用户名: 密码: 验证码:
湖泊底泥污染化学钝化与电动生物修复研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湖泊底泥污染是世界范围内的一个环境问题。污染物的来源包括外源输入(如降雨,地表径流,土壤淋溶,工业和城市废水)和内源释放,在外源污染得到逐步控制的条件下,内源污染物会重新释放出来,成为影响上覆水水质的二次污染源。
     针对武汉东湖底泥中主要污染物——营养物质(氮和磷)、重金属和难降解的有机物,本研究采用了化学钝化方法控制富营养化关键因子磷;考察了芽孢杆菌和复合酶对底泥中有机磷和十二烷基苯磺酸钠(LAS)的生物修复效果;系统地研究了电动技术对底泥重金属铬和LAS的迁移与去除效果。首次采用电动生物复合技术修复底泥中有机污染物LAS;进行了生物淋滤电动修复联用技术处理重金属铬,试验结果可为湖泊底泥污染防治技术的发展提供相关技术指导。论文主要研究结果包括:
     1.环境因子对底泥中磷释放与吸附特征的影响试验
     通过实验室模拟试验,分析了环境因子对东湖底泥中磷释放的影响,提出了底泥耗氧速率动力学模型。好氧条件下底泥的总磷平均释放速率仅为厌氧条件下的9.1%;升温、水体扰动、pH值偏酸(pH=6.0)或偏碱性(pH=9.5)都会加速底泥中磷的释放;上覆水总磷浓度较高时,底泥会发生吸磷现象。正交模拟试验结果表明底泥磷释放影响因子显著性排序依次为溶解氧>温度>pH值>水体扰动。东湖底泥吸附等温线符合Langmuir模型,在厌氧与强扰动下均导致底泥的磷吸附容量Smax和吸附常数k明显减少,并使磷零点吸持平衡浓度EPC0显著增加。
     2.化学钝化对东湖底泥中磷释放的控制试验
     东湖底泥中各形态磷含量大小为:TP> PFe> Porg> PAl> PCa,有机磷、钙磷、铁磷与总磷的相关性好,表明它们能显著影响底泥的释磷。注入盐(铁盐、硝酸盐、钙盐和铝盐)处理东湖底泥,能够抑制底泥中磷的迁移。化学钝化前后底泥中各形态磷含量发生了变化,表明盐类化学钝化处理,特别是A12(SO4)3和好氧条件下FeCl3的处理具有较高的抑制内源磷释放的能力。
     3.生物修复底泥中直链烷基苯磺酸钠和有机磷试验
     微生物镜检发现东湖底泥中浮游藻类以蓝藻门和绿藻门为优势种,结合其它生化指标,表明东湖水体的富营养化程度已经很高。同时添加芽孢杆菌和复合酶的处理效果更佳,处理后可使底泥生物降解能力、异养菌总数、脱氢酶和磷酸酶活性明显增加,相应地底泥有机质和有机磷的含量下降。由于底泥中LAS含量过高,当直接添加芽孢杆菌处理底泥中LAS时,发现无明显的降解效果。经过驯化培养芽孢杆菌,可得到降解LAS的菌株。
     4.电动修复底泥中重金属铬和直链烷基苯磺酸钠
     首先研究了电动修复底泥中铬污染的可行性,当采用1V/cm的电压梯度,电动作用48小时后,六价铬和三价铬的去除率分别达到了57.3%和18.4%,说明电动修复技术可用于东湖底泥中重金属的去除。电动修复试验表明电动时间、电压梯度、络合剂种类、电场分布均对铬的迁移与去除有不同程度的影响,其中影响最大的是酸性络合剂,其次是电压梯度影响较大,而运行时间和电场分布对铬去除的影响较小。添加柠檬酸后,总铬和三价铬的去除率分别提高了0.75倍和2-3倍;最适宜电压梯度为1V/cm;铬的去除率随电动时间的增加而增加,但运行48h后底泥中铬的去除率随时间的增加而提升很慢;均匀电场比非均匀电场作用范围要广,但在电极附近二者的去除率相近。
     电动过程促进了LAS向阳极的迁移和富集,也导致了阴、阳极附近pH值的显著变化。电动时间、电压、初始pH值和底泥含水率均影响电动修复LAS的效果,在酸性条件下LAS去除率更高,在较低含水率下,含水率对电动修复效率影响大。正交实验结果表明,影响电动效果因素主次顺序为电压、电极间距、电动时间、初始pH值。当pH=7、通电时间6h、电压10V、电极间距10cm时,电动修复东湖底泥中LAS的效果最好,去除率达到41.4%。
     5.电动生物修复底泥中LAS和生物淋滤电动修复铬的试验
     首先研究了电动修复对微生物活性的影响,由于电极反应使强电场对细菌有灭活作用,而弱电场下的电流可激活微生物的活性,相应地弱电场下的底泥中脱氢酶活性高于强电场下的。电场作用下靠近阳极底泥中的异氧菌生长会受到抑制,较高频率的电极正负极交替有助于消除电场作用对阳极底泥中异氧菌总数的影响。试验发现电动迁移能够向底泥中引入含氮化合物,其中硝酸盐比铵离子在底泥中具有更好的迁移性,除了迁移的量外,由于化学反应,铵离子总量将会在试验过程中减少;但电动迁移向底泥中注入磷的效果不佳,分析表明磷酸根没有在底泥中迁移。电动生物修复LAS去除率达到60.5%,比单纯的生物修复高出三十多个百分点,比单纯电动修复高出近二十个百分点。
     最后,采用了生物淋滤-电动方法联用技术处理底泥中的铬。经生物淋滤后底泥中铬形态发生了改变,铬的生物侵出率可高达25.1%,侵出率与底泥的pH和ORP紧密相关。在生物淋滤-电动修复后总铬的平均去除率为53.4%,比单纯电动修复提高了近21个百分点。因此电动生物淋滤的修复方法适合于底泥中重金属污染的治理。
Sediment pollution is quite a serious problem in the whole world. The main sources of pollutants in lakes include external loading (such as rainfall, runoff, soil leaching, industrial and municipal effluents) and internal loading. When the external source pollution got controlled, a variety of pollutants in the sediment will release to aquatic environment through exchange, which is the major source of polluting overlying water.
     The main pollutants in sediment from Wuhan East Lake are nutrients (nitrogen and phosphorus), heavy metals and refractory organic matter. By applying three ways of single technology including chemical passivating treatment with salt, sediment bioremediation and electrokinetic (EK) remediation, our research has investigated the effect of pollutants control from sediment. As phosphorus has long been considered a key factor affecting the process of eutrophication, sediment was treated with salts to reduce phosphorus release. In this paper, the effects of sediment bioremediation with bacillus probiotics and multiple enzymes were examined. According to the characteristics of chromium and linear alkylbenzene sulfate (LAS), EK remediation was studied on the migration and removal of both pollutants. For the first time, hybrid technology of electrikinetic bioremediation was adopted to restore LAS in sediment; Meanwhile, another hybrid technology of bio-leaching electrokinetic remediation was conducted to process chromium in the sediment. The results presented in this paper will be a good help for the development of pollution control of lake sediment both in practice and theory. The main research results of this paper include:
     1. Factors of phosphorus release from sediment and the characteristics of phosphorus sorption.
     The effects of marked environmental factors (temperature, DO, pH and stir) on phosphorus release from sediment were analyzed and model of sediment oxygen demand in Wuhan East Lake was proposed at laboratory simulated test. The rate of average TP effluent under aerobic condition was only 9.1 percent of that under anoxic condition. At the lower or higher pH (pH<6 or pH>9.5), the phosphorus release from the sediment speeded up greatly. Temperature increasing and disturbance of water could cause the release of P from sediment into overlying water. When TP concentrationin overlying water was high, phosphorus in water would be absorbed by sediments. By orthogonal test, the significant value of each affecting factor was analyzed and the order of marked factors was DO> Temperature> pH> Stir. The phosphate sorption isotherms of the sediment in Wuhan East Lake fit Langmuir equation. The greatest phosphate adsorption amount (Smax) and adsorption constant (k) under aerobic condition were much higher than those under anoxic condition, furthermore equilibrium phosphate concentration (EPCo) under anaerobic conditions was significantly higher than that under aerobic conditions. EPCo of strong disturbance sediments was increased obviously compared with that of weak disturbance sediments. The value of Smax decreased significantly after sediment was strongly disturbed.
     2. Effects of chemical passivating treatment on phosphorus release in Wuhan East Lake
     The forms of phosphorus in the sediments of Wuhan East Lake were investigated by sequential chemical extraction. The results showed the order of TP fractional composition in sediment is TP> PFe> Porg> PAl> PCa. The facts, which organic phosphorus, Ca and Fe binding phosphorus in sediments were well related to the quantity of phosphorus released from the sediments, implied that they played importmant roles in internal phosphorus release. We found that the addition of salts (ferrous and calcium, and especially aluminum and nitrate) into the sediment could inhibit the transfer of phosphorus in sediments. The composition of sediment in terms of its various forms of phosphorus was changed after chemical passivating treatment. Only treatment with Al2(SO4)3 resulted in negative growth of P in the water phase. Chemical passivating treatment with salts, especially aluminum and ferric chloride under anoxic condition resulted in a high capacity for inhibition of endogenous phosphorus release and increased sediment stability.
     3. Study on biodegradation characteristics of LAS and organic phosphorus from sediment
     Through microscopic examination, we found the dominant species of planktonic algae in Wuhan East Lake were cyanophyta and chlorophyta, in combination with other biochemical parameters, indicating that the level of eutrophication was already high. Altuough both bacillus probiotics and multiple enzymes could enhance capacity the of sediment biodegradation, but the effects of bacillus probiotics was better than that of multiple enzymes. The effect of adding mixture of bacillus probiotics and multiple enzymes was better than that of just adding bacillus probiotics. After the sediments were treated by the mixture, the value of G, heterotrophic bacteria, DHA, PA increased obviously, and the content of organic matter and organic phosphorus decreased accordingly. Due to too high content of LAS in sediment, the purpose of LAS degradation by directly adding bacillus probiotics into sediment was not obtained. After bacilli had been cultured in simulated LAS wastewater, LAS degrading strains were available.
     4. Study on the electrokinetic remediation of LAS and chromium polluted lake sediment at laboratory scale.
     The feasibility of the remediation of chromium-polluted sediment by electrokinetic technology was studied. When EK experiment was operated for 48 hours at 20V direct current power, the removal rate of Cr(III) and Cr(VI) was 57.8% and 17.8% respectively. The results showed that the chromium in lake sediment could be effectively removed by EK remediation method. The influence of the applied voltage and the operating time on the removal efficiency of chromium, complex types and the electric field distribution on the removal efficiency of chromium, as well as the migration and distribution of chromium in sediment were investigated. We found that complex type had crucial effect on the removal efficiencies of chromium. The removal rate of the total Cr and Cr(Ⅲ) increased 75% and nearly 300% after adding the citric acid on cathode. Secondly the applied voltage gradient had important influence on the efficiencies and the optimum voltage gradient was 1V/cm in the test; Operating time and electric field distribution affected the efficiencies in some degree. After the EK remediation system had been operated for 48 hours, the removal rate of the total Cr increased slowly. In the comparison of the uniform and the non-uniform electric fields, the effective area of the former was wider, but close to the latter around the area of the electrode.
     Electro-kinetic process stimulated the migration and enrichment of LAS in the sediments, and also led to significant changes of pH value nearby the cathode and anode. The effects of LAS removal depended on the reaction time, electrolysis voltage, initial pH and sediment moisture content. The effect of sediment moisture content was obvious on EK remediation in the case of a low water content because the efficiency of electroosmosis and electromigration was small, while the effect of moisture content was little in the case of saturated sediment moisture. By orthogonal test on LAS electrokinetic remediation, the significant value of each affecting factor was analyzed and the order of marked factors was cell voltage> distance between electrodes> reaction time> initial time. The tests indicated the removal efficiency of LAS in 500 mL sediment samples after EK remediation for 6h could be up to 41.4% under the optimum conditions of initial pH7, voltage 10V, electrodes distance 10cm.
     5. Study on hybrid technique of electrikinetic bioremediation and bio-leaching EK remediation.
     Firstly, effects of EK transport on the vulnerability of bacteria were studied in this part. Because strong electric field for inactivation of microorganisms had the inhibiting effects of electrochemical products generated at the electrodes, dehydrogenase activity in sediment under weak electric field was higher than that under stronger electric field, and the electric current under weak electric field could activate the activity of bacteria. We found electric field could inhibit the growth of heterotrophic bacteria nearby cathode, and electric field polarity reversal might be an effective way to minimize such effects. Secondly, the test proved EK technology had the ability to introduce nitrogen compounds into the sediment, with the nitrate showing greater mobility than the ammonium. The mass of ammonium, as well as moving, had decreased in the system during the tests, due to chemical reactions. The nitrate showed a less reactive behaviour, remaining in the reactor and only moving from anode to cathode. Meanwhile, the injectionof phosphorus did not prove to be successful. The phosphate concentration declined in the catholyte where it was placed, but it did not travel through the sediment. The results that LAS removal rate of sediment treated by EK bioremediation, EK remediation and biological remediation was 60.5%,41.4%,25.8%, respectively, indicating that EK technology can enhance the process of sediment microbial remediation.
     Finally, chromium in sediment was treated by bioleaching electroremediation technology. The speciation of chromium had significant changes during EK remediation. The leaching rate of chromium in sediment was up to 25.1%, which was closely related to pH and ORP of sediment. After bioleaching-electrokinetic remediation, the average removal rate of total chromium was 53.4%. In the comparison of bioleaching-electrokinetic and electrokinetic remediation, the removal rate of total chromium of the former was nearly 21 percent higher than that of the latter. Therefore, the method of bioleaching electrokinetic remediation is suitable for heavy metal pollution control in sediment.
引文
[1]秦伯强,杨柳燕,陈非洲,等.湖泊富营养化发生机制与控制技术及其应用[J].科学通报,2006,51(16):1857-1866.
    [2]张锡辉.水环境修复工程学原理与应用[M].北京:化学工业出版社,2002:48-52.
    [3]S(?)ndergaard M., Kristensen P., Jeppesen E.. Phosphorus release from resuspended sediment in the shallow and wind-exposed Lake Arreso, Denmark. Hydrobiologia,1992,228:91-99.
    [4]Kim, L.H., Choi, E., Stenstrom, M.K.. Sediment characteristics, phosphorus types and phosphorus release rates between river and lake sediments. Chemosphere,2003,50(1):53-61.
    [5]Vareli K, Pilidis G, Mavrogiorgou MC, et al. Molecular characterization of cyanobacterial diversity and yearly fluctuations of Microcystin loads in a suburban Mediterranean Lake (Lake Pamvotis, Greece), Journal of Environmental Monitoring,2009,11(8):1506-1512.
    [6]Li, X. P.. Sediment reaction and transport model (windows).1999, Center for Ecological Health, University of California, Davis.
    [7]Moore, P. A., Reddy, K. R.. Role of Eh and pH on phosphorus geochemistry in sediments of Lake Okeechobee, Florida. J Environ Qual,1994,23:955-964.
    [8]Guzzella, L., Feretti, D., Monarca, S.. Advanced oxidation and adsorption technologies for organic micropollutant removal from lake water used as drinking-water supply, Water Research,2002,36:(17): 4307-4318.
    [9]Harden, J., Donaldson, F. P., Nyman, M. C., Concentrations and distribution of 3,3'-dichlorobenzidine and its congeners in environmental samples from Lake Macatawa[J]. Chemosphere,2005,58(6): 767-777.
    [10]Jiang, J. G., Shen, Y. F.. Estimation of the natural purification rate of a eutrophic lake after pollutant removal[J]. Ecological Engineering,2006,28:166-173.
    [11]Havens, K. E., Jin, K. R., Rodusky, A. J., et al. Hurricane effects on a shallow lake ecosystem and its response to a controlled manipulation of water level. Sci World,2001,1:44-70.
    [12]Reddy, K. R., Fisher, M. M., Ivanoff, D.. Resuspension and diffusive flux of nitrogen and phosphorus in a hypereutrophic lake[J]. J Environ Qual,1996,25:363-371.
    [13]S(?)ndergaard, M., Jensen, J. P., Jeppesen, E.. Internal phosphorus loading in a shallow eutrophic Danish lake[J]. Hydrobiologia,1999,408/409:145-152.
    [14]Xie, L., Xie, P.. Long-term (1956-1999) dynamics of phosphorus in a shallow, subtropical Chinese lake with the possible effects of cyanobacterial blooms[J]. Water Res,2002,36:343-349.
    [15]滑丽萍,华珞,高娟,等.中国湖泊底泥的重金属污染评价研[J].土壤,2006,38(4):366-373.
    [16]Pant, H.K., Reddy, K.R.. Phosphorus sorption characteristics of estuarine sediments under different redox conditions [J]. J Environ Qual,2001,30:1474-1480.
    [17]Blom, C., Winkles, H. J.. Modeling sediment accumuLation and dispersion of contaminants in lake Lisslmeer (the Netherlands)[J]. Water Science and Oceanography,1992,37(3):510-528.
    [18]滑丽萍,郝红,李贵宝.河湖底泥的生物修复研究进展,中国水利水电科学研究院学报,2005,6:24-129.
    [19]Rydin E., Btunberg A.. Seasonal dynamics of phosphorus in Lake Erken surface sediments[J]. Arch. Hydrobiol. Spec. Issues Advanc. Limnol.1998,,51:157-167.
    [20]曲久辉.我国水体复合污染与控制[J].科学对社会的影响.2000,5(1):37-39.
    [21]张丽萍,袁文权,张锡辉.底泥污染物释放动力学研究[J].环境污染治理技术与设备,2003,4(2):22-26.
    [22]何孟常,王子健,汤鸿霄.乐安江沉积物重金属污染及生态风险性评价[J].环境科学,1999,20(1):7-10.
    [23]刘恩峰,羊向东,沈吉.近百年来湖北太白湖沉积通量变化与流域降水量和人类活动的关系[J].湖泊科学,2007,19(4):407-412。
    [24]刘恩峰,沈吉,朱育新.沉积物金属元素变化的粒度效应——以太湖沉积岩芯为例[J].湖泊科学,2006,18(4):363-368。
    [25]袁旭音.中国湖泊污染状况的基本评价[J].火山地质与矿产,2000,21(2):128-136.
    [26]金相灿,徐南妮,张雨国,等.沉积物污染化学[M].北京:中国环境科学出版社,1992,300-3261.
    [27]王小雨,冯江,胡明忠.湖泊富营养化治理的底泥疏浚工程[J].环境保护,2003(2):22-231.
    [28]陈荷生,石建华.太湖底泥的生态疏浚工程—太湖水污染综合治理措施之一[J].水资源保护,1998,(3):11-16.
    [29]孟春红,赵冰.东湖沉积物中氮磷形态分布的研究,环境科学,2008,7:1831-1837.[30] Wetzel, R. G.. Limnology:Lake and River Ecosystems(Third Edition). San Diego:Academic PRESS, USA,2001.
    [31]朱广伟,秦伯强,高光.长江中下游浅水湖泊沉积物中磷的形态及其与水相磷的关系[J].环境科学学报,2004,24(3):381-388.
    [32]张衍国,奉华,等.城市污水污泥焚烧过程中的重金属迁移特性[J].环境保护,2000,12:35-36.
    [33]Rai, U. N., Tripathi, R. D., Vajpayee, P.. Bioaccumulation of toxic metals by seeds of E ferox salisb[J]. Chemosphere,2002,46:267-272.
    [34]Chandra, S. K., Chary, N. S., Kamala C.T., et al.. Fractionation studies and bioaccumulation of sediment-bound heavy metals in Kolleru lake by edible fish[J]. Environ.Int,2004,29(7):1001-1008.
    [34]曲久辉.水处理电化学原理与技术[M].科学出版社,2007.
    [35]Cuypers, M. P., Grotenhuis, J. C., Rulkens, W. H.. Characterization of PAH-contaminated sediments in a remedition perspective[J]. Wat Sci Tech,1998,37(6):157-164.
    [36]张秀芳,全燮,陈景文,等.辽河中下游水体中多氯有机物的残留调查[J].中国环境科学,2000,20(1):31-35.
    [37]周启星,黄国宏.环境生物地球化学及全球环境变化[M].北京:科学出版社,2001.
    [38]李振宇,朱荫媚.西湖沉积物有机质特征[J].环境化学,1999,18(2):122-126.
    [39]董煌,邹联沛,张晓岚.苏州河上海市区段底泥有机物的初步研究[J].环境科学与技术,2005,28:14-17.
    [40]连军.河水和底泥中有机污染物的分析[J].2003,13(4):34-36.
    [41]王海,王春霞,陈伟,等.武汉东湖表层沉积物有机物污染状况[J].环境科学学报,2002,22(4):434-438.
    [42]李轶,王栋,周集体.我国表面活性剂LAS废水的处理技术进展[J].环境污染治理技术与设备,2000,1(1):65-70.
    [43]刘洁,刘云.烷基苯磺酸钠的环境评价[J].日用化学品科,2002,25(6):11-14.
    [44]李文明,李本军.河流水体中直链烷基苯磺酸钠(LAS)含量水平调查[J].环境保护科学,1998,24(4):26-28.
    [45]刘嘉麒,张榆霞.滇池烷基苯磺酸钠的分布、降解及对鲤鱼的危害效应[J].重庆环境科学,1997,19(1):17-22.
    [46]Acar, Y.B., Rabbi, M.F., Ozsu, E. E.. Electrokinetic injection of ammonium and sulfate ions into sand and kaolinite beds[J]. J. Geotechn. Geoenviron. Eng.1997:239-249.
    [47]Hanes, N. B., Irvine. R.L.. New Techniques for Measuring Oxygen Uptake Rates of Bethel system[J]. J. Wat. Pollut.Control Fed.,1968,40:223-231.
    [48]刘富强,祀桑.珠江广州河段员村段的底泥耗氧[J],环境科学,1993,15(1):31-35.
    [49]蒋纯才.天然水体的底泥耗氧[J].四川环境,1985,4(3):60-71.
    [50]Walker, R. R.. "Modelling Sediment Oxygen Demand in Lakes," thesis presented to McMaster Univ., at Hamilton, ON, in 1980, in partial fulfillment of the requirements for the degree of Master of Engineering.
    [51]Walker, R. R., Snodgrass, W. J.. "Modelling Sediment Oxygen Demand in Hamilton Harbor," Sediment Oxygen Demand:Processes, Measurements, and Modelling, K. J. Hatcher, Ed., Institute for Natural Resources, Univ. of Georgia Press
    [52]Edwards, R. W., Rolley, H. J.. Oxygen Consumption of River Muds[J]. Journal of Ecology,1965, 53:1-19.
    [53]Crank, J.. The Mathematics of Diffusion[M]. Oxford Univ. Press, Oxford, England,1957.
    [54]McDonnel, A. J., Hall, S. D.. Effect of Environmental Factors on Benthal Oxygen Uptake[J]. WPCF Research Supplement,1969,41:353-363.
    [55]Bachmann, V., Usseglio-Polatera P., Moreteau J. C.,et al.. A new method to assess the contribution of the macrobenthic compartment total dissolved oxygen budget of a large river[J]. Advance in river bottom ecology.1998,8:143-153.
    [56]Hargrave, B. T.. Oxidation-Reduced Potentials, Oxygen Concentration and Oxygen Uptake of Profundal Sediments in an Eutrophic Lake[J]. Oikos,1972,23:167-177.
    [57]Owens, M.. The Prediction of the Distribution of Dissolved Oxygen in Rivers[J]. Advances in Water Pollution Research,1969,4:125-147.
    [58]Edburg, N., Hofsten, B. V.. Oxygen uptake of bottom sediments studied in situ and in the laboratory [J]. 1973,7:1285-1294.
    [59]Seiki, T., Izawa, H., Date, E.. Benthic nutrient remineralization and oxygen consumption in the coastal area of Hiroshima Bay[J]. Water Res,1989,23(2):219-228.
    [60]詹朝坤,罗孟华,胡成宣.底泥耗氧率的测试方法研究[J].环境科学,1986,7(6):43-46.
    [61]Moniwa T.. Laboratory studies on the oxygen demand of bottom sediments[J]. Jap J Water Pollut Res, 1986,9:231-238.
    [62]Rolley, H. J., Owens M.,1967.Oxygen consumption rates and some chemical properties of river muds[J]. Water research,1:759-766.
    [63]Hargrave B. T.. A comparison of sediment oxygen uptake, hypolimnetic oxygen deficit and primary production in lake Esrom,Demark.Verh int Verein theor angew[J].Limmol,1972,18:134-139.
    [64]Fillos J. et al.. The release rate of nutrients from river and lake sediments[J].Journal WPCF,1975, 47:1032-1041.
    [65]Hargrave, B. T.. A comparison of sediment oxygen uptake, hypolimnetic oxygen deficit and primary production in lake Esrom,Demark.Verh int Verein theor angew[J].Limmol,1972,18:134-139.
    [66]Ernest, A., Matson, J.. Pollution indicators and other microorganisms in river sediment[J]. Journal WPCF,1978,50:13-19.
    [67]Kreutzberger, A., W.. Impact of sedimentson dissolved oxygen concerntrations following combined sewer overflows[J]. Journal WPCF,1980,52:192-201.
    [68]George, T., Bowman, W., et al. Sediment oxygen demand techniques:A review and comparison of laboratory and in situ system[J]. Water Res.1980,14:491-499.
    [69]Walker, R.'R., Snodgrass, J. W.. Model for sediment oxygen demand'in lakes[J]. Journal of Environmental Engineer,1986,1112(1):25-43.
    [70]Cantwell, M.G., Burgess, M.G., Kester, D.R.. Release and Phase Partitioning of M etals from Anoxic Estuarine Sediments during Periods of Simulated Resuspension[J]. Environ. Sci. Technol,2002, 36:5328-5334.
    [71]Cappuyns, V., Swennen, R.. Kinetics of element release during combined oxidation and pHstat leaching of anoxic river sediments[J]. Appl. Geochemistry,2005,20:1169-1179.
    [72]Eggleton, J., Thomas, K.V.. A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events[J]. Environ Int,2004,30:973-980.
    [73]陈华林,陈英旭.污染底泥修复技术进展[J].农业环境保护,2002,21(2):179-182.
    [74]Azcue J. M., Zeman A. J., Alena, M., et al. Assessment of sediment and porewater after one year of sub aqueous capping of contaminated sediments in Hamilton Harbour, Canada[J].Wat Sci Tech,1998, 37(6-7):323-329.
    [75]敖静.污染底泥释放控制技术的研究进展[J].环境保护科学,2004,30:29-35.
    [76]Ripl W.. Biochemical oxidation of polluted lake sediment with nitrate-A new restoration method [J]. Ambio,1976,5:132-135.
    [77]赵景联.环境修复原理与技术[M].化学工业出版社,2006:24-29.
    [78]Acar, Y. B., Alshawabkeh, A. N.. Principles of electrokinetic remediation[J]. Environ. Sci. Technol., 1993,27 (13):2638-2647.
    [79]Acar, Y. B., Gale, R. J., Alshawabkeh, A. N., et al.. Electrokinetic remediation:basics and technology status [J]. J. Hazard. Mater.,1995,40:117-137.
    [80]Mulligan, C. N., Yong, R. N., Gibbs, B. F.. Remediation technologies for metal-contaminated soils and groundwater:an evaluation[J]. Eng. Geol.,2001,60:193-207.
    [81]Mulligan, C. N., Yong, R. N., Gibbs, B. F.. Surfactant-enhanced remediation of contaminated soil:a review [J]. Eng. Geol.,2001,60:371-380.
    [82]王业耀,孟凡生,陈锋.阴极pH控制对污染土壤电动修复效率的影响[J].环境科学研究,2007,20(2):36-41.
    [83]周东美,仓龙,邓昌芬.络合剂和酸度控制对土壤铬电动过程的影响[J].中国环境科学,2005,25(1):10-14.
    [84]Papasiopi, N., Shen, L., Kontopoulos, A.. Removal of heavy metals from calureous contaminated soil by EDTA leaching[J]. Water, Air& Soil Pollution,1998,102(3):1-15.
    [85]罗启仕,王慧,张锡辉,等.电动力学技术强化原位生物修复研究进展[J].环境污染与防治,2004,26(4):268-271.
    [86]陆小成,陈露洪,徐泉,等.污染土壤电动修复增强方法研究进展[J].环境污染治理技术与设备,2005,6(1):14-24.
    [87]张锡辉,王慧,罗启仕,等.电动力学技术在受污染地下水和土壤修复中新进展[J].水科学进展,2001,12(2):249-255.
    [88]周东美,邓昌芬.重金属污染土壤的电动修复技术研究进展[J].农业环境科学学报,2003,22(4):505-508.
    [89]Page, M. M., Page, C. L.. Electroremediation of contaminated soils[J]. J. Environ. Eng., 2002,128(3): 208-219.
    [90]Polcaro, A. M., Mascia, M., Palmas, S., et al.. Electrochemical oxidation of phenolic and other organic compounds at boron doped diamond electrodes for wastewater treatment:effect of mass transfer[J]. Ann Chim.,2003,93(12):967-976.
    [91]Juttner, K., Galla, U., Schmieder, H.. Electrochemical approaches to environmental problems in the process in dustry[J]. Electrochimica Acta,2000,45:2575-2594.
    [92]Murphy, O. J., Hitchens, G. D., Kaba, L., et al. Direct electrochemical oxidation of organics for wastewater treatment [J]. Water Res.,1992,26(4):443-451.
    [93]Qiang, Z. M., Chang, J. H., Huang, C. P.. Electrochemical regeneration of Fe2+ in Fenton oxidation processes[J]. Water Res.,2003,37:1308-1319.
    [94]Wang, Q. Q., Lemley, A. T.. Kinetic model and optimization of 2,4-D degradation by membrane anodic Fenton treatment[J]. J.Agric, Food Chem.,2002,50:2331-2337.
    [95]Elliot, H.A., Brown, G.A., Comparative evaluation of NTA and EDTA for extractive decontamination of Pb-polluted Soil[J]. Water, Air & Soil Pollution,1989,45:361-369.
    [96]Cabrera-Guzman, D., Swartzbaugh, J. T., Welsman, A. W.. The use of electrokinetics for hazardous waste site remediation[J]. J Air Waste Man Assoc,1990,40:1670-1676.
    [97]Lageman, R.,Wieberen, P., Seffinga, G.. Electro-reclamation:theory and practice[J]. Chem Ind,1989, 9:585-590.
    [98]Alshawabkeh, A. N., Acar, Y. B.. Removal of contaminants from soils by electrokinetics:a theoretical treatise[J]. J Environ Sci Health,1992, A27:1835-1861.
    [99]Lageman, R.. Electroreclamation[J]. Environ Sci & Technol,1994,27:2648-2650.
    [100]Shapiro, A. P., Probstein, R. F.. Removal of contaminants from saturated clay by electroosmosis[J]. Environ Sci & Technol,1993,27:283-291.
    [101]Hussain, S., Siddique, T., Arshad, M., et al. Bioremediation and Phytoremediation of Pesticides: Recent Advances[J]. Critical Reviews in Envitonmental Science and Technology,2009,10 (39):843-907.
    [102]da Silva, A. C., de Oliveira, F. S., Bernardes, D. S., et al. Bioremediation of Marine Sediments Impacted by Petroleum. Applied Biochemistry and Biotechnology,2009,153(1-2):58-66.
    [103]Horng, R.S., Kuei, C.H., Chen, W.C., Enhancement of Aromatic Hydrocarbon Biodegradation by Toluene and Naphthalene Degrading Bacteria Obtained from Lake Sediment:The Effects of Cosubstrates and Cocultures[J]. Journal of Environmental Engineering-ASCE,2009,135(9):854-860.
    [104]Kuhn, T.K., Hamonts, K., Dijk, J.A., et al. Assessment of the Intrinsic Bioremediation Capacity of an Eutrophic River Sediment Polluted by Discharging Chlorinated Aliphatic Hydrocarbons:A Compound-Specific Isotope Approach[J]. Environmental Science & Technology,2009,43(14): 5263-5269.
    [105]Renholds, J.. In situ treatment of contaminated sediments[R]. Technology status report prepared for the U. S. EPA Technology Innovation office. Washington, D. C.1998,7-9.
    [106]MarUke, M., Ferdin A., Vlerken, V.. Chances for biological techniques in sediment remediation[J]. Wat Sci Tech.1998,37 (6-7):345-353.[107]武燕杰,万红友,阚灵佳.湖泊富营养化的生物修复及其展望[J]:环保科技,2008,14(1)45-48.
    [108]戴兴春,徐亚同,黄民生.污染环境中微生物修复的几种办法[J].上海化工,2004(1):10-12.
    [109]姜应和,宋涛.受污染水体的水质恢复方法[J].环境污染治理技术与设备,2003,4(2):69-72。
    [110]孙傅,曾思育,陈吉宁.富营养化湖泊底泥污染控制技术评估[J].环境污染治理技术与设备,2003,4(8):61-64.
    [111]曹式芳,庞金钊,杨宗政,等.生物技术治理富营养化景观水体的研究[J].天津轻工业学院学报,2002,12(4):1-3.
    [112]方一丰,黄光团,林逢凯,等.景观水原位修复的生物激活剂研究[J].净水技术,2005,24(2):5-8.
    [113]唐玉斌,郝永强,陆柱,等.景观水体的生物激活剂修复[J].城市环境与城市生态,2003,16 (4):37-39.
    [114]庞金钊,杨宗政,孙永军,等.投加优势菌净化城市湖泊水[J].中国给水排水,2003,19(6):51-52.
    [115]刘春光,王雯,庄源益.湖泊富营养化控制理论与技术[J].干旱环境监测,2004,18(1):16-19.
    [116]Thevanayagam, S., Rishindran, T.. Injection of nutrients and TEAs in clayey soils using electrokinetics[J]. J. Geotech. Geoenviron. Eng.,1998,124(4):330-338.
    [117]Acar, Y. B., Rabbi, M. F., Ozsu, E. E.. Electrokinetic injection of ammonium and sulfate ions into sand and kaolinite beds[J]. J. Geotech. Geoenviron Eng.,1997,123(3):239-249.
    [118]Lopez, A., Exposito, E., Anton, J., et al. Use of Thiobacillus ferrooxidans in a coupled microbiological electrochemical system for wastewater detoxification[J]. Biotechnol. Bioeng.,1999,63: 79-86.
    [119]Niqui-Arroyo, J. L., Bueno-Montes, M., Posada-Baquero, R., et al. Electrokinetic enhancement of phenanthrene biodegradation in creosote-polluted clay soil[J]. Environmental Pollution,2006, 142:326-332.
    [120]Wick, L. Y., Mattle, P. A., Wattiau, P., et al. Electrokinetic transport of PAH2degrading bacteria in model aquifers and soil [J]. Environ. Sci. Technol.,2004,38 (17):4596-4602.
    [121]Kim, S. J., Park, J. Y., Lee. Y. J., et al. Application of a new electrolyte circulation method for the ex situ electrokinetic bioremediation of a laboratory prepared pentadecane contaminated kaolinite [J]. J. Hazard Mater.,2005, B118 (1-3):171-176.
    [122]Reddy, K. R., Chinthamreddy, S., Saichek, R. E., et al. Nutrient amendment for the bioremediation of a chromium contaminated soil by electrokinetics[J]. Energ. Sources,2003,25(9):931-943.。
    [123]Ho, S. V., Athmer, C., Sheridan, P. W., et al. The Lasagna technology for in situ soil remediation.1. small field test [J]. Environ. Sci. Technol.,1999,33 (7):1086-1091.
    [124]Ho, S.V., Athmer, C., Sheridan, P. W., et al. The Lasagna technology for in situ soil remediation.2. large field test [J]. Environ. Sci. Technol.,1999,33 (7):1092-1099.
    [125]Jackman, S. A., Maini, G., Sharman, A. K., et al. Electrokinetic movement and biodegradation of 2,4-dichlorophenoxyacetic acid in silt soil[J]. Biotechnol. Bioeng.,2001,74 (1):40-48.
    [126]DeFlaun, M. F., Condee, C. W.. Electrokinetic transport of bacteria [J]. J.Hazard. Mater.,1997,55 (1-3):263-277.
    [127]Yee, D. C., Chauhan, S., Yankelevich, E., et al. Degradation of perchloroethylene and dichlorophenol by pulsed-electric discharge and bioremediation [J]. Biotechnol. Bioeng.,1998,59 438-444.
    [128]Luo, Q. S., Zhang, X. H., Wang, H., et al. The use of non-uniform electrokinetics to enhance in situ bioremediation of phenol-contaminated soil [J]. J. Hazard. Mater.,2005, B121 (1-3):187-194.
    [129]Ho, S. V., Sheridan, P. W., Athmer, C. J., et al. Integrated in situ soil remediation technology:the Lasagna process[J]. Environ. Sci. Technol.,1995,29 (10):2528-2534.
    [130]Maini, G., Sharman, A. K., Sunderland, G., et al.. An integrated method incorporating sulfur-oxidizing bacteria and electrokinetics to enhance removal of copper from contaminated soil[J]. Environ. Sci. Technol.,2000,34 (6):1081-1087.
    [131]Natarajan, K. A.. Effect of applied potentials on the activity and growth of Thiobacillus ferrooxidans[J]. Biotechnol. Bioeng.,1992,39 (9):907-913.
    [132]Acar, Y. B., Ozsu, E. E., Alshawabkeh, A. N., et al. Ehance soil bioremediation with electroic fields[J]. Chemtech,1996(4):40-44.
    [133]Marks, R. E., Acar, Y, B., Gale, R.J., In situ remediation of contaminated soils containing hazardous mixed wastes by bioelectrokinetic remediation and other comprehensive technologies[A]. In:Remediation of hazardous waste contaminated soils[C]. New York:Marcel Dekker Inc,1994,405-427.
    [134]Chen, Y. X. Hua, Y. M. Zhang, S. H., et al.Transformation of heavy metal forms during sewage sludge bioleaching[J]. J Hazardous Materials,2005,123:196-202.
    [135]Azzam, R., Oey, W.. The utilization of electrokinetics in geo technical and environmental engineering. Transport in Porous Media,2001,42:293-341.
    [136]Matsumoto, N., Nakasono, S., Ohmura, N., et al. Extension of logarithmic growth of Thiobacillus ferrooxidans by potential controlled electrochemical reduction of Fe (Ⅲ) [J]. Biotechnol. Bioeng.,1999, 64 (6):716-721.
    [137]Borresen, M.. Increased mobility for nutrients in fine grained soil using electrokinetics, in: Proceeding of the Third Symposium, and Status Report on Electrokinetic Remediation-EREM-2001, Karlsruhe,38,1-13, April 18-20,2001.
    [138]Yee, D. C., Chauhan, S., Yankelevich. E., et al. Degradation of perchloroethylene and dichlorophenol by pulsed-electric discharge and bioremediation [J]. Biotechnol. Bioeng.,1998,59: 438-444.
    [139]罗启仕,张锡辉,王慧,等.非均匀电动力学修复技术对土壤性质的影响[J].环境污染治理技术与设备,2004,5(4):40-45.
    [140]Roulier, M., Kemper, M., Abed, A.S., et al.. Feasibility of electrokinetic soilremediation in horizontal Lasagna TM cells[J]. J Hazardous Mater,2000, B77:161-176.
    [141]顾继光,周启星,王新.土壤重金属污染治理途径及研究进展.应用基础与工程科学学报,2003,11(2):143-151.
    [142]甘义群,郭永龙,武汉东湖富营养化现状分析及治理对策[J].长江流域资源与环境,2004,13(3):277-280。
    [143]王北威,唐非,施敏芳.汉江、东湖水中非挥发性有机物比较研究[J].环境科学与技术,2004(8):55-57。
    [144]王海,王春霞,陈伟.武汉东湖表层沉积物有机物污染状况[J].环境科学学报,2002,22(4):434-438.
    [145]刘振东,刘庆生,杜耘.武汉市东湖沉积物重金属与城市污染环境的关系[J].湖泊科学,2006,18(1):79-85。
    [146]喻劲松,周国华,马生明.武汉主要湖泊重金属污染的特点研究[J].物探化探计算技术,2007,29:243-248。
    [147]陈春华,万昆.武汉东湖底泥中Pb、Cd、Cu、Fe垂直分布研究[J].江汉大学学报(自然科学版),2006,34(3):27-29.
    [148]张建明,余建青,刘妍.洞庭湖富营养评价指标分析及富营养化评价[J].内陆水产,2006,2:43-44.
    [149]国家环保总局编,水和废水监测分析方法(第四版)[M].中国环境科学出版社,2006.
    [150]中国科学院南京土壤研究所编.土壤理化分析(第一版)[M].上海:上海科技出版社,1978,57-210。
    [151]Tessier, A. W.. Sequential extraction procedure for the speciation of particulate trace metals[J]. Anal Chem.,1979,51(7):844-850。
    [152]李军,王淑莹.水科学与工程实验技术[M].北京化学工业出版社,2001:45-67.
    [153]吴会民,林文辉,吴淑勤,王亚军.鳜养殖池塘底泥脱氢酶活性测定方法的研究[J].大连水产学院学报,2007,22(4):315-318.
    [154][苏]Φ.X 哈兹耶夫.土壤酶活性[M].北京:科学出版社,1980.
    [155]Garry, S., Sayler, Puziss, M., et al. Alkaline phosphatase assay for freshwater sediments:application to perturbed sediment system [J]. Applied and Environmental Microbiology,1979,38(5):922-927.
    [156]Appan, A., Ting, D. S.. A laboratory study of sediment, phosphorus flux in two tropical reservoir[J]. Water Science and Technology,1996,34 (7-8):45-52.
    [157]Gomez, E., Durillon, C, Rofes, G., et al. Phosphate adsorption and release from sediments of brackish lagoons:pH, O2 and loading influence[J]. Water Research,1999,33(10):2437-2447.
    [158]Petticrew, E. L., Arocena, J. M.. Evaluation of iron-phosphate as a source of internal take phosphorus loadings[J]. The Science of the Total Environment,2001,266:87-93.
    [159]Jiang, X., Jin, X.C., Yao, Y., et al. Effects of oxygen on the release and distribution of phosphorus in the sediments under the light condition[J]. Environmental Pollution,2006,141:482-487.
    [160]余恒,王红磊.黄河河口磷酸盐的缓冲作用探讨[J].四川环境,1999,18(3):40-43.
    [161]朱广伟,秦伯强,高光.浅水湖泊沉积物磷释放的重要因子——铁和水动力[J].农业环境科学学报,2003,22(6):762-764.
    [162]范成新,王春霞.长江中下游湖泊环境地球化学与富营养化[M].北京:科学出版社,2007:77-81.
    [163]Rolley H L J., Owens M.. Oxygen consumption rates and some chemical properties of river muds[J]. Water Research,1967,1:759-766.
    [164]Wang, W.C.. Fractions of sediment oxygen demand[J]. Water Research,1980,14:603-612.
    [165]须藤隆一.水环境净化及废水处理微生物学[M].中国建筑工业出版社,1988:330-335。
    [166]Zhou, A. M., Wang, D. S., Tang, H. X.. Phosphorus Fractionation and Bio-availability in Taihu Lake (China) Sediments[J]. Journal of Environmental Science,2005,17(3):384-388.
    [167]Battistoni, P., FaVa, G., Pava, P., et al.. Phosphate removalin anaerobic liquors by struvite crystallization without addition of chemicals preliminary results[J]. Wat Res.1997,31:2925-2929.
    [168]Song, Y., Hahn, H. H., Hoffnann, E.. The effect of carbonate on the precipitation of calcium phosphate[J]. Environ Technol,2002,23:207-215.
    [169]Berman, T.. Differential uptake of orthophosphate and organic phosphorus substrates by bacteria and alage in Lake Kinneret [J]. Plant. Res,1988,10:1239-1249.
    [170]Wynne, D.. Altenlations in activity of phosphatases during the Peridinium bloom in Lake Kinneret[J]. Physiol PI,1977,40:219-224.
    [171]Moller, M., Myklestad, S., Huang, A.. Alkaline and acid phosphatase of the marine diatoms Chaetoceras affinis var. Willer(Gran)Hustedt and Skeletonema costatum(Grev.)Cleve[J]. J Exp Mar Biol Ecol,1975,19:217-226.
    [172]Chrost, R. J., Siuda, W., Halemejko, G. Z.. Longterm studies on alkaline phosphatase activity (APA) in a lake with fish-aquaculture in relation to lake eutrophication arid phosphorus cycle[J]. Arch Hydrobio// Suppl,1984,70:1-32.
    [173]Taga, N., Kobori, H.. Phosphatase activity in eutrophic Tokyo Bay[J]. Mar Biol,1978,49:223-229.
    [174]Kuenzler, E. J., Perras, J. P.. Phosphatase of marine algae[J]. Biol Bull W Wodds Hole,1956,128: 271-284.
    [175]Wauer, G., Gonsiorczyk, T., Casper, P.. Immobilisation and phosphatase activities in lake sediment following treatment with nitrate and iron[J]. Limnologica,2005,35:102-108.
    [176]宗栋良,张光明.硝酸钙在底泥修复中的作用机理及应用现状[J].中国农村水利水电,2006(4):52-54.
    [177]Varjo, E., Liikanen, A., Salonen, V. P., et al. A new gypsum-based technique to reduce methane and phophorus release from sediments of eutrophied lakes[J].Water Research,2003,37:1-10。
    [178]Rydin, E.. Potentially Mobile Phosphorus in Lake Erken Sediment [J]. Water Research,2000,34(7): 2037-2042.
    [179]Psenner, R. B., Bostrm, M. Dinka, K. Petterson, et al. Fractionation of P in suspended matter and sediments[J]. Arch. Hydrobiol. Beih. Ergebn. Limnol.1988,30:98-109.
    [180]Nelson, D.S., Joe, D.. Use of microbial enzymes in detecting pollution in estuarine environment in Goa[J]. Pollut. Res.,1991,18(3):315-320.
    [181]Weng, H. X., Qin, Y. C., Sun, X. W., et al. Iron and phosphorus effects on the growth of Cryptomonas sp.(Cryptophyceae) and their availability in sediments from the Pearl River Estuary, China. Estuarine, Coastal and Shelf Science,2007,73(3-4):501-509.
    [182]周凤霞,陈剑虹.淡水微型生物图谱[M].北京:化学工业出版社,2005.
    [183]李卓佳,林亮,杨莺莺.芽孢杆菌制剂对虾池环境微生物群落的影响[J].农业环境科学学报,2007,26(3):1183-1189.
    [184]Pascual, J. A., Garcia, C. T., Hernandez, J. L., et al. Soil microbial activity as a biomarker of degradation and remediation processes[J]. Soil Biology & Biochemistry,2000,32:1877-1883.
    [185]Zaiss. U.. The Sediments of the new artificial lake bostalsee (Saarland, Germany), with particular reference to microbial activity[J]. Archiv fur Hydrobiologie,1981,92(3):346-358.
    [186]Nan. C., Vance, J.. A Entry. Soil properties important to the restoration of a Shasta red fir barrens in the Siskiyou Mountains[J]. Forest Ecology and Management,2000,138:427-434.
    [187]Chu, H.Y., Lin, X.G., Takeshi, F.J., et al. Soil microbial biomass, dehydrogenase activity, bacterial community structure in response to long-term fertilizer management. Soil Biology & Biochemistry,2007, 39:2971-2976.
    [188]Raquel, B., Felicitas, V., Antoni, S.. Dehydrogenase activity as a method for monitoring the composting process[J]. Bioresour Technol,2008,99(4):905-908.
    [189]周易勇,付永清.水体磷酸酶:来源、特征及其生态学意义[J].湖泊科学,1999,11(3):274-282.
    [190]Fikret, K., Heitmann, J. A, Joyce, T. W.. Cellulose Chem.Technol.1996,30:49-56.
    [191]Gatesoupe, F. J.. The use of probiotics in aquaculture [J]. Aquaculture,1999,180:147-165.
    [192]曹煜成,李卓佳,冯娟.芽孢杆菌胞外产物对凡纳滨对虾蛋白酶活性影响的体外试验[J].大连水产学院学报,2007,22(5):372-376.
    [193]陈宏伟,朱蕴兰,苏贤岩,等.LAS高抗菌株的降解性能研究[J].安徽农业科学,2007,35(7):1885-1886.
    [194]孟凡生,陈锋,王业耀.污染土壤电动修复正交试验研究[J].环境卫生工程,2007,15(1):48-50.
    [195]Virkutyte, J., Sillanpaa, M., Latostenmaa, P.. Electrokinetic soil remediation critical overview[J]. The Science of the Total Environment,2002,289:97-121.
    [196]Page, M. M., Page, C. L.. Electro remediation of contaminated soils[J]. J. Environ. Eng.,2002, 128(3):208-219.
    [197]Azzam, R., Oey, W.. The utilization of electrokinetics in Geotechnical and environmental engineering[J]. Transport in Porous Media,2001,42:293-314。
    [198]Hamed, J. T., Bhadra, A.. Influence of Current and pH on Electrokinetics. J. Hazard Mater.,1997, 55:279-294.
    [199]Stegmann, R., Brunner, G., Calmano, W., et al. Treatment of Contaminated Soil:Fundamentals, Analysis, Applications[M]. Springer-Verlag, Berlin,2001.
    [200]Chapelle, F. H.. Ground-water Microbiology and Geochemistry[M].2nd ed., John Wiley & Sons, New York,2001.
    [201]Bradley, P.M.. History and ecology of chloroethene biodegradation:a reveiw [J]. Biorem.2003,7: 81-109.
    [202]Tiehm, A., Stieber, M., Werner, P., Frimmel, F.H.. Environ. Sci. Technol.1997,31:2570-2575.
    [203]Harbottle, M.J., Lear, G, Sills, G C., et al.. Enhanced biodegradation of pentachlorophenol in unsaturated soil using reversed field electrokinetics[J]. Journal of Environmental Management,2009, 90(5):1893-1900.
    [204]Tiehm, A., Lohner, S. T., Augenstein, T.. Effects of direct electric current and electrode reactions on vinyl chloride degrading microorganisms[J]. Electrochimica Acta,2009,54:3453-3459.
    [205]Shi, L., Muller, S., Harms, H., et al.. Effect of electrokinetic transport on the vulnerability of PAH-degrading bacteria in a model aquifer, Environ Geochem Health,2008,30:177-182.
    [206]Benmoussa, H., Tyagi, R. D., Campbell, G.C.. Simultaneous sewage sludge and metal leaching using an internal loop reactor[J]. Water Research,1997,48:577-587.
    [207]Blais, J. F., Tyagi, R. D., Auclair, J.C.. Bioleaching of metal from sewage sludge:microorganisms and growth kinetics[J]. Water Research,1993,27:101-110.
    [208]张俊,范伟平,方萍,等.底物对亚铁硫杆菌生物氧化过程的影响[J].南京化工大学学报,2001,23(6):37-41.
    [209]Chen, S. Y., Lin, J. G.. Bioleaching of heavy metals from sediment:significance of pH [J]. Chemosphere,2001,44:1093-1102.
    [210]Paipa, C., Mateo, M., Godoy, I.. Comparative study of alternative methods for the simultaneous determination of Fe in leaching solutions and in acid mine drainages[J]. Mineral Engineering,2005,18: 1116-1119.
    [211]Tessier, A. W.. Sequential extraction procedure for the speciation of particulate trace metals[J]. Anal Chem,1979,51(7):844-850.
    [212]Soon, O. K., Seung, H. M., Kyoung, W. K., et al.. Pilot-scale study on the ex-situ electmkinetic removal of heavy metals from municipal wastewater sludges[J]. Water Research,2002,36:4765-4774.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700