用户名: 密码: 验证码:
Anammox菌超声强化及其与短程硝化污泥共包埋脱氮性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于短程硝化-厌氧氨氧化反应的单级自养脱氮工艺是指由氨氧化细菌和厌氧氨氧化(Anammox)细菌在单个反应器内、相同的操作条件下,实现将氨氮转化成氮气的工艺,在处理高氨氮、低碳氮比废水方面极具潜力。目前,26家污水处理厂建立了单级自养脱氮反应设备。但目前运行的单级自养脱氮反应器普遍存在功能菌生长慢,污泥易流失、稳定性能差等问题。这些客观因素导致单级自养脱氮工艺启动时间长,限制着工艺的应用。
     针对目前单级自养脱氮工艺存在的问题,本论文首先富集了厌氧氨氧化细菌,并采用低强度超声波技术强化了厌氧氨氧化菌胶团的活性。其次,通过碳酸氢钠或海藻酸钠的添加改善了聚乙烯醇凝胶载体的传质性能。最后,共包埋厌氧氨氧化和短程硝化污泥启动了单级反应器。研究了单级自养脱氮系统的适合条件,考察了单级自养脱氮性能和运行条件对单级自养脱氮工艺的影响。通过荧光原位杂交(FISH)实验和扫描电子显微镜(SEM)实验考察了单级自养脱氮系统内的细菌形态、分布和增殖状况。论文取得了一些创新性的研究成果,主要包括:
     (1)采用升流式复合床反应器对传统活性污泥进行了厌氧氨氧化细菌的有效富集。经过362天的培养,进水氨氮和亚硝酸盐氮浓度提高到270mg N/L,总氮去除负荷达1.85kg N/m3/d。在反应器稳定运行阶段,总氮平均去除率在85%以上。
     (2)低强度超声波能够有效地提高厌氧氨氧化细菌的活性。经超声场强0.1-0.4W/cm2作用后,厌氧氨氧化细菌的活性显著提高。经0.3W/cm2超声作用4分钟,厌氧氨氧化细菌的活性提高了25.5%,促进作用持续6天。
     (3)通过碳酸氢钠(SB)或海藻酸钠(SA)的添加促进了聚乙烯醇(PVA)凝胶载体的传质性能及包埋微生物对污染物的处理能力。聚乙烯醇-碳酸氢钠(PVA_SB)(?)阳聚乙烯醇-海藻酸钠(PVA_SA)凝胶载体的氨氮传质系数比传统的PVA载体分别提高38%和29%,且两类载体包埋短程硝化污泥的氨氧化活性比传统的PVA载体分别提高了44%和30%。
     (4)采用气升式反应装置启动单级自养脱氮反应器,成功运行了175天,氨氮去除性能稳定。总氮去除负荷最高达到1.66kg N/m3/d。在反应器稳定运行阶段,总氮平均去除率为77%。从反应器的氨氮去除效果可以看出,共包埋技术适于单级自养脱氮工艺,实现了单级自养脱氮反应器长期、高效、稳定运行。
     通过扫描电子显微镜(SEM)技术和荧光原位杂交(FISH)技术考察了微生物的分布、增殖和丰度。SEM照片显示,与反应器启动第一天时的载体内微生物数量相比,反应器启动第81天后的载体内微生物的数量明显增多。FISH照片显示,氨氧化细菌形成厚厚的菌层包绕着厌氧氨氧化菌胶团。图像分析软件分析,厌氧氨氧化细菌和氨氧化细菌分别占总菌的45%和40%。这表明,氨氧化细菌和厌氧氨氧化细菌已经在载体内生长、增殖。
Single-stage autotrophic nitrogen removal process with partial nitrification-anaerobic ammonium oxidation (anammox) is that ammonium is transformed into dinitrogen gas completed by ammonia oxidizing bacteria (AOB) and anammox bacteria in a single reactor. The process has great potential to treat low C/N ratio, ammonia-rich wastewater. According to reports,26sewage treatment plants have established the single stage equipments based on nitritation and anammox reaction. But, the currently running single-stage reactors face some questions, for example, bacteria grow slowly, and the sludge is easy to wash out, and reactor stability is poor. These factors have induced that the single-stage autotrophic nitrogen removal process has a long startup time, which limit the application of the technology.
     We firstly cultivated anammox bacteria and strengthened its activity by ultrasound. Second, the mass transfer performance of the polyvinyl alcohol (PVA) entrapment carrier was improved by adding sodium bicarbonate (SB) or sodium alginate (SA). Third, the partial nitrifying and anammox biomass was co-immobilized with PVA_SA material and a single-stage autotropic nitrogen removal reactor was started up. We studied the suitable conditions of single stage autotrophic nitrogen removal system. We also investigated nitrogen removal performance in reactor and the effects of the operation conditions on the single-stage autotrophic nitrogen removal. Lastly, we investigated bacterial morphology, distribution and proliferation by SEM experiment, and investigated bacterial abundance by FISH experiment. The dissertation has made some innovative research results:
     (1) Anammox sludge was effectively enriched from conventional activated sludge using an up-flow composite-bed biofilm reactor. On day362, both of the influent ammonia and nitrite concentrations increased to270mg N/L, the total nitrogen (TN) removal rate reached1.85kg N/m3/d. During the stable running stage, the average TN removal efficiency was over85%.
     (2) Anammox microbial consortium activity was improved by exerting ultrasound field. Anammox activity was significantly improved when the ultrasound field strength was in the scope of0.1~0.4W/cm2. Anammox activity was enhanced by25.5%at the optimal ultrasonic intensity of0.3W/cm2and irradiation time of4min.
     (3) The mass transfer performance of the PVA carrier is relatively poor, which affect the transfer of nutrients, metabolites and oxygen. The mass transfer capabilities of PVA hydrogel carriers can be improved by adding SA or SB, and the carriers formed by adding SA, SB were called PVA_SA carrier, PVA_SB carrier, respectively. The mass transfer of PVA_SA and PVA_SB gel carriers increased by29%and38%than traditional PVA carriers. The ammonia oxidizing activities of partial nitrifying sludge entrapped by PVA_SA material and PVA_SB material improved by30%and44%than traditional PVA carriers, respectively.
     (4) A single-stage autotrophic nitrogen removal process using co-immobilizing AOB and anammox biomass was started up with a gas-lifted reacor. It was running for175days, and the ammonia removal capacity was stable. The maximum TN removal rate reached1.66kg N/m3/d. During the stable running stage, the average TN removal efficiency was77%. From these results, it can be summed up that Co-immobilizing technology is suitable for single stage autotrophic nitrogen removal process.
     SEM showed that bacteria had a greater increase observed on day81than that of day1. FISH showed AOB existed around the anammox bacteria, and anammox bacteria and AOB accounted for45%,40%of the total bacteria. This indicates that, the AOB and anammox bacteria have colonized, grew and proliferated in the carriers.
引文
[1]中国国家统计局.2011年中国国民经济和社会发展统计公报[M].北京:中国国家统计出版社,2011.
    [2]国家环保局.2011年环境公报[M].北京:中国环境科学出版社,2011.
    [3]郑平,胡宝兰,徐向阳.新型生物脱氮理论与技术[M]一北京:科学出版社,2004.
    [4]文屹.两株异养硝化好氧反硝化细菌的分离,筛选,鉴定和特性[D]:博士.广州:华南理工大学,2010.
    [5]刘秀英,奚旦立,孙裕生.环境监测[M].北京:高等教育出版社,1995.
    [6]高廷耀,顾国维.水污染控制工程(下册)[M].北京:高等教育出版社,1999.
    [7]孙锦宜.含氮废水处理技术与应用[M].北京:化学工业出版社,2003.
    [8]汪涛.厌氧氨氧化工艺快速启动及菌群特性研究[D]:博士学何论文.大连:大连理工大学,2011.
    [9]陈金銮.氨氮的电化学氧化技术及其应用研究[D]:博士学位论文一北京:清华大学,2008.
    [10]朱菁.高温脱氨-吹脱法处理高浓度氨氮废水的工程实践[J].环境科学与管理,2009,34(1):107-108.
    [11]曾辉平.含高浓度铁锰及氨氮的地下水生物净化效能与工程应用研究[D]:博士学位论文.哈尔滨:哈尔滨工业大学,2010.
    [12]伍灵.含铵盐和碳酸氢盐溶液纳滤膜分离性能的实验与模型研究[D]:博士学位论文.北京:清华大学,2009.
    [13]尚晋.液膜法处理含氨氮废水的研究[J].能源环境保护,2007,21(6):36-40.
    [14]方建章,黄少斌.化学沉淀法去除水中氨氮的试验研究[J].环境科学与技术,2002,25(5):34-35.
    [15]黄海明,肖贤明,晏波.折点氯化处理低浓度氨氮废水[J].水处理技术,2008,34(8):63-65.
    [16]杨朗,李志丰.低浓度氨氮废水的离子交换法脱氮[J].环境工程学报,2012,6(8):2715-2719.
    [17]付迎春,钱仁渊,金鸣林.催化湿式氧化法处理氨氮废水的研究[J].煤炭转化,2004,27(2):72-75.
    [18]陈瑞勇.超临界水氧化技术处理焦化废水[M]:硕士学位论文.太原:太原理工大学,2005.
    [19]Delwiche C.The nitrogen cycle[J].Scientific American,1970,223(3):137-146..
    [20]叶建峰.废水生物脱氮处理新技术[M].北京:化学工业出版社,2006.
    [21]Buchanan E R伯杰细菌鉴定手册(第八版)[M].北京:科学出版社,1984.
    [22]张云霞.新型MBR-PBBR组合系统捷径生物脱氮研究[D]:博十学位论文.大连:大连理工大学,2009.
    [23]Logemann S, Schantl J, Bijvank S, et al.Molecular microbial diversity in a nitrifying reactor system without sludge retention[J].FEMS Microbiology Ecology,1998,27(3):239-249.
    [24]Sundermeyer H, Bock E.Energy metabolism of autotrophically and heterotrophically grown cells of Nitrobacter winogradskyi[J].Archives of Microbiology,1981,130(3):250-254.
    [25]程晓如,杨开.设计A/O生物脱氮工艺应注意的几个问题[J].环境与开发,1996,11(4):1-4.
    [26]Irvine R L, Busch A W.Sequencing batch biological reactors:an overview[J].Journal of Water Pollution Control Federation,1979,51(2):235-243.
    [27]环境保护部.序批式活性污泥法污水处理工程技术规范[M].北京:中国环境科学出版社,2011.
    [28]吕宏德.水处理工程技术[M].北京:中国建筑工业出版社,2005.
    [29]刘艳臣Carrousel氧化沟单沟脱氮优化条件及其控制策略研究[D]:博士学位论文.北京:清华大学,2008.
    [30]Khin T, Annachhatre A P.Novel microbial nitrogen removal processes[J].Biotechnology Advances, 2004,22(7):519-532.
    [31]Zhu G, Peng Y, Li B, et al.Biological removal of nitrogen from wastewater[J].Reviews of environmen-tal contamination and toxicology,2008,192:159-195.
    [32]Abeling U, Seyfried C F.Anaerobic-aerobic treatment of high-strength ammonium wastewater nitrogen removal via nitrite[J].Water Science & Technology,1992,26(5-6):1007-1015.
    [33]Hellinga C, Schellen A, Mulder J W, et al.The SHARON process:an innovative method for nitrogen removal from ammonium-rich waste water [J]. Water Science and Technology,1998, 37(9):135-142.
    [34]Kuenen J G, Robertson L A.Combined nitrification-denitrification processes[J].FEMS micro-biology reviews,1994,15(2):109-117.
    [35]王薇蔡,祖聪,钟文辉.好氧反硝化菌的研究进展[J].应用生态学报,2007,18(11):2618-2625.
    [36]Masuda S, Watanable Y, Ishiguro M.Biofilm properties and simultaneous nitrification & de-nitrification in aerobic rotating biological contactors[J].Water Science and Technology,1991,23 (7-9):1355-363.
    [37]Munch E V, Lant P, Keller J.Simultaneous nitrification and denitrification in bench-scale sequencing batch reactors[J].Water Research,1996,30(2):277-284.
    [38]Rittmann B E, Langeland W E.Simultaneous denitrification with nitrification in single channel oxidation ditches[J].Journal of Water Pollution Control Federation,1985,57 (4):300-308.
    [39]Goronszy M C, Demoulin G, Newland M.Aerated denitrification in full-scale activated sludge faciliti-es[J].Water science and technology,1997,35(10):103-110.
    [40]聂卓娜.低温、低碳源对同时硝化反硝化污水生物处理系统的影响研究[[)]:硕士学位论文.重庆:重庆大学,2005.
    [41]Brunet R C, Garcia Gil L J.Sulfide-induced dissimilatory nitrate reduction to ammonia in anaerobic freshwater sediments[J].FEMS Microbiology Ecology,1996,21(2):131-138.
    [42]Reyes-Avila J, Razo-Flores E, Gomez J.Simultaneous biological removal of nitrogen, carbon and sul- fur by denitrification[J].Water research,2004,38(14-15):3313-3321.
    [43]Mulder A, Graaf A A, Robertson L A, et al.Anaerobic ammonium oxidation discovered in a denitrify- ing fluidized bed reactor[J].FEMS Microbiology Ecology,1995,16(3):177-184.
    [44]van Dongen U, Jetten M S, Van Loosdrecht M C.The SHARON-Anammox process for treatment of ammonium rich wastewater[J].Water science and technology:a journal of the International Associati-on on Water Pollution Research,2001,44(1):153-160.
    [45]Sliekers A O, Derwort N, Gomez J L, et al.Completely autotrophic nitrogen removal over nitrite in one single reactor[J]. Water Research,2002,36(10):2475-2482.
    [46]Third K A, Sliekers A O, Kuenen J G, et al.The CANON system (completely autotrophic nitrogen removal over nitrite) under ammonium limitation:interaction and competition between three groups of bacteria[J].Systematic and applied microbiology,2001,24 (4):588-596.
    [47]Windey K, De Bo I, Verstraete W.Oxygen-limited autotrophic nitrification-denitrification (OLAND) in a rotating biological contactor treating high-salinity wastewater[J].Water research, 2005,39(18):4512-4520.
    [48]Lieu P K, Homan H, Kawagoshi Y, et al.Characterization of sludge from single-stage nitrogen removal using anammox and partial nitritation (SNAP)[J].Japanese Journal Of Water Treatment Biology,2006,42(2):53-64.
    [49]Lieu P K, Hatozaki R, Homan H, et al.Single-stage nitrogen removal using anammox and partial nitri- tation (SNAP) for treatment of synthetic landfill leachate[J].Japanese Journal of Water Treatment Biology,2005,41(2):103-112.
    [50]Kalyuzhnyi S, Gladchenko M, Mulder A, et al.DEAMOX-New biological nitrogen removal process based on anaerobic ammonia oxidation coupled to sulphide-driven conversion of nitrate into nitrite [J]. Water research,2006,40(19):3637-3645.
    [51]Strous M, Heijnen J J, Kuenen J G, et al.The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms[J].Applied Microbiology and Biotechnology,1998,50(5):589-596.
    [52]Strous M, Fuerst J A, Kramer E H M, et al.Missing lithotroph identified as new plancto-mycete[J]. Nature,1999,400(6743):446-449.
    [53]Lindsay M R, Webb R I, Strous M, et al.Cell compartmentalisation in planctomycetes:novel types of structural organisation for the bacterial cell[J].Archives of microbiology,2001,175 (6):413-429.
    [54]Van Niftrik L, Van Helden M, Kirchen S, et al.Intracellular localization of membrane bound ATPases in the compartmentalized anammox bacterium'Candidatus Kuenenia stuttgartiensis' [J].Molecular microbiology,2010,77(3):701-715.
    [55]Tsushima I, Ogasawara Y, Kindaichi T, et al.Development of high-rate anaerobic ammonium-oxidizing (anammox) biofilm reactors[J].Water research,2007,41(8):1623-1634.
    [56]Schalk J, de Vries S, Kuenen J G, et al.Involvement of a novel hydroxylamine oxidoreductase in anaerobic ammonium oxidation[J].Biochemistry,2000,39(18):5405-5412.
    [57]Shimamura M, Nishiyama T, Shinya K, et al.Another multiheme protein, hydroxylamine oxidoreductase, abundantly produced in an anammox bacterium besides the hydrazine oxidizing enzyme[J].Journal of bioscience and bioengineering,2008,105(3):243-248.
    [58]Sinninghe Damste J S, Rijpstra W I C, Geenevasen J A J, et al.Structural identification of ladderane and other membrane lipids of planctomycetes capable of anaerobic ammonium oxidation (anammox)[J].FEBS Journal,2005,272(16):4270-4283.
    [59]Rattray J E, Van De Vossenberg J, Hopmans E C, et al.Ladderane lipid distribution in four genera of anammox bacteria[J].Archives of microbiology,2008,190(1):51-66.
    [60]Strous M, Kuenen J G, Jetten M S M.Key physiology of anaerobic ammonium oxidation [J].Applied and Environmental Microbiology,1999,65(7):3248-3250.
    [61]Van De Vossenberg J, Rattray J E, Geerts W, et al.Enrichment and characterization of marine anammox bacteria associated with global nitrogen gas production[J].Environmental microbiology, 2008,10 (11):3120-3129.
    [62]Jetten M S M, Strous M, Pas Schoonen K T, et al.The anaerobic oxidation of ammonium [J].FEMS Microbiology Reviews,1998,22(5):421-437.
    [63]Gut L, Plaza E, Trela J, et al.Combined partial nitritation/Anammox system for treatment of digester supernatant.[J]. Water science and technology:a journal of the International Association on Water Po-llution Research,2006,53(12):149-159.
    [64]Toh S, Ashbolt N.Adaptation of anaerobic ammonium-oxidising consortium to synthetic coke-ovens wastewater[J].Applied microbiology and biotechnology,2002,59(2):344-352.
    [65]van de Graaf A A, de Bruijn P, Robertson L A, et al.Metabolic pathway of anaerobic ammonium oxidation on the basis of 15N studies in a fluidized bed reactor[J]. Microbiology,1997,143(7): 2415-2421.
    [66]Strous M, Pelletier E, Mangenot S, et al.Deciphering the evolution and metabolism of an anammox ba-cterium from a community genome[J].Nature,2006,440(7085):790-794.
    [67]刘思彤.电/磁场强化厌氧氨氧化及多菌群协同自养生物脱氮[D]:博士学位论文.大连:大连理工大学,2009.
    [68]Kartal B,Maalcke W J,de Almeida N M,et al.Molecular mechanism of anaerobic ammonium oxidation[J].Nature,2011,479(3):127-130.
    [69]Ducluzeau A L,Van Lis R,Duval S,et al.Was nitric oxide the first deep electron sink?[J]. Trends in biochemical sciences,2009,34(1):9-15.
    [70]Van de Graaf A A, de Bruijn P, Robertson L A, et al.Autotrophic growth of anaerobic ammonium oxidizing microorganisms in a fluidized bed reactor [J]. Microbiology,1996,142 (8):2187-2196.
    [71]Kuenen J G.Anammox bacteria:from discovery to application[J].Nature Reviews Micro-biology, 2008,6(4):320-326.
    [72]Kuypers M M M, Sliekers A O, Lavik G, et al.Anaerobic ammonium oxidation by anammox bacteria in the Black Sea[J].Nature,2003,422(6932):608-611.
    [73]Schmid M, Walsh K, Webb R, et al.Candidatus"Scalindua brodae", sp. nov., Candidatus "Scalindua wagneri", sp. nov., Two New Species of Anaerobic Ammonium Oxidizing Bacteria[J].Systematic and applied microbiology,2003,26(4):529-538.
    [74]Dalsgaard T, Canfield D E, Petersen J, et al.N2 production by the anammox reaction in the anoxic wa ter column of Golfo Dulce, Costa Rica[J].Nature,2003,422(6932):606-608.
    [75]Kuypers M M M, Lavik G, Woebken D, et al.Massive nitrogen loss from the Benguela upwelling sys- tem through anaerobic ammonium oxidation[J].Proceedings of the National Academy of Sciences of the United States of America,2005,102(18):6478-6483.
    [76]Hamersley M R, Lavik G, Woebken D, et al.Anaerobic ammonium oxidation in the Peruvian oxygen minimum zone[J].Limnology and Oceanography,2007,52(3):923-933.
    [77]Lam P, Lavik G, Jensen M M, et al.Revising the nitrogen cycle in the Peruvian oxygen minimum zone [J].Proceedings of the National Academy of Sciences,2009,106(12):4752.
    [78]Tal Y, Watts J E M, Schreier H J.Anaerobic ammonia-oxidizing bacteria and related activity in Balti-more inner harbor sediment[J].Applied and environmental microbiology,2005,71 (4):1816-1821.
    [79]Schmid M C, Risgaard Petersen N, Van De Vossenberg J, et al.Anaerobic ammonium oxidizing bacteria in marine environments:widespread occurrence but low diversity[J]. Environmental microbiology,2007,9(6):1476-1484.
    [80]den Camp O, Kartal B, Guven D, et al.Global impact and application of the anaerobic ammonium oxi- dizing(anammox) bacteria[J].Biochemical Society Transactions,2006,34 (1):174-178.
    [81]Penton C R, Devol A H, Tiedje J M.Molecular evidence for the broad distribution of anaerobic ammonium oxidizing bacteria in freshwater and marine sediments[J].Applied and environmental microbiolo- gy,2006,72(10):6829-6832.
    [82]Schubert C J, Durisch Kaiser E, Wehrli B, et al.Anaerobic ammonium oxidation in a tropical freshwater system (Lake Tanganyika)[J].Environmental microbiology,2006,8 (10):1857-1863.
    [83]Trimmer M, Nicholls J C, Deflandre B.Anaerobic ammonium oxidation measured in sediments along the Thames estuary, United Kingdom[J].Applied and Environmental Microbiology,2003,69 (11):6447-6454.
    [84]Voets J P, Vanstaen H, Verstraete W.Removal of nitrogen from highly nitrogenous wastewaters[J]. Journal of Water Pollution Control Federation,1975,47(2):394-398.
    [85]Mulder J W, Van Kempen R.N removal by SHARON[J].Water Quality International,1997,2 (6): 30-31.
    [86]Mulder J W, van Loosdrecht M C, Hellinga C, et al.Full-scale application of the SHARON process for treatment of rejection water of digested sludge dewatering.[J].Water science and technology:a journal of the International Association on Water Pollution Research,2001,43(11):127-134.
    [87]Abma W, Schultz C, Mulder J W, et al.The advance of Anammox[J].water 21,2007,9:36-37.
    [88]Hippen A, Rosenwinkel K H, Baumgarten G, et al.Aerobic deammonification:A new experience in the treatment of waste waters[J].Water Science and Technology,1997,35 (10):111-120.
    [89]Kuai L, Verstraete W.Ammonium removal by the oxygen-limited autotrophic nitrification denitrifica- tion system[J].Applied and Environmental Microbiology,1998,64(11):4500-4506.
    [90]Pynaert K, Smets B F, Beheydt D, et al.Start-up of autotrophic nitrogen removal reactors via sequen- tial biocatalyst addition[J].Environmental science & technology,2004,38 (4):1228-1235.
    [90]Pynaert K, Sprengers R, Laenen J, et al.Oxygen-limited nitrification and denitrification in a lab-scale rotating biological contactor[J].Environmental technology,2002,23(3):353-362.
    [91]Pynaert K, Wyffels S, Sprengers R, et al.Oxygen-limited nitrogen removal in a lab-scale rotating bio- logical contactor treating an ammonium-rich wastewater[J]. Water science and technology,2002: 357-363.
    [92]Pynaert K, Smets B F, Wyffels S, et al.Characterization of an autotrophic nitrogen-removing biofilm from a highly loaded lab-scale rotating biological contactor[J].Applied and environmental microbiology,2003,69(6):3626-3635.
    [93]Pynaert K, Smets B F, Beheydt D, et al.Start-up of autotrophic nitrogen removal reactors via sequen- tial biocatalyst addition[J].Environmental science & technology,2004,38(4):1228-1235.
    [94]Sliekers A O, Third K A, Abma W, et al.CANON and Anammox in a gas-lift reactor[J]. FEMS microbiology letters,2003,218(2):339-344.
    [95]Qiao S, Nishiyama T, Fujii T, et al.Rapid startup and high rate nitrogen removal from an- aerobic sludge digester liquor using a SNAP process[J].Biodegradation,2012,23(1):157-164.
    [96]秦宇.SBBR单级自养脱氮工艺及其微生态特性研究[D]:博士学位论文:重庆大学,2009.
    [97]Hibiya K, Terada A, Tsuneda S, et al.Simultaneous nitrification and denitrification by controlling vertical and horizontal microenvironment in a membrane-aerated biofilm reactor[J].Journal of Biotechnology,2003,100(1):23-32.
    [98]Helmer C, Kunst S, Juretschko S, et al.Nitrogen loss in a nitrifying biofilm system[J].Water science and technology,1999,39(7):13-21.
    [99]Chen H, Liu S, Yang F, et al.The development of simultaneous partial nitrification, ANAMMOX and denitrification (SNAD) process in a single reactor for nitrogen removal[J]. Bioresource technology,2009,100(4):1548-1554.
    [100]张萍.环氧化和Baeyer-Villiger氧化但应的研究及超声的影响[D]:博士学位论文.南京:南京工业大学,2006.
    [101]Suslick K S, Price G J.Applications of ultrasound to materials chemistry[J].Annual Review of Materials Science,1999,29(1):295-326.
    [102]Bang J H, Suslick K S.Applications of ultrasound to the synthesis of nanostructured materials[J]. Adv-anced Materials,2010,22(10):1039-1059.
    [103]Gogate P R, Kabadi A M.A review of applications of cavitation in biochemical engineering/biotechnology [J]. Biochemical Engineering Journal,2009,44(1):60-72.
    [104]Nitayavardhana S, Shrestha P, Rasmussen M L, et al.Ultrasound improved ethanol fermentation from cassava chips in cassava-based ethanol plants[J].Bioresource technology, 2010,101(8):2741-2747.
    [105]Cheung W H, Chow S K, Sun M H, et al.Low-Intensity Pulsed Ultrasound Accelerated Callus Formation, Angiogenesis and Callus Remodeling in Osteoporotic Fracture Healing[J]. Ultrasound in Medici- ne & Biology,2011,37(2):231-238.
    [106]Leung K S, Shi H F, Cheung W H, et al.Low-magnitude high-frequency vibration accelerates callus formation, mineralization, and fracture healing in rats[J].Journal of Orthopaedic Research, 2009,27(4):458-465.
    [107]Javanaud C.Applications of ultrasound to food systems[J].Ultrasonics,1988,26(3):117-123.
    [108]Zhang R, Jin R, Liu G, et al.Study on nitrogen removal performance of sequencing batch reactor enhanced by low intensity ultrasound[J].Bioresource technology,2011,102 (10):5717-5721.
    [109]Xie B, Wang L, Liu H.Using low intensity ultrasound to improve the efficiency of biological phosph- orus removal[J].Ultrasonics sonochemistry,2008,15(5):775-781.
    [110]Pitt W G, Ross S A.Ultrasound increases the rate of bacterial cell growth[J].Biotechnology progress,2003,19(3):1038-1044.
    [111]袁易全.近代超声原理与应用[M].南京:南京大学出版社,1996.
    [112]Dinno M A, Dyson M, Young S R, et al.The significance of membrane changes in the safe and effec- tive use of therapeutic and diagnostic ultrasound[J].Physics in medicine and biology,1989,34 (11):1543-1552.
    [113]Alter A, Rozenszajn L A, Miller H I, et al.Ultrasound inhibits the adhesion and migration of smooth muscle cells in vitro[J].Ultrasound in medicine & biology,1998,24(5):711-721.
    [114]Sakakibara M, Wang D, Takahashi R, et al.Influence of ultrasound irradiation on hydrolysis of sucr- ose catalyzed by invertase[J].Enzyme and microbial technology,1996,18 (6):444-448.
    [115]Schlafer O, Sievers M, Klotzbucher H, et al.Improvement of biological activity by low energy ultras ound assisted bioreactors[J].Ultrasonics,2000,38(1):711-716.
    [116]Schlafer O, Onyeche T, Bormann H, et al.Ultrasound stimulation of micro-organisms for enhanced biodegradation[J].Ultrasonics,2002,40(1):25-29.
    [117]谢冰.超声波作用下有机污染物的降解[J].水处理技术,2000,26(2):114-119.
    [118]Dewulf J, Van Langenhove H, De Visscher A, et al.Ultrasonic degradation of trichloroethylene and chlorobenzene at micromolar concentrations:kinetics and modelling[J].Ultrasonics sonochemistry,2001,8(2):143-150.
    [119]Wang B, Wang Q, Liancai Z, et al.Degrade naphthalene using cells immobilized combining with low intensity ultrasonic technique[J].Colloids and Surfaces B:Biointerfaces,2007,57(1):17-21.
    [120]Liu H, Yan Y, Wang W, et al.Low intensity ultrasound stimulates biological activity of aerobic activ ated sludge[J].Frontiers of Environmental Science & Engineering in China,2007,1 (1):67-72.
    [121]Zhang G, Zhang P, Gao J, et al.Using acoustic cavitation to improve the bio-activity of activated sludge[J].Bioresource technology,2008,99(5):1497-1502.
    [122]Liu C, Xiao B, Dauta A, et al.Effect of low power ultrasonic radiation on anaerobic biodegradability of sewage sludge[J].Bioresource technology,2009,100(24):6217-6222.
    [123]Xie B, Liu H, Yan Y.Improvement of the activity of anaerobic sludge by low-intensity ultrasound[J]. Journal of environmental management,2009,90(1):260-264.
    [124]Xie B, Liu H.Enhancement of biological nitrogen removal from wastewater by low-intensity ultraso- und[J]. Water, Air, & Soil Pollution,2010,211(1):157-163.
    [125]Guo W Q, Ding J, Cao G L, et al.Treatability study of using low frequency ultrasonic pretreatment to augment continuous biohydrogen production[J].International Journal of Hydrogen Energy,2011, 36(21):14180-14185.
    [126]Siripattanakul S, Khan E.Fundamentals and applications of entrapped cell bioaugmentation for con- taminant removal[J].Emerging Environmental Technologies,2010,2:147-169.
    [127]Mallick N.Biotechnological potential of immobilized algae for wastewater N, P and metal removal:a review[J].Biometals,2002,15(4):377-390.
    [128]Zhang S, Norrlow O, Dey E S.Improvement of NaNO2-oxidizing activity in Nitrobacter vulgaris by coentrapment in polyacryl amide containing polydimethylsiloxane copolymer and DEAE-sephadex [J]. Applied and environmental microbiology,2005,71(10):5888-5892.
    [129]陈铭,周晓云.固定化细胞技术在有机废水处理中的应用与前景[J].水处理技术,1997,23(2):98-104.
    [130]Chevalier P, de la Noue J.Wastewater nutrient removal with microalgae immobilized in carrageenan [J].Enzyme and microbial technology,1985,7(12):621-624.
    [131]赵兴利,兰淑澄.固定化硝化菌去除废水中氨氮工艺的研究[J].环境科学,1999,20(1):3942.
    [132]Shan H, Obbard J.Ammonia removal from prawn aquaculture water using immobilized nitrifying ba- cteria[J].Applied microbiology and biotechnology,2001,57(5):791-798.
    [133]Seo J K, Jung 1 H, Kim M R, et al.Nitrification performance of nitrifiers immobilized in PVA (polyvinyl alcohol) for a marine recirculating aquarium system[J].Aquacultural engineering,2001, 24(3):181-194.
    [134]Li Z, Zhang Z, Li J, et al.Comparative study of the nitrification characteristics of two different nitri- fier immobilization methods[J].Biodegradation,2009,20(6):859-865.
    [135]Wijffels R H, Tramper J.Performance of growing Nitrosomonas europaea cells immobilized in k ca- rrageenan[J].Applied microbiology and biotechnology,1989,32(1):108-112.
    [136]Isaka K, Sumino T, Tsuneda S.Novel nitritation process using heat-shocked nitrifying bacteria entra pped in gel carriers[J].Process Biochemistry,2008,43(3):265-270.
    [137]Hsia T H, Feng Y J, Ho C M, et al.PVA-alginate immobilized cells for anaerobic ammonium oxidation (anammox) process[J] Journal of industrial microbiology & biotechnology,2008,35 (7):721-727.
    [138]Furukawa K, Inatomi Y, Qiao S, et al.Innovative treatment system for digester liquor using anammox process[J].Bioresource technology,2009,100(22):5437-5443.
    [139]Isaka K, Itokawa H, Kimura Y, et al.Novel autotrophic nitrogen removal system using gel entrapment technology[J].Bioresource technology,2011,102(17):7720-7726.
    [140]Qiao X L, Zhang Z J, Chen Q X, et al.Nitrification characteristics of PEG immobilized activated sludge at high ammonia and COD loading rates[J].Desalination,2008,222(1):340-347.
    [141]Calli B, Mertoglu B, Inanc B.Landfill leachate management in Istanbul:applications and alternatives [J].Chemosphere,2005,59(6):819-829.
    [142]Isaka K, Yoshie S, Sumino T, et al.Nitrification of landfill leachate using immobilized nitrifying bacteria at low temperatures[J].Biochemical Engineering Journal,2007,37(1):49-55.
    [143]Isaka K, Date Y, Kimura Y, et al.Nitrogen removal performance using anaerobic ammonium oxidation at low temperatures[J].FEMS microbiology letters,2008,282(1):32-38.
    [144]Hill C B, Khan E.A comparative study of immobilized nitrifying and co-immobilized nitrifying and denitrifying bacteria for ammonia removal from sludge digester supernatant[J].Water, Air, & Soil Pollution,2008,195(1):23-33.
    [145]Cao G, Zhao Q, Sun X, et al.Characterization of nitrifying and denitrifying bacteria coimmobilized in PVA and kinetics model of biological nitrogen removal by coimmobilized cells[J].Enzyme and Microbial Technology,2002,30(1):49-55.
    [146]Morita M, Kudo N, Uemoto H, et al.Protective Effect of Immobilized Ammonia Oxidizers and Phenol degrading Bacteria on Nitrification in Ammonia and Phenol containing wastewater[J]. Engineering in Life Sciences,2007,7(6):587-592.
    [147]Ha J, Engler C R, Wild J R.Biodegradation of coumaphos, chlorferon, and diethylthiophosphate using bacteria immobilized in Ca-alginate gel beads[J].Bioresource technology,2009,100 (3):1138-1142.
    [148]Hunt P G, Matheny T A, Ro K S, et al.Denitrification of agricultural drainage line water via immobi- lized denitrification sludge[J].Journal of Environmental Science and Health Part, 2008,43(9):1077-1084.
    [149]Qiao S, Furukawa K.Application of novel acrylic resin biomass carrier for partial nitritation anam-mox processes[D]:Thesis or Dissertation (Technology).Kumamoto:Kumamoto University,2009.
    [150]Schmid M, Twachtmann U, Klein M, et al.Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation[J].Systematic and applied microbiology, 2000,23(1):93-106.
    [151]Schmid M C, Maas B, Dapena A, et al.Biomarkers for in situ detection of anaerobic ammonium oxidizing (anammox) bacteria[J].Applied and environmental microbiology,2005,71(4):1677-1684.
    [152]Egli K, Langer C, Siegrist H R, et al.Community analysis of ammonia and nitrite oxidizers during start up of nitritation reactors[J].Applied and environmental microbiology,2003,69(6):3213-3222.
    [153]Zheng P, Lin F M, Hu B L, et al.Start-up of anaerobic ammonia oxidation bioreactor with nitrifying activated sludge[J].Journal of Environmental Sciences(China),2004,16(1):13-16.
    [154]Gong Z, Yang F, Liu S, et al.Feasibility of a membrane-aerated biofilm reactor to achieve single stage autotrophic nitrogen removal based on Anammox[J]. Chemosphere,2007,69 (5):776-784.
    [155]Isaka K, Sumino T, Tsuneda S.High nitrogen removal performance at moderately low temperature utilizing anaerobic ammonium oxidation reactions[J].Journal of bioscience and bioengineering, 2007,103(5):486-490.
    [156]Strous M, Van Gerven E, Zheng P, et al.Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidation (Anammox) process in different reactor configurations [J].Water Research,1997,31(8):1955-1962.
    [157]Lopez H, Puig S, Ganigue R, et al.Start-up and enrichment of a granular anammox SBR to treat high nitrogen load wastewaters[J].Journal of Chemical Technology and Biotechnology,2008,83 (3):233-241.
    [158]Qiao S, Kawakubo Y, Cheng Y, et al.Identification of bacteria coexisting with anammox bacteria in an upflow column type reactor[J].Biodegradation,2009,20(1):117-124.
    [159]Yapsakli K, Mertoglu B.Evaluation of Anammox activity in zeolite biofilter system[J]. Biodegradation,2010,22(1):229.
    [160]Chen J, Ji Q, Zheng P, et al.Floatation and control of granular sludge in a high-rate anammox reactor[J].Water Research,2010,44(11):3321-3328.
    [161]Van Der Star W R L, Abma W R, Blommers D, et al.Startup of reactors for anoxic ammonium oxidation:Experiences from the first full-scale anammox reactor in Rotterdam[J].Water Research,2007,41(18):4149-4163.
    [162]Imajo U, Tokutomi T, Furukawa K.Granulation of Anammox microorganisms in up flow reactors[J]. Water science and technology,2004,49(5-6):155-163.
    [163]Tang C J, Zheng P, Chen T T, et al.Enhanced nitrogen removal from pharmaceutical wastewater us-ing SBA-ANAMMOX process[J].Water research,2011,45(1):201-210.
    [164]Tang C J, Zheng P, Wang C H, et al.Performance of high-loaded ANAMMOX UASB reactors containing granular sludge[J]. Water research,2011,45(1):135-144.
    [165]Liu S, Yang F, Xue Y, et al.Evaluation of oxygen adaptation and identification of functional bacteria composition for anammox consortium in non-woven biological rotating contactor[J]. Bioresource tech nology,2008,99(17):8273-8279.
    [166]Niftrik L A, Fuerst J A, Damste J S S, et al.The anammoxosome:an intracytoplasmic compart-ment in anammox bacteria[J].FEMS microbiology letters,2004,233(1):7-13.
    [167]Van Niftrik L, Geerts W J C, Van Donselaar E G, et al.Linking ultrastructure and function in four genera of anaerobic ammonium-oxidizing bacteria:cell plan, glycogen storage, and localization of cyto chrome C proteins[J].Journal of bacteriology,2008,190(2):708-717.
    [168]Philipp B, Schink B.Two distinct pathways for anaerobic degradation of aromatic compounds in the denitrifying bacterium Thauera aromatica strain AR-1[J].Archives of microbiology,2000,173 (2):91-96.
    [169]Dapena Mora A, Van Hulle S W H, Luis Campos J, et al.Enrichment of Anammox biomass from mu-nicipal activated sludge:experimental and modelling results[J].Journal of Chemical Technology and Biotechnology,2004,79(12):1421-1428.
    [170]Kieling D D, Reginatto V, Schmidell W, et al.Sludge wash-out as strategy for Anammox process sta- rt up[J].Process Biochemistry,2007,42(12):1579-1585.
    [171]Apha.Standard Methods for the Examination of Water and Wastewater[M].New York:American Pub- lic Health Association,1995.
    [172]Yu G H, He P J, Shao L M, et al.Extracellular proteins, polysaccharides and enzymes impact on slu- dge aerobic digestion after ultrasonic pretreatment[J].Water Research,2008,42(8):1925-1934.
    [173]Dubois M, Gilles K A, Hamilton J K, et al.Colorimetric method for determination of sugars and rela- ted substances[J].Analytical chemistry,1956,28(3):350-356.
    [174]Bradford M M.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J].Analytical biochemistry,1976,72 (1-2):248-254.
    [175]Liu Y, Takatsuki H, Yoshikoshi A, et al.Effects of ultrasound on the growth and vacuolar H+-ATPase activity of aloe arborescens callus cells[J].Colloids and surfaces B:Bio interfaces, 2003,32(2):105-116.
    [176]Henriques I D S, Love N G.The role of extracellular polymeric substances in the toxicity response of activated sludge bacteria to chemical toxins[J]. Water research,2007,41 (18):4177-4185.
    [177]Long G, Zhu P, Shen Y, et al.Influence of extracellular polymeric substances (EPS) on deposition kinetics of bacteria[J].Environmental science & technology,2009,43(7):2308-2314.
    [178]Quan L M, Khanh D P, Hira D, et al.Reject water treatment by improvement of whole cell anammox entrapment using polyvinyl alcohol/alginate gel[J].Biodegradation,2011,22 (6):1155-1167.
    [179]Bai X, Ye Z, Li Y, et al.Preparation of crosslinked macroporous PVA foam carrier for immobilizati- on of microorganisms[J].Process Biochemistry,2010,45(1):60-66.
    [180]Akita K,Yoshida F.Gas holdup and volumetric mass transfer coefficient in bubble columns. Effects of liquid properties[J].Industrial & Engineering Chemistry Process Design and Development,1973,12(1):6-80.
    [181]Bai X, Ye Z, Li Y, et al.Preparation and characterization of a novel macroporous immobilized micro -organism carrier[J].Biochemical Engineering Journal,2010,49 (2):264-270.
    [182]Wang S, Zhu Z H, Coomes A, et al.The physical and surface chemical characteristics of activated ca- rbons and the adsorption of methylene blue from wastewater[J]. Journal of colloid and interface scien-ce,2005,284(2):440-446.
    [183]Zhang L S, Wu W Z, Wang J L.Immobilization of activated sludge using improved polyvinyl alcohol (PVA) gel [J]. Journal of environmental sciences,2007,19(11):1293-1297.
    [184]Dave R, Madamwar D.Esterification in organic solvents by lipase immobilized in polymer of PVA- alginate-boric acid[J].Process Biochemistry,2006,41(4):951-955.
    [185]Takei T, Ikeda K, Ijima H, et al.Fabrication of poly (vinyl alcohol) hydrogel beads crosslinked using sodium sulfate for microorganism immobilization[J].Process Biochemistry,2011,46(2):566-571.
    [186]Schramm A, De Beer D, Gieseke A,et al.Microenvironments and distribution of nitrifying bacteria in a membrane-bound biofilm[J].Environmental microbiology,2000,2(6):680-686.
    [187]Mobarry B K,Wagner M,Urbain V.et al.Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria.[J].Applied and Environmental Microbiology, 1996,62(6):2156-2162.
    [188]Moussa M S, Sumanasekera D U, Ibrahim S H, et al.Long term effects of salt on activity, population structure and floc characteristics in enriched bacterial cultures of nitrifiers[J]. Water research,2006,40 (7):1377-1388.
    [189]Joss A, Derlon N, Cyprien C, et al.Combined nitritation-anammox:advances in under- standing process stability[J].Environmental science & technology,2011,45(22):9735-9742.
    [190]Manz W, Amann R, Ludwig W, et al.Phylogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria:problems and solutions[J].Systematic and Applied Microbiology, 1992,15 (4):593-600.
    [191]Seyfried C F, Hippen A, Helmer C, et al.One-stage deammonification:nitrogen elimination at low costs[J]. Water Science & Technology:Water Supply,2001,1(1):71-80.
    [192]Vlaeminck S E, Terada A, Smets B F, et al.Nitrogen removal from digested black water by one-stage partial nitritation and anammox[J].Environmental science & technology,2009, 43(13):5035-5041.
    [193]Joss A, Salzgeber D, Eugster J, et al.Full-scale nitrogen removal from digester liquid with partial nitr-itation and anammox in one SBR[J].Environmental science & technology,2009,43(14):5301-5306.
    [194]Vlaeminck S E, Cloetens L, Carballa M, et al.Granular biomass capable of partial nitritation and anammox[J].Water Science & Technology,2008,58(5):1113-1120.
    [195]Pellicer-Nacher C, Sun S, Lackner S, et al.Sequential aeration of membrane-aerated biofilm reactors for high-rate autotrophic nitrogen removal:experimental demonstration[J]. Environmental science & technology,2010,44(19):7628-7634.
    [196]Abma W R, Driessen W, Haarhuis R, et al.Upgrading of sewage treatment plant by sustainable and cost-effective separate treatment of industrial wastewater[J].Water science and technology, 2010,61 (7):1715-1722.
    [197]Jeanningros Y, Vlaeminck S E, Kaldate A, et al.Fast start-up of a pilot-scale deammonification se-quencing batch reactor from an activated sludge inoculum[J].Water science and technology:a journal of the International Association on Water Pollution Research,2010,61(6):1393-1400.
    [198]De Clippeleir H, Yan X, Verstraete W, et al.OLAND is feasible to treat sewage-like nitrogen concentrations at low hydraulic residence times[J].Applied microbiology and biotechnology, 2011,90(4):1-9.
    [199]Chen Y P, Li S, Ning Y F, et al.Start-up of Completely Autotrophic Nitrogen Removal Over Nitrite Enhanced by Hydrophilic-Modified Carbon Fiber[J].Applied biochemistry and biotechnology,2012,166(4):866-877.
    [200]Figueroa M, Vazquez-Padin J R, Mosquera-Corral A, et al.Is the CANON reactor an alternative for nitrogen removal from pre-treated swine slurry?[J].Biochemical Engineering Journal,2012, 65:23-29.
    [201]Schaubroeck T, Bagchi S, De Clippeleir H, et al.Successful hydraulic strategies to start up OLAND sequencing batch reactors at lab scale[J].Microbial Biotechnology,2012,5 (3):403-414.
    [202]Park S, Bae W.Modeling kinetics of ammonium oxidation and nitrite oxidation under simul-taneous inhibition by free ammonia and free nitrous acid[J].Process Biochemistry,2009,44 (6):631-640.
    [203]Jung J Y, Kang S H, Chung Y C, et al.Factors affecting the activity of anammox bacteria during start up in the continuous culture reactor.[J].Water science and technology:a journal of the International Association on Water Pollution Research,2007,55(1-2):459.
    [204]Liang Z, Liu J X.Control factors of partial nitritation for landfill leachate treatment[J]. Journal of Environmental Sciences,2007,19(5):523-529.
    [205]Koops H P, Purkhold U, Pommerening-Roser A, et al.The lithoautotrophic ammonia oxidizing bacteria[J].The prokaryotes,2006,5:778-811.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700