用户名: 密码: 验证码:
阳离子脂质体基因转染能力及其环境效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基因治疗是癌症等疾病的有效治疗手段,高效、安全的基因载体是基因治疗成功的关键技术之一。阳离子脂质体因其安全性高、易生产、低免疫原性以及基因递送的有效性日益受到广泛关注,基于阳离子脂质体的复合载体也显示出良好的发展前景。新的类脂分子不断涌现,研究结构与转染效率的构效关系,细胞递送机制对于提高转染效率和指导类脂分子的合成以及化学修饰具有重要意义。
     论文以4类新型季铵盐表面活性剂为阳离子类脂制备脂质体,采用TEM, DLS,凝胶电泳对脂质体进行物化性质表征。结果表明,脂质体平均粒径为100-300nm,脂质体与DNA结合能力强。以GFP和荧光素酶为报告基因,进行了转染能力评价。结果显示,部分阳离子脂质体对Hela和Hep-2细胞可实现高效转染。构效关系研究表明,C3系列双子型双电荷头部的基因载体相对于单子型单电荷C1系列以及增加延伸区的单电荷C2系列和双电荷C4系列具有较高的细胞转染能力,其中,化合物C3-12的基因转染能力较高。
     构建了低分子量壳聚糖/脂质体/pDNA三元非共价键新型复合载体,显著提高了脂质体的基因递送核酸能力。凝胶延滞和AFM实验表明,复合载体与pDNA结合能力强,可完全延滞pDNA。脂质体/壳聚糖/pDNA复合载体形态呈现未完全压缩的球形,短棒状和不规则的聚集块。非紧密包裹的复合物形态可能有利于提高基因转运能力。复合载体中,脂质体/pDNA以及壳聚糖/pDNA比例对转染效率影响较大,同时壳聚糖没有增加脂质体的细胞毒性,甚至可以减少某些脂质体的细胞毒性。基于脂质体和壳聚糖的复合载体具有较强的核酸递送能力和较低的细胞毒性,是基因治疗的潜在新型非病毒基因载体。
     通过分子标记,利用倒置荧光显微镜考察了C3系列脂质体的跨膜过程,利用CLSM对脂质体/聚合物/pDNA复合载体的基因转运机理进行了研究。结果表明,壳聚糖提高了基因载体的核输送能力,4h后pDNA可以进入细胞核。
     论文使用的新型类脂分子为季铵盐表面活性剂,这些化合物排放入水体,对水生生物可能会产生毒害作用。本文对四类阳离子类脂共12个化合物进行了环境生态效应评估,对其毒性和生物降解性进行了研究。对此类新兴污染物的环境生态效应及作用机理研究将指导基于环境考虑的高效、低毒的类脂分子设计合成。
     首先对四类阳离子类脂12个化合物进行了Hela和MCF-7的细胞毒性研究,脂质体在两种人体癌细胞中的细胞毒性普遍较低,优化条件下,细胞存活率均在75%以上,添加壳聚糖可以降低阳离子基因载体的细胞毒性。其次,通过栅藻、裙带菜配子体和发光细菌毒性测试验证类脂具有生物毒性效应。对于栅藻,12个化合物的48和72h的ICso值除了C2-1472h为2.69mg/L外,其余均小于2mg/L。高浓度阳离子类脂可抑制光合作用,过氧化物酶活性,降低生存能力。对于裙带菜配子体,在低浓度(<1.5mg/L)时,部分化合物对裙带菜配子体的生长起到刺激作用,但随着时间的增长,其刺激作用慢慢减弱,转变为抑制作用。C3-12毒性最强,C2-14毒性最弱。48、72h的IC50分别为1.59mg/L、1.85mg/L及8.90mg/L、16.01mg/L。对于发光细菌而言,基因载体浓度低时,促进发光细菌生长,而高浓度抑制发光。构效关系研究表明,基因载体毒性大小递减一般顺序为:对于相同的头部基团和类似的分子结构,随着疏水链增长,毒性下降;头部毒性大小为:双电荷>单电荷。其毒性主要源于电荷效应。
     季铵盐在环境中可长期存在,其降解对于维持环境低浓度至关重要。利用活性污泥法进行了类脂分子生物降解度的测定。结果表明,氨基甲酸酯型季氨盐基因载体生物降解能力强。96小时最终降解(TOC)显示,对于12碳尾载体C3-12为69.0%,C1-12为61.1%,C2-12为73.7%,C4-12为68.7%。对于相同头部基团类脂分子的降解率规律为,随着疏水链增长,降解率下降。
     论文研究表明,部分新型类脂分子具有较高核酸递送能力,同时,基于脂质体开发的新型壳聚糖/脂质体/pDNA新型复合载体,显著提高了核酸递送能力。两者均为基因治疗提供具有潜力的新型非病毒载体。对于类脂结构与高效核酸递送能力的研究以及基于环境考虑的类脂结构与毒性和生物降解能力的相关性研究将对发展新的高效、低毒、可生物降解新的类脂分子提供理论依据和参考。
Gene therapy is expected to be an effective method to treat cancer and other diseases. The success of gene therapy highly depends on the development of effective and secure delivery vectors. Cationic liposome has advantages of safety, easy production, much lower immunotoxicity and effectiveness in gene delivery. Therefore, much attention has been paid to cationic liposome. Research has shown that the complex vector can be used with good prospect. New lipid molecules were synthesized continuously. Research about relationship between chemical structure with higher transfection efficiency and intracellular pathway of liposome would have significance in lipid synthesis and modification.
     Four types of cationic lipids-quaternary ammonium based-surfactants gene delivery vectors were used to prepare cationic liposomes. They were characterized by TEM, dynamic light scattering and gel retarding. The average particle sizes of liposomes were changed from100to300nm. The liposomes could bind DNA efficiently. The transfection efficiency of liposome/pDNA complexes was investigated by using GFP and luciferase as marker gene, which showed higher transfection efficiency in Hela and Hep-2cells. Structure-activity relationship research showed that lipid of gemini headgroup and12carbon hydrocarbon tails of C3lipid used for gene delivery obtained higher transfection efficiency than monovalent C2and multivalent C4lipids.
     The novel type of stable ternary complexes was formed by mixing low molecular weight chitosan with cationic liposome/pDNA lipoplex via non-covalent conjugation for the efficient delivery of plasmid DNA. They were characterized by atomic force microscopy (AFM), gel retarding. The complexes could bind pDNA effectively and retard it completely. Lipopolyplexes were in uncompacted spheroids, short rod-and irregular lump. Uncompacted complex morphology would increase gene delivery ability. Liposome/pDNA and chitosan/pDNA weight ratio affected transfection efficiency. Chitosan could decrease cell toxicity of liposomes. Chitosan enhanced gene delivery of cationic liposome effectively with low cell toxicity and new ternary complex would be used as novel non-vial vector.
     Liposomes C3were marked by NDB-PE, which could enter cell through membrane efficiently. The intracellular trafficking and mechanism of ternary complexes were examined by confocal laser scanning microscopy. Rapid pDNA delivery to the nucleus was obtained after4h transfection by chitosan enhanced cationic liposome.
     Cationic lipids used in this paper belong to quaternary ammonium compounds (QACs). Most uses of QACs led to their release into wastewater treatment systems or the environment and were harm to organisms in water body. However, little information was available on the ecological properties of lipid-based surfactants. Four series and twelve compounds were used to evaluate their ecological properties. Biological toxicity and biodegradation ability were studied in this paper. Based on environmental considerations, high efficiency and low toxicity molecular design would obtain support form these data.
     Four series of cationic liposomes and twelve compounds were used to evaluate Hela and MCF-7cell toxicity. Lower cell toxicity was obtained and cell viability was higher than75%. Chitosan could decrease cell toxicity of liposomes. Acute toxicity tests on freshwater algae Scenedusmus obliquus and as well as on saltwater algae Undaria pinnatifida gametophates and luminescent bacteria were carried out to assess the aquatic toxicity of the cationic surfactant based lipid. IC50value of Scenedusmus sp were below2mg/L at48h and72h except for C2-14(72h, IC50was2.69mg/L). Higher concentration lipids could inhibit photosynthesis and POD activity, thus decrease algae survival ability. On Undaria pinnatifida gametophates, lower concentration lipids could stimulate gametophate growth and higher concentration lipids inhibit its growth. C3-12obtained the highest toxicity at48and72h with IC501.59mg/L and8.90mg/L, whereas C2-14obtained the lowest toxicity at48and72h with IC501.85mg/L and16.01mg/L. About luminescent bacteria, Lower dose of lipids increased the growth of bacteria and higher dose inhibited luminescence. Study of relationship between structure and activity showed that for the same head group and similar molecular structure, the toxicity became decreased with longer as the chain length increased. Lipids of multivalent headgroup had higher toxicity than that of monovalent headgroup. The toxicity mainly belonged to charge effects.
     QACs were persistent in the environment. Biodegradation of lipid vector would be imperative in reducing surfactants concentration in urban wastewater close to the back-ground levels. Ultimate biodegradation was examined by activated sludge method. TOC results showed that the (?)ltimate biodegradation of C3-12, Cl-12, C2-12, and C4-12with the same carbon tails were69.0%,61.1%,73.7%and68.7%. The biodegradation efficiency decreased with hydrophobic chain length increased of the same lipid headgroup.
     New synthesized lipid molecules had higher gene delivery ability. Novel chitosan/liposome/pDNA ternary complexes significantly improved gene delivery ability. Both types of non-viral gene vector had potential ability used for gene therapy. The study of lipid structure and activity of gene delivery, toxicity, and biodegradation allowed the development of lipid design for high efficiency, low toxicity and high biodegradation efficiency and provided theory basis and reference for lipid synthesis.
引文
[1]Niidome T, Huang L. Gene Therapy Progress and Prospects:Nonviral vectors [J]. Gene Therapy,2002, 9:1647-1652.
    [2]Hirko A., Tang F, Hughes J A. Cationic lipid vectors for plasmid DNA delivery [J]. Current Medicinal Chemistry,2003,10:1185-1193.
    [3]Herweijer H, Wolff J A. Progress and prospects:naked DNA gene transfer and therapy [J]. Gene Therapy,2003,10:453-458.
    [4]Anderson, W F. Human gene therapy [M]. Nature,1998,392:25-30.
    [5]Cavazzana-Calvo, M, Hacein-Bey, S, de Saint Basile, G, et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease [J]. Science.2000,288:669-672.
    [6]徐辉碧.纳米医药[M].北京:清华大学出版社.2004,163.
    [7]Gao X, Kim K S, Liu D. Nonviral Gene Delivery:What We Know and What Is Next [J]. The AAPS Journal,2007,9(1):92-104.
    [8]Sato Y, Yamauchi N, Takahashi M. In vivo gene delivery to tumor cells by transferring -streptavidin-DNA conjugate[J]. FASEB J,2000,14:2108-2118.
    [9]Schughart K, Rasmussen U B. Solvoplex synthetic vector for intrapulmonary gene delivery preparation and use [J]. Methods Mol Med,2002,69:83-94.
    [10]Desigaux L, Gourden C, Bello-Roufai M. Nonionic amphiphilic block copolymers promote gene transfer to the lung [J]. Hum Gene Ther,2005,16:821-829.
    [11]Freeman D J, Niven R W. The influence of sodium glycocholate and other additives on the in vivo transfection of plasmid DNA in the lungs [J]. Pharm Res,1996,13:202-209.
    [12]Lemoine J L, Farley R, Huang L. Mechanism of efficient transfection of the nasal airway epithelium by hypotonic shock [J]. Gene Ther,2005,12:1275-1282.
    [13]Barenholz Y. Liposome application:problems and prospects [J]. Curr Opin Colloid Interface Sci,2001, 6:66-77.
    [14]Yang N S, Burkholder J, Roberts B, et al. In vivo and in vitro gene transfer to mammalian somatic cells by particle bombardment [J]. Proc Natl Acad Sci USA.1990,87:9568-9572.
    [15]Dean D A, Machado-Aranda D, Blair-Parks K, et al. Electroporation as a method for high-level nonviral gene transfer to the lung [J]. Gene Ther,2003,10:1608-1615.
    [16]Magin-Lachmann C, Kotzamanis G, Aiuto L, et al. In vitro and in vivo delivery of intact BAC DNA-comparison of different methods [J].J Gene Med,2004,6:195-209.
    [17]Liang H D., Lu Q L., Xue S A. Optimisation of ultrasoundmediated gene transfer (sonoporation) in skeletal muscle cells [J]. Ultrasound Med Biol,2004,30:1523-1529.
    [18]Anwer K, Kao G, Proctor B. Ultrasound enhancement of cationic lipid-medialed gene transfer to primary tumors following systemic administration [J]. Gene Ther,2000,7:1833-1839.
    [19]Mahendra G, Kumar S, lsayeva T, et al. Antiangiogenic cancer therapy by adeno-associated vinis2-mediated stable expression of the soluble FMS-likc tyrosine kinasc-l receptor [J]. Cancer Gene Ther,2005,12(1):26-34.
    [20]Fischer D, Li Y, Ahlemeyer B, et al. In vitro cytotoxicity testing of polycations:influence of polymer structure on cell viability and hemolysis [J]. Biomaterials,2003,24:1121-1131.
    [21]Ogris M, Carlisle R C, Bettinger T, et al. Melittin enables efficient vesicular escape and enhanced nuclear access of nonviral gene delivery vectors [J]. J Biol Chem,2001,276:47550-47555.
    [22]Hong K, Zheng W, Baker, A, et al. Stabilisation of cationic liposome/DNA complexes by polyamines and polyethylenglycol-phospholipid conjugates for efficient in vivo gene delivery [J]. FEBS Lett,1997, 414:187-192.
    [23]Sorgi F L, Bhattacharya S, Huang L. Protamine sulfate enhances lipid-mediated gene transfer [J]. Gene Ther.1997,4 (9):961-968.
    [24]Sato T, Ishii T, Okahata Y. In vitro genedelivery mediated by chitosan. Effect of pH, serum, and molecular mass of chitosan on the transfection efficiency [J]. Biomaterials,2001,22:2075-2080.
    [25]Read M L, Bremner K H, Oupick D, et al. Vectors based on reducible polycations facilitate intracellular release of nucleic acids [J]. J. Gene Med,2003,5:232-245.
    [26]Blessing T, Kursa M., Holzhauser R, et al. Different srategies for frmation of PEGylated EGF-cnjugated PEI/DNA cmplexes for trgeted gne delivery [J]. Bioconjugate Chem,2001,12 (4):529-537.
    [27]Felgner P L, Gadek T R, Holm M. Lipofection:a highly efficient, lipid-mediated DNA-transfection procedure [J]. Proc Natl Acad Sci USA,1987,84:7413-7417.
    [28]Hongtao L, Shubiao Z, Bing W. Toxicity of cationic lipids and cationic polymers in gene delivery [J]. Journal of Controlled Release.2006,114(1):100-109.
    [29]Zhdanov R I, Podobed OV, Vlassov VV. Cationic lipid-DNA complexes-lipoplexes for gene transfer and therapy [J]. Bioelectrochemistry,2002,58:53-64.
    [30]Kozlov L V, Zhdanov R I, Guzova V A, et al. Action of non-viral gene delivery vectors on human complement system:low anticomplementary activity of lipoplexes based on LacZ plasmid and phospholipid/oligocation liposomes [J], Cytobios,2001,106:67-74.
    [31]Lasic D D, Templeton N S. Liposomes in gene therapy [J]. Adv. Drug Deliv. Rev,1996,20:221-266.
    [32]Herscovici J, Egron M J, Quenot A, et al. Synthesis of new cationic lipids from an unsaturated glycoside scaffold [J]. Org. Lett,2001,3:1893-1896.
    [33]王冰,张树彪,周集体,et al.阳离子脂质体介导的基因转移机制[J].中国组织工程研究与临床康复,2011,(15)8:1459-1461.
    [34]Shubiao Z, Yingmei X, Bing W, et al. Cationic compounds used in lipoplexes and polyplexes for gene delivery [J]. Journal of Controlled Release,2004,100:165-180.
    [35]邓英杰.脂质体技术[M].人民卫生出版社.2007.321-329
    [36]Escriou V, Ciolina C. Lacroix F, et al. Cationic lipid-mediated gene transfer:effect of serum on cellular uptake and intracellular fate of lipopolyamine/DNA complexes. Biochim. Biophys [J]. Acta,1998, 1368:276-288.
    [37]Trubeiskoy (?) S. Wong S (?), Subbotir V. et. al. Recharging canonic DNA complexes with highly charged polyanions for in vitro and in vivo gene delivery. Gene Ther,2003,10:261-271.
    [38]Lee CH. Ni Y H. Chen CC. et al. Synergistic effect of polyethylenimine and cationic liposomes in nucleic acid delivery to human cancer cells [J]. Biochim. Biophys. Acta,2003,1611:55-62.
    [39]Lampel P, Eloma M, Ruponen M, et al. Different synergistic roles of small polyethylenimine and Dosper in gene delivery [J]. J. Control. Release,2003,88:173-183.
    [40]Shubiao Z, Yinan Z, Budiao Z. Hybrids of nonviral vectors for gene delivery [J]. Bioconjugate Chem, 2010,21:1003-1009
    [41]Jung J, Matsuzaki T, Tatematsu K. Bio-nanocapsule conjugated with liposomes for in vivo pinpoint delivery of various materials [J]. J.Controlled Release,2008,126:255-264.
    [42]Gao X, Kim K S, Liu D. Nonviral gene delivery:what we know and what is next [J]. The AAPS Journal,2007,9(1):92-104.
    [43]Yew N S, Scheule R K. Toxicity of cationic lipid-DNA complexes [J]. Adv Genet,2005,53:189-214.
    [44]Yew N S, Wang K X, Przybylska M. Contribution of plasmid DNA to infl ammation in the lung after administration of cationic lipid:pDNA complexes [J]. Hum Gene Ther,1999,10:223-234.
    [45]Liu D L, Hu J J, Qiao W H. et al. Synthesis of carbamate-linked lipids for gene delivery [J]. Bioorg. Med. Chem. Lett,2005,15:3147-3150.
    [46]Guo X, Szoka F C, Steric, J. Stabilization of fusogenic liposomes by a low-pH sensitive PEG-diortho ester-lipid conjugate [J]. Bioconjug Chem,2001,12:291-300.
    [47]Elouahabi A, Ruysschaert J M. Formation and intracellular trafficking of lipoplexes and polyplexes [J]. Molecular therapy.2005,11:336-347.
    [48]Escriou V, Ciolina C, Lacroix F, et al. Cationic lipid-mediated gene transfer:effect of serum on cellular uptake and intracellular fate of lipopolyamine/DNA complexes [J]. Biochim. Biophys. Acta,1998, 1368:276-288.
    [49]Zuhorn I S, Visser W H, Bakowsky U, et al. Interference of serum with lipoplex-cell interaction: modulation of intracellular processing [J]. Biochim. Biophys. Acta,2002,1560:25-36.
    [50]Dowty M E, Williams P, Zhang G, et al. Plasmid DNA entry into postmitotic nuclei of primary rat myotubes [J]. Proc. Natl. Acad. Sci,1995,92:4572-4576.
    [51]Kamiya H, Fujimura Y, Matsuoka I, et al. Visualization of intracellular trafficking of exogenous DNA delivered by cationic liposomes [J]. Biochem. Biophys. Res. Commun,2002,298:591-597.
    [52]Pollard H., Remy J S, Loussouarn G, et al. Polyethylenimine but not cationic lipids promotes transgene delivery to the nucleus in mammalian cells [J]. J. Biol. Chem,1998,273:7507-7511.
    [53]郭睿,来肖,赵艳艳,et al.表面活性剂生物降解性研究现状与展望[J].湖北造纸,2010,3:25-28.
    [54]Guo-ying G. Fate, behavior and effects of surfactants and their degradation products in the environment [J]. Environment international,2006,32:417-431.
    [55]Ying G G, Kookana R S, Mallavarpu M. Release behaviour of triazine residues in stabilised contaminated soils [J]. Environ Pollut,2005.134:71-77.
    [56]Kile D E., Chiou C T. Water solubility enhancement of DDT and trichlorobenzcne by some surfactants below and above the critical micelle concentration [J]. Environ Sci Technol,1989.23:832-838.
    [57]Haigh S D. A review of the interaction of surfactants with organic contaminants in soil [J|. Sci Total Environ,1996,185:161-170.
    [58]Nishiyama N., Toshima Y., Ikeda Y. Biodegradation of alkyhrimcthylammonium sahs in activated sludge [J]. Chemosphere,1995,30:593-603.
    [59]Swisher R D. Surfactant biodegradation-Surfactant Science Series [M]. New York:Marcel Dekker. 1987.
    [60]Garcia M T, Ribosa I, Guindulain T, et al. Fate and effect of monoalkyl quaternary ammonium surfactants in the aquatic environment [J]. Environ Pollut,2001,111:169-175.
    [61]Roghair C J, Buijze A, Schoon H N P. Ecotoxicological risk evaluation of cationic fabric softener DTDMAC:I. Toxicological effects [J]. Chemosphere,1992,24:599-609.
    [62]Agarwal K, Agnihotri G, Shrivas K, et al. Determination of cationic surfactants in environmental samples by flow injection analysis [J]. Microchim. Acta,2004,147:273-278.
    [63]Ikehata K, El-Din MG Degradation of recalcitrant surfactants in wastewater by ozonation and advanced oxidation process [J]. Ozone Sci Eng,2004,26:327-343.
    [64]Li Z, Yuansheng D, Hanlie H. Transport of micelles of cationic surfactants through clinoptilolite zeolite [J]. Microporous Mesoporous Mater,2008,116:473-477.
    [65]Upadhyay A, Acosta E J, Scamerhorn J F, et al. Adsorption of anionic cationic surfactant mixtures on metal oxide surfaces [J]. J Surf Detergent,2007,10:269-277.
    [66]Zhu L, Ma J. Simultaneous removal of acid dye and cationic surfactant from water by bentonite in one step process [J]. Chem Eng J,2008,139:503-509.
    [67]Golub T P, Koopal L K. Adsorption of cationic surfactants on silica surface:Comparison of theory with experiments [J].Colloid J,2004,66:44-47.
    [68]Gracia M T, Campos E, Sanchez-Leal J, et al. Anaerobic degradation of commercial cationic surfactants in anaerobic screening test [J]. Chemosphere,2000,41:705-710.
    [69]Sullivan D E. Biodegradation of cationic surfactant in activated sludge [J]. Water Res,1983,17: 1145-1151.
    [70]Li Z, Beachner R, McManama Z, et al. Sorption of arsenic by surfactantmodified zeolite and kaolinite [J]. Microporous Mesoporous Mater,2007,105:291-297.
    [71]佘航,尹鹏,金鸽,et al.表面活性剂废水无害化处理的研究进展[J].天津化工,2011,25(6):6-9.
    [72]Sabaha E, Turanb M, Celikc M S. Adsorption mechanism of cationic surfactants onto acid- and heat-activated sepiolites [J]. Water Research,2002,36:3957-3964.
    [73]Saleh M M. On the removal of cationic surfactants from dilute streams by granular charcoal [J]. Water Research,2006,40:1052-1060.
    [74]于晓彩,邵红,王武名,et al.改性粉煤灰处理含阳离子表面活性剂废水的研究[J].环境工程,2003,21(5):78-80.
    [75]Koner S, Pal A, Adak A. Utilization of silica gel waste for adsorption of cationic surfactant and adsolubilization of organics from textile wastewater:A case study [J]. Desalination,2011,276:142-147.
    [76]冯良荣,谢卫国.吕绍洁et al. TiO2光催化氧化十二烷基苯磺酸钠[J].环境污染治理技术与设备,2001.2:14-20.
    [77]Wangrattanasopon S, Scamehorn J F, Chavedej S, et al. Use of foam flotation to remove tert-butylphenol from water [J]. Sep Sci Tech,1996,31:1523.
    [78]Boonyasuwat S, Chavadeja S., Malakul P, et al. Anionic and cationic surfactant recovery from water using a multistage foam fractionator[J]. Chemical Engineering Journal.2003,93(3):241-252.
    [79]Borghi C C. Fabbri M. Fiorini M. et al. Magnetic removal of surfactants from wastewater using micrometric iron oxide powders [J]. Separation and Purification Technology,2011,83:180-188.
    [80]Sullivan D E. Biodegradation of a cationic surfactant in activated sludge [J]. Water Research,1983, 17:1145-1151.
    [81]Boethling R S. Environmental fate and toxicity in wastewater treatment of quaternary ammonium surfactants [J]. Water Research,1984,18 (3):1061-1076.
    [82]张冲,李克勋,刘东方.季铵化合物对环境的影响及微生物降解研究进展[J].环境污染与防治,2009,31(8):84-87.
    [83]Gracia M T, Campos E, Sanchez-Leal J, et al. Anaerobic degradation of commercial cationic surfactants in anaerobic screening test [J], Chemosphere,2000,41:705-710.
    [84]Liu D, Qiao W, Li Z. Synthetic diether-linked cationic lipids for gene delivery [J]. Chem Biol Drug Des,2006,67:248-251.
    [85]Liu D, Hu J, Qiao W. Synthesis and characterization of series of carbamate-linked cationic lipids for gene delivery [J]. Lipids,2005,40:839-848.
    [86]郭海燕,莫穗林.脂质体物理稳定性和包封率的影响因素[J].中国新药杂志,2004,13:498-501.
    [87]张灵芝.脂质体制备及其在生物医学中的应用[M].北京:北京医科大学,中国协和医科大学联合出版社,1998.
    [88]Huang C H. Studies on phosphatidylcholine vesicle:formation and physical characteristics [J]. Biochemistry,1969,8:344-352.
    [89]张奇,邓英杰,罗国安.均匀设计法制备5-氟尿嘧啶脂质体及其稳定性[J].北京大学学报(医学版),2002,34(1):64-67.
    [90]谢静平.单层脂质体与脂酶体的制备方法及应用[J].生物化学与生物物理进展,1998,15:82-85.
    [91]芬德勒JH著.程虎民泽.膜模拟化学[M].北京:科学出版社,1991.
    [92]Uchegbu I F, Vyas S P. Non-ionic surfactant based vesicles(niosomes) in drug delivery [J]. Int J Pharm, 1998,172:33-70.
    [93]Hata T, Matsuki H, Kaneshina S. Effect of local anesthetics on the phase transition temperatures of ether-and ester-linked phospholipid bilayer membranes [J]. Colloids Surf B:Biointerfaces,2000, 18.41-50.
    [94]刘辉,汤韧,何晓霞.脂质体处方和制备方法对阿昔洛韦棕桐酸酣脂质体稳定性的影响[J].药学学报.2002,37:563-566.
    [95]Mukherjee K, Sen J, Chaudhuri A. Common co-lipids, in synergy, impart high gene transfer properties to transfection-incompetent cationic lipids [J]. FEBS Lett,2005,579:1291-1300.
    [96]Segota S, Tezak D. Spontaneous formation of vesicles [J]. Adv Colloid Interfac,2006,121:51-75.
    [97]Zhdanov R 1, Podobed O V, Vlassov V V. Cationic lipid-DNA complexes-lipoplexes-for gene transfer and therapy [J]. Bioelectrochemistry,2002,58:53-64,
    [98]Hirko A, Tang F, Hughes J A. Cationic Lipid Vectors for Plasmid DNA delivery[J]. Curr Med Chem. 2003,10:1185-1193.
    [99]Ross P C, Hui S W. Lipoplex size is a major determinant of in vitro lipofection efficiency [J]. Gene Ther,1999.6:651-659.
    [100]Eastman S J. Biophysical characterizauon of cationic Hpic:DNA compiexe[J]. Biochimica e(?) Biophysica Acta.1997,1325:41-62.
    [101]萨姆布鲁克 J,拉塞尔DW,黄培堂译.分子克隆实验指南[M].北京:科学出版社,1982.
    [102]Eastman S J, Tousignant J D, Lukason M J. Optimization of formulations and conditions for the aerosol delivery of functional cationic lipid:DNA complexes [J]. Hum Gene Thcr,1997, 8:313-322.
    [103]Sakurai F, Inoue R, Nishino Y. Effect of DNA/liposome mixing ratio on the physicochemical characteristics, cellular uptake and intracellular trafficking of plasmid DNA/cationic liposome complexes and subsequent gene expression [J]. J Control Release,2000,66:255-269.
    [104]Koumbi D, Clement J, Sideratou Z. Factors mediating lipofection potency of a series of cationic phosphonolipids in human cell lines [J]. Biochem Bioph Acta,2006,1760:1151-1159.
    [105]Mukherjee K, Sen J, Chaudhuri A. Common co-lipids, in synergy, impart high gene transfer properties to transfection-incompetent cationic lipids [J]. FEBS Lett,2005,579:1291-1300.
    [106]Sakurai F, Inoue R, Nishino Y, et al. Effect of DNA/liposome mixing ratio on the physicochemical characteristics, cellular uptake and intracellular trafficking of plasmid DNA/cationic liposome complexes and subsequent gene expression [J]. J Control Release,2000,66:255-269.
    [107]Zuhorn I S., Bakowsky U, Polushkin E, et al. Nonbilayer Phase of lipoplex-membrane mixture determines endosomal escape of genetic cargo and transfection efficiency [J]. Mol Ther,2005, 11:801-810.
    [108]Chesnoy S, Huang L. Structure and function of lipid-DNA complexes for gene delivery [J]. Annu Rev Biophys Biomol Struct,2000,29:27-47.
    [109]Niculescu-Duvaz D, Heyes J, Springer C J. Structure-activity relationship in cationic lipid mediated gene transfection[J]. Curr Med Chem.2003,10:1233-1261.
    [110]Galovic R R, Barisic K, Pavelic Z, et al. High efficiency entrapment of superoxide dismutase intomucoadhesive chitosan-coated liposomes [J]. Eur J Pharm Sci,2002, (15)5:441-448.
    [111]Davis M E. Non-viral gene delivery systems [J]. Curr Opin Chem Biol,2002,13:28-131.
    [112]Almofti M R, Harashima H, Shinohara Y. Lipoplex size determines lipofection efficiency with or without serum [J]. Mol Membr Biol,2003,20:35-43.
    [113]Nakanishi M, Noguchi A. Confocal and probe microscopy to study gene transfection mediated by cationic liposomes with a cationic cholesterol derivative [J]. Adv Drug Delivery Rev,2001, 52:197-207.
    [114]Liu Y, Yu Z, Zhang Y, et al. Supramolecullar architectures of β-cyclodextrin-modified chitosan and pyrene derivatives mediated by carbon nanotubes and their DNA condensation[J]. J Am Chem Soc, 2008,130:10431-10439.
    [115]Aissaoui A, oudrhiri N, Petit L, et al. Progress in gene delivery by cationic lipids: Guanidinium-cholesterol-based systems as an example [J]. Current Drug Targets,2002,3:1-16.
    [116]Felgner J H, Kumar R, Sridhar C N, et al. Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations [J]. Biol Chem,1994,269(4):2550-2561.
    [117]Kim T W, Chung H, Kwon I C, et al. Polycations enhance emulsion-mediated in vitro and in vio transfection [J]. Int J Pharm,2005,295:35-45.
    [118]Zauner W, Farrow N A, Haines A M R. In vitro uptake of polystyrene microspheres:effect of particle size, cell line and cell density [J]. Journal of Controlled Release,2001,71:39-51. [119]Pante N. Kann M. Nuclear pore complex is able to transfpor macromoiecules with diameters of-39nm [J]. Mol Biol Cell,2002,13:425-434.
    [120]Ishii T. Okahata Y. Sato T. Mechanism of cell transfection with plasmid/chitosan complexes [J] Biochim Biophys Acta.2001,1514:51-64.
    [121]Wilson B A, Smith V H, Denoyelles F, et al. Effects of three pharmaceutical and personal care products on natural freshwater algal assemblage [J]. Environ Sci Technol,2003,37(9):1713-1719.
    [122]聂湘平,王翔,陈菊芳等.三氯异氰尿酸与盐酸环丙沙星对蛋白核小球藻的毒性效应[J].环境科学学报,2007,27(10):1694-1701.
    [123]Kaya V M, Picard G. The viability of Scenedesmus bicellularis cells immobilized on alginate screens following nutrient starvation in air at 100% relative humidity [J]. Biotechnology and Bioengineering, 1995,46(5):459-464.
    [124]张志良.瞿伟菁.植物生理学实验指导[M].北京:高等教育出版社.2004.
    [125]Dieta C D, Schnoor J L. Advances in phytoremediation [J]. Environ Health Persp,2001,109(1): 163-168.
    [126]曹西华,俞志明.季铵盐类化合物灭杀赤潮异弯藻的实验研究[J].海洋与湖沼,2003,34(2):201-207.
    [127]卓静,荆国华,李小林等.表面活性剂CTAC和STAB对蛋白核小球藻的毒作用[J].农业环境科学学报,2010,29(8):1460-1465.
    [128]Ying G. Fate, behavior and effects of surfactants and their degradation products in the environment [J]. Environment International,2006, (32):417-431.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700