to 2D underwater shock refraction," Computers & Fluids, vol. 30, pp. 315-337, 2001.
    [94] R. R. Nourgaliev, T. N. Dinh, and T. G. Theofanous., "Adaptive characteristics-based matching for compressible multifluid dynamics," Journal of Computational Physics, vol. 213, pp. 500-529, 2006.
    [95] 梁龙河,曹菊珍,王元书, "水下爆炸特性的一维球对称数值研究," 高压物理学报, vol. 16, pp. 199-203, 2002.
    [96] 梁龙河,曹菊珍,袁仙春, "水下爆炸特性的二维数值模拟研究," 高压物理学报, vol. 18, pp. 203-207, 2004.
    [97] 鲁传敬, "三维水下爆炸气泡的数值模拟," 航空学报, vol. 17, pp. 92-95, 1996.
    [98] Wright, J. P., Sangler, I. S., Sussman, and Mark, "Advanced Fluid Modeling Capability for Underwater Shock Analysis of Naval Ships," Office of Naval Research, New York WAI-0001-AD, 2002.
    [99] M. A., Sprague, and T. L. Geers., "A spectral-element/finite-element analysis of a ship-like structure subjected to an underwater explosion.," Computer Methods in Applied Mechanics and Engineering, vol. 195, pp. 2149-2167, 2006.
    [100] F. H. Hamdan, "Near-field fluid-structure interaction using Lagrangian fluid finite elements," Computers &Structures, vol. 71, pp. 123-141, 1999.
    [101] R. P. and Fedkiw., "Coupling an Eulerian Fluid Calculation to a lagrangian Solid Calculation with the Ghost Fluid Method," Journal of Computational Physics, vol. 175, pp. 200-224, 2002.
    [102] S. Plimpton, S. Attaway, B. Hendrickson, J. Swegle, C. Vaughan, and D. Gardner, "Parallel Transient Dynamics Simulations: Algorithms for Contact Detection and Smoothed Particle Hydrodynamics," Journal of Parallel and Distributed Computing, vol. 50, pp. 104-122, 1998.
    [103] 姚熊亮,张阿漫,许维军,汪玉, "基于 ABAQUS 软件的舰船水下爆炸研究,"哈尔滨工程大学学报, vol. 27, pp. 37-41, 2006.
    [104] 方斌,朱锡,张振华,梅志远, "水下爆炸冲击波数值模拟中的参数影响," 哈尔滨工程大学学报, vol. 26, pp. 419-424, 2005.
    [105] 张振华,朱锡,白雪飞, "水下爆炸冲击波的数值模拟研究," 爆炸与冲击, vol. 24, pp. 182-187, 2004.
    [106] 张振华,朱锡,冯刚,孙雪荣,毛力奋, "船舶在远场水下爆炸载荷作用下动态响应的数值计算方法," 中国造船, vol. 44, pp. 36-42, 2003.
    [107] 钱网生,祝华, "SU 型隔振器的设计和研究," 噪声与振动控制, vol. 5, pp. 11-14, 2000.
    [108] 孙洪军,钱网生, "拱形钢丝绳隔振器冲击特性研究," 噪声与振动控制, pp. 7-9, 2005.
    [109] 赵应龙,何琳,黄映云,汪玉, "限位器对隔振系统抗冲击性能的影响," 振动与冲击, vol. 2, pp. 71-76, 2005.
    [110] 赵应龙,何琳,黄映云,汪玉, "船舶浮筏隔振系统冲击响应的时域计算," 噪声与振动控制, vol. 2, pp. 14-17, 2005.
    [111] 张满满,骆东平,骆子夜,徐志云,付爱华, "船用辅机浮筏动态特性有限元分析," 噪声与振动控制, pp. 14-17, 2002.
    [112] 邓又发,翁雪涛,朱石坚, "隔冲系统中非线性刚度的应用," 船海工程, vol. 6, pp. 4-6, 2001.
    [113] 翁雪涛,蒋学武,信世堡,朱石坚, "隔振系统的抗冲击性能计算," 噪声与振动控制, vol. 2, pp. 16-18, 1999.
    [114] 姚熊亮,陈建平, "水下爆炸二次脉动压力下舰船抗爆性能研究," 中国造船, vol. 42, pp. 48-55, 2001.
    [115] 陈建平, "水下爆炸气泡脉动压力下舰船及其设备抗冲击性能研究," 舰船科学技术, pp. 17-25, 2001.
    [116] 石少卿,张湘冀,刘颖芳,尹平, "硬质聚氨酯泡沫塑料抗爆炸冲击作用的研究," 振动与冲击, vol. 24, pp. 56-58, 2005.
    [117] 孙杰,朱立新,钟兵,胡金花,王清洁, "玻璃钢蜂窝夹层复合材料抗爆性能研究," 工程塑料应用, vol. 31, pp. 40-42, 2003.
    [118] 孙杰,王飞,谢文, "玻璃钢蜂窝夹层复合材料在抗爆结构设计中的应用," 玻璃钢/复合材料, pp. 19-25, 2001.
    [119] 廖祖伟,刘清杰,田志敏, "钢板-泡沫材料复合夹层板抗爆性能试验研究," 地下空间与工程学报, vol. 1, pp. 401-404, 2005.
    [120] 钟兵,刘少江,赵健, "竹/玻璃钢复合材料的研制及在抗爆结构中的应用," 玻璃钢/复合材料, pp. 22-25, 2005.
    [121] 钟兵,刘少江,赵健, "竹/玻璃钢复合材料板的研制及性能分析," 世界竹藤通讯, vol. 2, pp. 17-20, 2004.
    [122] K. Cichocki, "Effects of underwater blast loading on structures with protective elements," International Journal of Impact Engineering, vol. 22, pp. 609-617, 1999.
    [123] L. Librescu, S.-Y. Oh, and J. Hohe., "Linear and non-linear dynamic response of sandwich panels to blast loading," Composites: Part B, vol. 35, pp. 673-683,2004.
    [124] 唐德高,周布奎,周早生, "侧向爆炸冲击波加载作用下钢管吸能特性的试验研究," 爆炸与冲击, vol. 22, 2002.
    [125] 朱锡,张振华,刘润泉,朱云翔, "水面舰艇舷侧防雷舱结构模型抗爆试验研究," 爆炸与冲击, vol. 24, pp. 133-139, 2004.
    [126] C. R., "Variational Method foe Solutions of Equilibrium and Vibrations " Bull. Am. Math. Soc., vol. 49, pp. 1-23, 1943.
    [127] T. M. J, C. R. W, M. H. C, and T. L. C, "Stiffness and Deflection Analysis of Complex Structures " Journal of Aero. Sci, vol. 23, pp. 805-823, 1956.
    [128] C. R. W, "The Finite Element Method in Plane Stress Analysis," presented at Proc. 2ed ASCE Conference on Electronic Computation, Pittsburgh, 1960.
    [129] 王勖成, 有限单元法 北京: 清华大学出版社 2003.
    [130] 黄明志, 金属力学性能. 西安: 《西安交通大学出版社》 1986.
    [131] 王自力, "船舶碰撞损伤机理与结构耐撞性研究," in 船舶与海洋结构物设计制造, vol. 博士. 上海: 上海交通大学, 2001.
    [132] 姜春风,刘瑞堂,张晓欣, "船用 945 钢的动态力学性能研究," 兵工学报, vol. 21, pp. 257-260, 2000.
    [133] 赵汉中, "在开阔空间中水对爆炸冲击波的削波作用," 爆炸与冲击, vol. 21, pp. 26-28, 2001.
    [134] 赵汉中, "在封闭结构中水对爆炸冲击波的削波、减压作用," 爆炸与冲击, vol. 22, pp. 252-256, 2002.
    [135] 崔桂香,潘岩,张兆顺,符松, "深水强爆炸的数值模拟," 空气动力学学报, vol. 13, pp. 117-124, 1995.
    [136] 孙承纬,卫玉章,周之奎, 应用爆轰物理. 北京: 国防工业出版社, 2000.
    [137] 陈永念,尹群,胡海岩., "水中爆炸冲击波载荷作用下舰船结构动态响应的数值模拟," 爆炸与冲击, vol. 24, pp. 201-206, 2004.
    [138] 吴有生,彭兴宁,赵本立, "爆炸载荷作用下舰船板架的变形与破损," 中国造船, vol. 4, pp. 55-61, 1995.
    [139] K. Ramajeyathilagam, C. P. Vendhan, and V. B. Rao, "Non-linear transient dynamic response of rectangular plates under shock loading," International Journal of Impact Engineering, vol. 24, pp. 999-1015, 2000.
    [140] R. Rajendran and K. Narasimhan, "Damage prediction of clamped circular plates subjected to contact underwater explosion," International Journal of Impact Engineering, vol. 25, pp. 373-386, 2001.
    [141] D. J. A. and H. P. G, "Crushing of a tube between rigid plates " Journal of Apply. Mech, vol. 30, pp. 391-395, 1963.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700