用户名: 密码: 验证码:
生物配体模型(BLM)对于评价金属联合毒性的适用性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在受污染的环境中,金属通常是相互混合并且相互作用的。然而,目前对污染物的风险评价通常还是以单一污染物的效应评价为基础的。近年来,生物配体模型(Biotic Ligand Model, BLM)由于其在金属水质标准制定以及生态风险评价中的应用而日益受到重视。BLM的方法具备应用于混合金属风险评价的能力,但其无法被简单直接的应用于金属混合物效应的评价,而且目前仍不清楚模型的一些简单假设能否满足混合金属复杂的相互作用。因此,应当谨慎地将BLM的方法应用于金属相互作用的模拟。本文简要的介绍了BLM的发展以及理论基础,在对模型的优势和应用中存在的问题进行分析的基础上,对模型的应用范围进行了探索性的研究。首先,以天津地区的一系列景观水体与实验室配制的模拟溶液为例,对已开发的应用于大型溞(Daphnia magna)的急性Zn-BLM的预测能力进行评价。其次,尝试将BLM的方法应用于斑马鱼胚胎毒性的预测,以探讨将模型推广到其他生物(或其他发育阶段)的适用性。为探明Ca2+浓度增加是否会使鱼类早期发育阶段对铅毒性的敏感性升高,以及Ca2+单独减弱铅毒性的浓度范围,选用斑马鱼胚胎作为实验材料,记录在不同的水化学参数条件下,胚胎发育过程中一些具有代表性的毒理学终点,采用相对易于观察且敏感的指标——72 h孵化率进行分析。论文重点探讨了量化微量营养元素铜(Cu)与非必需金属铅(Pb)积累的相互作用,以验证BLM的一些基本假设。在人工配置的已知离子浓度的实验溶液中,采用野生型淡水单细胞绿藻Chlamydomonas reinhardtii做短时积累实验,暴露浓度范围是5X10-8至5x10-6M,同时测定Pb和Cu单独存在时的内化通量,以使用常数的倒数来确定Michaelis-Menten稳定常数。在此基础上,论述BLM是否具有预测另一种生物效应——基因表达的潜力。研究不同Cu和Pb的浓度下,绿藻生物积累和与金属效应相关的基因表达的变化。着重研究以下几个基因,编码:自然抵抗联合巨噬细胞蛋白(natural resistance associated macrophage protein, nramp1),铜传输位点(copper transporter, ctr2),氧化压力效应基因——谷胱甘肽过氧(化)物酶(glutathione peroxidase, gpx5),以及谷胱甘肽转移酶(glutathione S-transferase, gsts2)。研究采用Visual MINTEQ version 2.5.2进行BLM的相关计算以及金属与溶液中离子的化学形态分析。本文的研究结果可以用来扩展BLM对于金属混合物的预测能力,从而提高该模型预测金属混合物毒性的能力。
     论文研究结果表明:
     (1)在测试的水化学参数范围内,认为以锌对大型蚤的急性毒性数据建立起来的模型是一种有用的工具,能够在锌的生态风险评价中考虑生物有效性的问题,对所有水体(包括不同稀释倍数的水样)的预测结果与测试结果近似,80%的实测值在预测值67%-150%范围内。但以鱼类为基础开发的,通过下调LA50被应用于水蚤的急性Zn-BLM的预测值普遍高于实测值,其实测值为预测值的约2至4倍。通过调整LA50拓展模型适用性的方法过于简单,正受到质疑。
     (2)当Ca2+浓度从0.25 mmol/L增加到2.00 mmol/L时,导致了以自由铅离子活度({Pb2+})和溶解态铅总浓度([Pb]T)表示的72-h EC5o的增加(表现为发育延迟),两者之间存在良好的线性关系。通过这一线性关系,可以对Ca2+浓度对铅毒性的影响进行预测。这一结果支持了生物配体模型(BLM)概念的假设,说明在胚胎的表面,铅离子与钙离子可能在传输和毒性作用位点上存在竞争作用。而当Ca2+浓度从2.00 mmol/L增加到4.00 mmol/L时,72-h EC50 {Pb2+}和72-h EC50 [Pb]T并没有显著的增加。
     (3)Cu的稳定常数为105.8M-1,与Pb的常数(105.9M-1)相似。然而,竞争实验没有表现出直接的拮抗作用,这与BLM的预测不符。当Pb存在时,在高浓度条件下,Cu的积累会由于Pb的影响而降低,但当Cu的浓度低于10-7M时,Cu的积累不受Pb的影响。在高浓度的Cu(>1μM)条件下,Cu表现出竞争抑制;而在低Cu条件下,Cu对Pb的积累有协同效应,这种协同效应无法用BLM的观点解释。为了解释这一效应,进一步进行了细胞活动能力试验,膜渗透性试验以及基因表达试验。在Pb存在的条件下,ctr2(一段编码Cu传输位点的基因)的表达增加,表明生物积累是一个比模型假设更加复杂的动态过程。
     (4)不同基因会产生不同的相互作用,表明每种基因都可能会产生其特异的细胞内的反馈与调节,这也会与不同的金属有关。这与稳定状态模型的一个假设不符:在敏感位点上不会引起显著的生物调节。即使在短时间的暴露实验中,仍然难以满足该假设。不同金属传输位点所出现的效应不同(ctr2和nrampl),表明传输分子发生了调解与改变。而且,BLM的假设认为金属的生物效应是由于金属富集在生物配体上所产生的,是金属积累的函数。虽然金属必须先积累在生物体中才能产生生物效应,但如仅简单认为金属的积累与其毒性效应之间存在着某种比例关系,这一假设显然太过于简单。Cu的保护效应,表明重金属的积累并不是总与毒性相关,这与BLM的假设不一致。
Contamination rarely occurs for single metals and is invariably due to complex mixtures in the environment. However, risk assessments of toxic compounds are routinely based upon effects evaluations of single substances. During recent years, the biotic ligand model (BLM) approach has gained widespread interest amongst the scientific, regulated and regulatory communities because of its potential for use in developing water quality criteria (WQC) and in performing risk assessments for metals. The BLM approach has significant implications for advances in the area of metal mixture risk assessment. Unfortunately, the BLM approach cannot yet be easily used to assess the effects in metal mixtures, which is more common. It is also unclear whether simple modifications of the BLM will be sufficient to account for such complex interactions. Therefore, the BLM should be used with caution when attempting to model metal interactions. Based on the development and theoretical basis of the biotic ligand model (BLM) overview, we examined the advantages and limitations in application of the BLM. Some important future research directions were identified. Based on the review we assessed the predictive capacities of two biotic ligand models (BLMs) for acute zinc toxicity to Daphnia magna as applied to a number of landscape waters from Tianjin and synthetic laboratory-prepared waters. To examine the possibility of extending the BLM approach to other organisms (or life stage), we tested the hypothesis that increased Ca2+ content increases the sensitivity of the developing embryos and larvae of zebrafish (Danio rerio) to Pb. And the aim of the study was to investigate the extent to which calcium can individually mitigate lead ion toxicity based on the concept of biotic ligand model (BLM). Embryos of the zebrafish were exposed to various Pb concentrations. Different chemical characteristics of water and some representative toxicological endpoints of zebrafish embryo were recorded. And general growth retardation as a major toxicological endpoint was used for analysis at 72 h due to its sensitivity and facility. After that, copper (Cu), an essential micronutrient and lead (Pb), a nonessential toxic metal, uptake by the unicellular green alga, Chlamydomonas reinhardtii, have been quantified in single metal exposures and in metal mixtures in order to test some of the key assumptions of the BLM. Furthermore, we tested the potential of the BLM to predict other biological effects, gene expression. Their responses to various combinations of Cu and Pb in the green algae C. reinhardtii were studied by following bioaccumulation and expression levels of genes known to be involved in the metal responses. The study concentrated on the expression levels of genes coding for natural resistance associated macrophage protein (nrampl), copper transporter (ctr2), oxidative stress responding gene-glutathione peroxidase (gpx5) and glutathione S-transferase (gsts2) after an exposure to Pb and Cu. The software of Visual MINTEQ (version 2.5.2) was employed to calculate the biotic ligand models and the chemical speciation in the solution. Results of this study can be used to help extend current predictive toxicity models (e.g. the BLM) to metal mixtures.
     The results indicated that:
     (1) Within these ranges of water chemistry parameters, the model based on toxicological data of acute zinc to Daphnia magna may be considered as a useful tool for taking into account bioavailability in regulatory assessments of zinc. This model generally predicted 80% effect concentrations by an error of less than a factor of 1.5. However, the predicted values of the acute Zn-BLM, which was developed in fish and subsequently adopted for Daphnia magna through downward adjustment of LA50 were normally lower than measured values. Acute toxicity to Daphnia magna (LC50) was underestimated by a factor 2 to 4. The method of adjusting the LA50 to extent the model applicability should be considered only the simplest means of calibrating the BLM, and might be suspected.
     (2) The results showed that when Ca2+ concentration increased from 0.25 mmol/L to 2.00 mmol/L, the toxicity of lead on embryos of zebrafish (Danio rerio) decreased markedly after 72 h. And a large part of these decrease can be explained by the positive linear relations between EC50 {Pb2+}/EC50 [Pb]T (express as lead ion activity/dissolved total concentration) and activity/total concentration of Ca2+ through which the influence of Ca2+ on toxicity could be predicted. The results support the assumptions of the BLM and have often been associated with competition between lead and calcium for binding on transport and toxic action sites on biological surfaces. However, when Ca2+ concentration increased from 2.00 mmol/L to 4.00 mmol/L, the toxicity of lead on embryos of zebrafish (Danio rerio) seems to be constant at 72 h.
     (3) Stability constants for the interaction of the metals with biological uptake sites by Chlamydomonas reinhardtii were determined from measured short term internalization fluxes. In the absence of competition, a value of 105.8M-1 was obtained for Cu while 105.9M-1 was obtained for Pb. Competition experiments did not show a straightforward antagonistic competition, as would be predicted by the BLM. Only at high Cu2+ concentrations (>1μM) did Cu behave as a competitive inhibitor of Pb transport. Surprisingly, low concentrations of Cu2+ had a synergistic effect on Pb uptake. Furthermore, Cu uptake was independent of Pb when Cu concentrations were below 10-7 M. In order to explain the observed discrepancies with the BLM, membrane permeability and Cu transporter expression levels were probed. The expression of ctr2, a gene coding for a Cu transporter, increased significantly in the presence of Pb, indicating that bioaccumulation is much more dynamic than assumed in the equilibrium models.
     (4) The variability of interactive effects across genes suggests they are the product of intracellular feedback or regulatory processes specific to each gene and often binary metal combination. That is not consisting with one assumption of steady-state model:no significant biological regulation is induced by binding to sensitive sites, even in the short-term exposure experiments. Variable effect of different metal transporter (ctr2 and nrampl) suggested that the carrier molecule might possess regulatory and modification. The assumption of BLM considers biological effect as a function of metal uptake following bound amount of metal to the organism. Although the metal must first be accumulated before an effect is observed, it is oversimplification to link metal accumulation to proportional toxic effect. Besides that, protection effect of Cu suggesting that accumulation of heavy metals is not always related to their toxicity, which is not consistent with the assumption of BLM.
引文
[1]De Schamphelaere K A, Heijerick D G, Janssen C R. Refinement and field validation of a biotic ligand model predicting acute copper toxicity to Daphnia magna. Comp Biochem Physiol C Toxicol Pharmacol,2002,133(1-2):243-258
    [2]De Schamphelaere K A, Janssen C R. A biotic ligand model predicting acute copper toxicity for Daphnia magna:the effects of calcium, magnesium, sodium, potassium, and pH. Environ Sci Technol,2002,36(1):48-54
    [3]Di Toro D M, Allen H E, Bergman H L,et al. Biotic ligand model of the acute toxicity of metals.1. Technical basis. Environ Toxicol Chem,2001,20(10):2383-2396
    [4]Santore R C, Di Toro D M, Paquin P R,et al. Biotic ligand model of the acute toxicity of metals.2. Application to acute copper toxicity in freshwater fish and Daphnia. Environ Toxicol Chem,2001,20(10):2397-2402
    [5]黄圣彪,王子健.水环境中重金属的生物毒性预测模型.上海环境科学,2002,21(1):20-23
    [6]Paquin P R, Santore R C, Wu K B,et al. The biotic ligand model:a model of the acute toxicity of metals to aquatic life Environmental Science and Policy,2000,3(Supplement 1):175-182
    [7]Sauve S, Cook N, Hendershot W H,et al. Linking plant tissue concentrations and soil copper pools in urban contaminated soils. Environ Pollut,1996,94(2):153-157
    [8]Markich S J, Brown P L, Jeffree R A,et al. The effects of pH and dissolved organic carbon on the toxicity of cadmium and copper to a freshwater bivalve:further support for the extended free ion activity model. Arch Environ Contam Toxicol,2003,45(4):479-491
    [9]Saeki K, Kunito T, Oyaizu H,et al. Relationships between bacterial tolerance levels and forms of copper and zinc in soils. J Environ Qual,2002,31(5):1570-1575
    [10]Poldoski J E. Cadmium bioaccumulation assays. Their relationship to various ionic equilibriums in Lake Superior water. Environ Sci Technol,1979,13(6):701-706
    [11]Morel F M M, Hering J G. Principles of Aquatic Chemistry. New York:John Wiley and Sons, Inc.,1983
    [12]Meyer J S, Santore R C, Bobbity J P,et al. Binding of nickel and copper to fish gills predicts toxicity when water hardness varies, but free-kon activity does not. Environmental Science and Technology 1999,33(6):913-916
    [13]Pagenkopf G K. Gill surface interaction model for trace-metal toxicity to fishes:role of complexation, pH, and water hardness. Environ Sci Technol,1983,17(6):342-347
    [14]Erickson R J, Benoit D A, Mattson V R,et al. The effects of water chemistry on the toxicity of copper to fathead minnows. Environmental toxicology and chemistry,1996,15(2):181-193
    [15]Niyogi S, Wood C M. Biotic ligand model, a flexible tool for developing site-specific water quality guidelines for metals. Environ Sci Technol,2004,38(23):6177-6192
    [16]Sunda W G, Huntsman S A. Processes regulating cellular metal accumulation and physiological effects:Phytoplankton as model systems. The Science of the Total Environment, 1998,219(2-3):165-181
    [17]Hudson R J M. Which aqueous species control the rates of trace metal uptake by aquatic biota? Observations and predictions of non-equilibrium effects. The Science of the Total Environment,1998,219(2-3):95-115
    [18]Tessier A, Buffle J, Campbell P G C. Uptake of trace metals by aquatic organisms. In:Buffle J, Vitre RRD (eds). Chemical and Biological Regulation of Aquatic Systems. Boca Raton,1994
    [19]Playle R C. Modelling metal interactions at fish gills. Science of The Total Environment, 1998,219(2-3):147-163
    [20]Hassler C S, Wilkinson K J. Failure of the biotic ligand and free-ion activity models to explain zinc bioaccumulation by Chlorella kesslerii. Environ Toxicol Chem,2003,22(3): 620-626
    [21]Van Leeuwen H P. Metal Speciation Dynamics and Bioavailability:Inert and Labile Complexes. Environmental science & technology,1999,33(21):3743-3748
    [22]Campbell P G, Errecalde O, Fortin C,et al. Metal bioavailability to phytoplankton-applicability of the biotic ligand model. Comp Biochem Physiol C Toxicol Pharmacol,2002,133(1-2):189-206
    [23]Xue H B, Stumm W, Sigg L. The binding of heavy metals to algal surfaces. Water Research, 1988,22(7):917-926
    [24]Eitinger T, Mandrand-Berthelot M A. Nickel transport systems in microorganisms. Arch Microbiol,2000,173(1):1-9
    [25]Brown P L, Markich S J. Evaluation of the free ion activity model of metal-organism interaction:extension of the conceptual model. Aquat Toxicol,2000,51(2):177-194
    [26]Heijerick D G, De Schamphelaere K A, Janssen C R. Biotic ligand model development predicting Zn toxicity to the alga Pseudokirchneriella subcapitata:possibilities and limitations. Comp Biochem Physiol C Toxicol Pharmacol,2002,133(1-2):207-218
    [27]Playle R C. Using multiple metal-gill binding models and the toxic unit concept to help reconcile multiple-metal toxicity results. Aquat Toxicol,2004,67(4):359-370
    [28]Slaveykova V I, Wilkinson K J. Predicting the Bioavailability of Metals and Metal Complexes: Critical Review of the Biotic Ligand Model. Environmental Chemistry,2005,2(1):9-24
    [29]Wilkinson K J, Buffle J. Critical Evaluation of Physicochemical Parameters and Processes for Modelling the Biological Uptake of Trace Metals in Environmental (Aquatic) Systems. In: Van Leeuwen HP, Koster W (eds). Physicochemical Kinetics and Transport at Biointerfaces: John Wiley & Sons,2004
    [30]Paquin P R, Gorsuch J W, Apte S,et al. The biotic ligand model:a historical overview. Comp Biochem Physiol C Toxicol Pharmacol,2002,133(1-2):3-35
    [31]黄圣彪.水环境中铜形态与其生物有效性/毒性关系及其预测模型研究:[博士学位论文].北京:中国科学院生态环境研究中心,2003
    [32]Janes N, Playle R C. Modeling silver binding to gills of Rainbow trout (Oncorhynchus mykiss). Environmental Toxicology and Chemistry,1995,14(11):1847-1858
    [33]Santore B. Information of symposium on biotic ligand model & environmental (ecological) risk assessment. Beijing:2006
    [34]De Schamphelaere K A, Janssen C R. Development and field validation of a biotic ligand model predicting chronic copper toxicity to Daphnia magna. Environ Toxicol Chem,2004, 23(6):1365-1375
    [35]De Schamphelaere K A, Janssen C R. Effects of dissolved organic carbon concentration and source, pH, and water hardness on chronic toxicity of copper to Daphnia magna. Environ Toxicol Chem,2004,23(5):1115-1122
    [36]Paquin P R, Di Toro D M, Santore R C,et al. A biotic ligand model of the acute toxicity of metals. Ⅲ. Application to fish and Daphnia exposure to silver. Washington D C:U.S. Environmental Protection Agency:1999
    [37]Mcgeer J C, Playle R C, Wood C M,et al. A physiologically based biotic ligand model for predicting the acute toxicity of waterborne silver to rainbow trout in freshwaters. Environmental Science and Technology,2000,34(19):4199-4207
    [38]Bury N R, Shaw J, Glover C,et al. Derivation of a toxicity-based model to predict how water chemistry influences silver toxicity to invertebrates. Comp Biochem Physiol C Toxicol Pharmacol,2002,133(1-2):259-270
    [39]Santore R C, Mathew R, Paquin P R,et al. Application of the biotic ligand model to predicting zinc toxicity to rainbow trout, fathead minnow, and Daphnia magna. Comp Biochem Physiol C Toxicol Pharmacol,2002,133(1-2):271-285
    [40]Heijerick D G, De Schamphelaere K A, Janssen C R. Predicting acute zinc toxicity for Daphnia magna as a function of key water chemistry characteristics:development and validation of a biotic ligand model. Environ Toxicol Chem,2002,21(6):1309-1315
    [41]De Schamphelaere K A, Janssen C R. Bioavailability and chronic toxicity of zinc to juvenile rainbow trout(Oncorhynchus mykiss):comparison with other fish species and development of a biotic ligand model. Environ Sci Technol,2004,38(23):6201-6209
    [42]Hassler C S, Slaveykova V I, Wilkinson K J. Some fundamental (and often overlooked) considerations underlying the free ion activity and biotic ligand models. Environ Toxicol Chem,2004,23(2):283-291
    [43]Pane E F, Richards J G, Wood C M. Acute waterborne nickel toxicity in the rainbow trout (Oncorhynchus mykiss) occurs by a respiratory rather than ionoregulatory mechanism. Aquat Toxicol,2003,63(1):65-82
    [44]Pane E F, Haque A, Goss G G,et al. The physiological consequences of exposure to chronic, sublethal waterborne nickel in rainbow trout (Oncorhynchus mykiss):exercise vs resting physiology. J Exp Biol,2004,207(Pt 7):1249-1261
    [45]Hollis L, McGeer J C, McDonald D G,et al. Protective effects of calcium against chronic waterborne cadmium exposure to juvenile rainbow trout. Environmental toxicology and chemistry,2000,19(11):2725-2734
    [46]Richards J G, Playle R C. Cobalt binding to gills of rainbow trout (Oncorhynchus mykiss):an equilibrium model. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol,1998,119(2): 185-197
    [47]Penttinen S, Kostamo A, Kukkonen J V K. Combined effects of dissolved organic material and water hardness on toxicity of cadmium to Daphnia magna. Environmental Toxicology and Chemistry,1998,17(12):2498-2503
    [48]De Schamphelaere K A, Vasconcelos F M, Heijerick D G,et al. Development and field validation of a predictive copper toxicity model for the green alga Pseudokirchneriella subcapitata. Environ Toxicol Chem,2003,22(10):2454-2465
    [49]Steenbergen N T, Iaccino F, de Winkel M,et al. Development of a biotic ligand model and a regression model predicting acute copper toxicity to the earthworm Aporrectodea caliginosa. Environ Sci Technol,2005,39(15):5694-5702
    [50]Cheng T, Allen H E. Prediction of uptake of copper from solution by lettuce (Lactuca sativa Romance). Environ Toxicol Chem,2001,20(11):2544-2551
    [51]Antunes P M, Berkelaar E J, Boyle D,et al. The biotic ligand model for plants and metals: technical challenges for field application. Environ Toxicol Chem,2006,25(3):875-882
    [52]武兰顺.研究自然水体中金属生物毒性的工具—生物配体模型(BLM模型).河北环境科学,2004,12(1):4-7
    [53]胡璟,张梦妮,邓惠文,等.不同性质天然水中铜在虹鳟(Oncorhynchus mykiss)鳃表的形态及对虹鳟的毒性.应用与环境生物学报,2005,11(6):714-716
    [54]王学东,马义兵,华珞,等.环境中金属生物有效性的预测模型—生物配体模型研究进展.生态毒理学报,2006,1(3):193-202
    [55]吕怡兵,李国刚,宫正宇,等.应用BLM模型预测我国主要河流中Cu的生物毒性.环境科学学报,2006,26(12):2080-2085
    [56]罗小三,李连祯,周东美.陆地生物配体模型(t-BLM)初探:镁离子降低铜离子对小麦根的毒性.生态毒理学报,2007,2(1):41-48
    [57]李连祯,罗小三,周东美.土壤溶液中Ca2+降低Cd2+对赤子爱胜蚓的毒性.中国环境科学,2007,27(5):681-685
    [58]Janssen C R, Heijerick D G, De Schamphelaere K A,et al. Environmental risk assessment of metals:tools for incorporating bioavailability. Environ Int,2003,28(8):793-800
    [59]Crist R J. Interactions of metals and protons with algae. Environmental Science and Technology,1988,22(7):755-760
    [60]Vigneault B, Percot A, Lafleur M,et al. Permeability Changes in Model and Phytoplankton Membranes in the Presence of Aquatic Humic Substances. Environmental Science and Technology,2000,34(18):3907-3913
    [61]Slaveykova V I, Wilkinson K J, Ceresa A,et al. Role of fulvic acid on lead bioaccumulation by Chlorella kesslerii. Environ Sci Technol,2003,37(6):1114-1121
    [62]Science Advisory Board(1400A). Review of the biotic ligand model of the acute toxicity of metals. Washington,DC:U.S. Environmental Protection Agency:2000
    [63]Hogstrand C, Wood C M. Toward a better understanding of the bioavailability, physiology, and toxicity of silver in fish:implications for water quality criteria. Environmental Toxicology and Chemistry,1998,17(4):547-561
    [64]Norwood W P, Borgmann U, Dixon D G,et al. Effects of Metal Mixtures on Aquatic Biota:A Review of Observations and Methods Human and Ecological Risk Assessment:An International Journal,2003,9(4):795-811
    [65]Stewart A R. Accumulation of Cd by a freshwater mussel (Pyganodon grandis) is reduced in the presence of Cu, Zn, Pb, and Ni. Canadian Journal of Fisheries and Aquatic Sciences 1999,56(3):467-478
    [66]Verslycke T, Vangheluwe M, Heijerick D,et al. The toxicity of metal mixtures to the estuarine mysid Neomysis integer (Crustacea:Mysidacea) under changing salinity. Aquat Toxicol,2003, 64(3):307-315
    [67]Newman M C, Mccloskey J T. Predicting relative toxicity and interactions of divalent metal ions:microtox? bioluminescence assay. Environmental Toxicology and Chemistry,1996, 15(3):275-281
    [68]周启星,孔繁翔,朱琳.生态毒理学.北京:科学出版社,2004
    [69]Hatano A, Shoji R. Toxicity of copper and cadmium in combinations to Duckweed analyzed by the biotic ligand model. Environ Toxicol,2008,23(3):372-378
    [70]Kamo M, Nagai T. An application of the biotic ligand model to predict the toxic effects of metal mixtures. Environ Toxicol Chem,2008,27(7):1479-1487
    [1]Yu R Q, Wang W X. Kinetic uptake of bioavailable cadmium, selenium, and zinc by Daphnia magna. Environ Toxicol Chem,2002,21(11):2348-2355
    [2]De Schamphelaere K A C, Lofts S, Janssen C R. Bioavailability models for predicting acute and chronic toxicity of zinc to algae, daphnids, and fish in natural surface waters. Environmental Toxicology and Chemistry,2005,24(5):1190-1197
    [3]周永欣,袁宗涉.水生生物毒性试验方法.北京:农业出版社,1989
    [4]Santore R C, Mathew R, Paquin P R,et al. Application of the biotic ligand model to predicting zinc toxicity to rainbow trout, fathead minnow, and Daphnia magna. Comp Biochem Physiol C Toxicol Pharmacol,2002,133(1-2):271-285
    [5]Heijerick D G, De Schamphelaere K A, Janssen C R. Predicting acute zinc toxicity for Daphnia magna as a function of key water chemistry characteristics:development and validation of a biotic ligand model. Environ Toxicol Chem,2002,21 (6):1309-1315
    [6]De Schamphelaere K A, Heijerick D G, Janssen C R. Comparison of the effect of different pH buffering techniques on the toxicity of copper and zinc to Daphnia magna and Pseudokirchneriella subcapitata. Ecotoxicology 2004,13(7):697-705
    [7]Villavicencio G, Urrestarazu P, Carvajal C,et al. Biotic ligand model prediction of copper toxicity to daphnids in a range of natural waters in Chile. Environ Toxicol Chem,2005,24(5): 1287-1299
    [8]De Schamphelaere K A, Janssen C R. A biotic ligand model predicting acute copper toxicity for Daphnia magna:the effects of calcium, magnesium, sodium, potassium, and pH. Environ Sci Technol,2002,36(1):48-54
    [9]HydroQual Inc. The Biotic Ligand Model Windows Interface, Version 2.1.2:User's Guide and Reference Manual.2005
    [10]Kinniburgh D G, van Riemsdijk W H, Koopal L K,et al. Ion binding to natural organic matter: competition, heterogeneity, stoichiometry and thermodynamic consistency. Colloids and Surfaces a-Physicochemical and Engineering Aspects,1999,151(1-2):147-166
    [11]Santore R C, Di Toro D M, Paquin P R,et al. Biotic ligand model of the acute toxicity of metals.2. Application to acute copper toxicity in freshwater fish and Daphnia. Environ Toxicol Chem,2001,20(10):2397-2402
    [12]NIST Standard Reference Database 46. NIST Critically Selected Stability Constants of Metal Complexes:Version 4.0. The National Institute of Standards and Technology (NIST):1997
    [13]De Schamphelaere K A, Heijerick D G, Janssen C R. Refinement and field validation of a biotic ligand model predicting acute copper toxicity to Daphnia magna. Comp Biochem Physiol C Toxicol Pharmacol,2002,133(1-2):243-258
    [14]De Schamphelaere K A, Vasconcelos F M, Heijerick D G,et al. Development and field validation of a predictive copper toxicity model for the green alga Pseudokirchneriella subcapitata. Environ Toxicol Chem,2003,22(10):2454-2465
    [15]Baldisserotto B, Kamunde C, Matsuo A,et al. A protective effect of dietary calcium against acute waterborne cadmium uptake in rainbow trout. Aquatic Toxicology,2004,67(1):57-73
    [16]De Schamphelaere K A, Janssen C R. Bioavailability and chronic toxicity of zinc to juvenile rainbow trout (Oncorhynchus mykiss):comparison with other fish species and development of a biotic ligand model. Environ Sci Technol,2004,38(23):6201-6209
    [1]朱琳,史淑洁.斑马鱼胚胎发育技术在毒性评价中的应用.应用生态学报,2002,13(2):252-254
    [2]World Health Organization. Inorganic lead. Environmental health criteria 165 International Programme on Chemical Safety. Geneva:1995
    [3]Demayo A, Taylor M C, Taylor K W,et al. Toxic Effects of Lead and Lead Compounds on Human Health, Aquatic Life, Wildlife Plants, and Livestock. Crc Critical Reviews in Environmental Control,1982,12(4):257-305
    [4]USEPA. Air Quality Criteria for Lead. Washington, D.C.:Environmental Criteria and Assessment Office, U.S. Environmental Protection Agency:1986
    [5]Burden V M, Sandheinrich M B, Caldwell C A. Effects of lead on the growth and delta-aminolevulinic acid dehydratase activity of juvenile rainbow trout, Oncorhynchus mykiss. Environmental Pollution,1998,101(2):285-289
    [6]李潇.环境铅污染使儿童脑发育不全.中国生物化学与分子生物学报,2009,8:733
    [7]Macdonald A, Silk L, Schwartz M,et al. A lead-gill binding model to predict acute lead toxicity to rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol C Toxicol Pharmacol,2002,133(1-2):227-242
    [8]Rogers J T, Richards J G, Wood C M. Ionoregulatory disruption as the acute toxic mechanism for lead in the rainbow trout (Oncorhynchus mykiss). Aquat Toxicol,2003,64(2):215-234
    [9]Rogers J T, Wood C M. Characterization of branchial lead-calcium interaction in the freshwater rainbow trout Oncorhynchus mykiss. J Exp Biol,2004,207(Pt 5):813-825
    [10]German Federal Environment Agency. Fish embryo toxicity assays. Heidelberg:2006
    [11]王佳佳,徐超,屠云杰,等.斑马鱼及其胚胎在毒理学中的实验研究与应用进展.生态毒理学报,2007,2(2):123-135
    [12]Kandegedara A, Rorabacher D B. Noncomplexing tertiary amines as "better" buffers covering the range of pH 3-11. Temperature dependence of their acid dissociation constants. Analytical Chemistry,1999,71(15):3140-3144
    [13]李连祯,罗小三,周东美.土壤溶液中Ca2+降低Cd2+对赤子爱胜蚓的毒性.中国环境科学,2007,27(5):681-685
    [14]OECD. Fish Embryo Toxicity (FET) Test. OECD Guideline for the testing of chemicals draft proposal for a new guideline:2006
    [15]朱琳,史淑洁,佟玉结.应用斑马鱼胚胎致畸效应检测环境污染物毒性.环境与健康杂志,2003,20(2):122-124
    [16]张毓琪,陈叙龙.环境生物毒理学.天津:天津大学出版社,1993
    [17]Santore R C, Di Toro D M, Paquin P R,et al. Biotic ligand model of the acute toxicity of metals.2. Application to acute copper toxicity in freshwater fish and Daphnia. Environ Toxicol Chem,2001,20(10):2397-2402
    [18]Gellert G, Heinrichsdorff J. Effect of age on the susceptibility of zebrafish eggs to industrial wastewater. Water Res,2001,35(15):3754-3757
    [19]De Schamphelaere K A, Heijerick D G, Janssen C R. Refinement and field validation of a biotic ligand model predicting acute copper toxicity to Daphnia magna. Comp Biochem Physiol C Toxicol Pharmacol,2002,133(1-2):243-258
    [20]Heijerick D G, De Schamphelaere K A, Janssen C R. Predicting acute zinc toxicity for Daphnia magna as a function of key water chemistry characteristics:development and validation of a biotic ligand model. Environ Toxicol Chem,2002,21(6):1309-1315
    [21]Meyer J S, Santore R C, Bobbity J P,et al. Binding of nickel and copper to fish gills predicts toxicity when water hardness varies, but free-kon activity does not. Environmental Science and Technology 1999,33(6):913-916
    [22]Meinelt T, Playle R C, Pietrock M,et al. Interaction of cadmium toxicity in embryos and larvae of zebrafish (Danio rerio) with calcium and humic substances. Aquat Toxicol,2001, 54(3-4):205-215
    [23]Slaveykova V I, Wilkinson K J. Physicochemical aspects of lead bioaccumulation by Chlorella vulgaris. Environ Sci Technol,2002,36(5):969-975
    [24]De Schamphelaere K A, Janssen C R. Bioavailability and chronic toxicity of zinc to juvenile rainbow trout (Oncorhynchus mykiss):comparison with other fish species and development of a biotic ligand model. Environ Sci Technol,2004,38(23):6201-6209
    [25]Fogels A, Sprague J B. Comparative short-term tolerance of zebrafish, flagfish, and rainbow trout to five poisons including potential reference toxicants. Water Research 1977,11(9): 811-817
    [26]Braunbeck T, Bottcher M, Hollert H,et al. Towards an alternative for the acute fish LC50 test in chemical assessment:The fish embryo toxicity test goes multi-species - an update. ALTEX, 2005,22(2):87-102
    [27]Dave G, Xiu R Q. Toxicity of mercury, copper, nickel, lead, and cobalt to embryos and larvae of zebrafish, Brachydanio rerio. Arch Environ Contam Toxicol,1991,21(1):126-134
    [28]Finn R N. The physiology and toxicology of salmonid eggs and larvae in relation to water quality criteria. Aquat Toxicol,2007,81(4):337-354
    [1]Pagenkopf, G. K. Gill surface interaction model for trace-metal toxicity to fishes:role of complexation, pH, and water hardness. Environ Sci Technol,1983,17 (6):342-347
    [2]Slaveykova, V. I.,Wilkinson, K. J. Physicochemical aspects of lead bioaccumulation by Chlorella vulgaris. Environ Sci Technol,2002,36 (5):969-975
    [3]Harris, E. H., Culture and Storage Methods. Academic Press:San Diego,1989
    [4]Kola, H.,Wilkinson, K. J. Cadmium uptake by a green alga can be predicted by equilibrium modelling. Environmental Science & Technology,2005,39 (9):3040-3047
    [5]Corporation, P., CellTiter 96(?) AQueous Non-Radioactive Cell Proliferation Assay-INSTRUCTIONS FOR USE OF PRODUCTS G5421, G5430, G5440,G1111 AND G1112. In 2009
    [6]Snell, T. W.,Mitchell, J. L.,Burbank, S. E., Rapid toxicity assessment with microalgae using in vivo esterase inhibition. In Techniques in Aquatic Toxicology, Ostrander, G. K., Ed. Lewis: Boca Raton (Florida),1996; pp 13-22
    [7]Page, M. D.,Kropat, J.,Hamel, P. P.,Merchant, S. S. Two Chlamydomonas CTR copper transporters with a novel cys-met motif are localized to the plasma membrane and function in copper assimilation. Plant Cell,2009,21 (3):928-943
    [8]Hudson, R. J. M. Which aqueous species control the rates of trace metal uptake by aquatic biota? Observations and predictions of non-equilibrium effects. The Science of the Total Environment,1998,219 (2-3):95-115
    [9]Hill, K. L.,Hassett, R.,Kosman, D.,Merchant, S. Regulated copper uptake in Chlamydomonas reinhardtii in response to copper availability. Plant Physiology,1996,112 (2):697-704
    [10]Sunda, W. G.,Huntsman, S. A. Processes regulating cellular metal accumulation and physiological effects:Phytoplankton as model systems. The Science of the Total Environment,1998,219 (2-3):165-181
    [11]Moffat, B. D.,Snell, T. W. Rapid toxicity assessment using an in vivo enzyme test for Brachionus plicatilis (Rotifera). Ecotoxicol Environ Saf,1995,30 (1):47-53
    [12]Avery, S. V.,Howlett, N. G.,Radice, S. Copper toxicity towards Saccharomyces cerevisiae: dependence on plasma membrane fatty acid composition. Appl Environ Microbiol,1996,62 (11):3960-3966
    [13]Vranken, G.,Tire, C.,Heip, C. H. R. The toxicity of paired metal mixtures to the nematode Monhystera disjuncta (Bastian,1865). Marine environmental research,1988,26 (3):161-179
    [14]Lutsenko, S.,Petris, M. J. Function and regulation of the mammalian copper-transporting ATPases:insights from biochemical and cell biological approaches. J Membr Biol,2003,191 (1):1-12
    [15]De Feo, C. J.,Aller, S. G.,Unger, V. M. A structural perspective on copper uptake in eukaryotes. Biometals,2007,20 (3-4):705-716
    [16]Puig, S.,Thiele, D. J. Molecular mechanisms of copper uptake and distribution. Curr Opin Chem Biol,2002,6 (2):171-180
    [17]Tao, S.,Liang, T.,Cao, J.,Dawson, R. W.,Liu, C. Synergistic effect of copper and lead uptake by fish. Ecotoxicol Environ Saf,1999,44 (2):190-195
    [18]Hassler, C. S.,Slaveykova, V. I.,Wilkinson, K. J. Some fundamental (and often overlooked) considerations underlying the free ion activity and biotic ligand models. Environ Toxicol Chem,2004,23 (2):283-291
    [19]Smiejan, A.,Wilkinson, K. J.,Rossier, C. Cd bioaccumulation by a freshwater bacterium, Rhodospirillum rubrum. Environ Sci Technol,2003,37 (4):701-706
    [20]Komjarova, I.,Blust, R. Multimetal interactions between Cd, Cu, Ni, Pb, and Zn uptake from water in the zebrafish Danio rerio. Environ Sci Technol,2009,43 (19):7225-7229
    [21]Paquin, P. R.,Gorsuch, J. W.,Apte, S.,Batley, G. E.,Bowles, K. C.Campbell, P. G,Delos, C. G.,Di Toro, D. M.,Dwyer, R. L.,Galvez, F.,Gensemer, R. W.,Goss, G. G.,Hostrand, C.,Janssen, C. R.,McGeer, J. C.,Naddy, R. B.,Playle, R. C.,Santore, R. C.,Schneider, U.,Stubblefield, W. A.,Wood, C. M.,Wu, K. B. The biotic ligand model:a historical overview. Comp Biochem Physiol C Toxicol Pharmacol,2002,133 (1-2):3-35
    [22]Hanikenne, M.,Kramer, U.,Demoulin, V.,Baurain, D. A comparative inventory of metal transporters in the green alga Chlamydomonas reinhardtii and the red alga Cyanidioschizon merolae. Plant Physiol,2005,137 (2):428-446
    [23]Campbell, P. G.,Errecalde, O.,Fortin, C.,Hiriart-Baer, V. P.,Vigneault, B. Metal bioavailability to phytoplankton--applicability of the biotic ligand model. Comp Biochem Physiol C Toxicol Pharmacol,2002,133 (1-2):189-206
    [1]Hem J D. Study and interpretation of the chemical characteristics of natural water. Washington, DC:Government Printing Office,1989
    [2]Puig S, Thiele D J. Molecular mechanisms of copper uptake and distribution. Curr Opin Chem Biol,2002,6(2):171-180
    [3]Eick M J, Peak J D, Brady P V,et al. Kinetics of lead adsorption/desorption on goethite: Residence time effect. Soil Science,1999,164(1):28-39
    [4]Hanikenne M. Chlamydomonas reinhardtii as a eukaryotic photosynthetic model for studies of heavy metal homeostasis and tolerance. New Phytologist,2003,159(2):331-340
    [5]Gumpel N J, Rochaix J D, Purton S. Studies on homologous recombination in the green alga Chlamydomonas reinhardtii. Curr Genet,1994,26(5-6):438-442
    [6]Hanikenne M, Kramer U, Demoulin V,et al. A comparative inventory of metal transporters in the green alga Chlamydomonas reinhardtii and the red alga Cyanidioschizon merolae. Plant Physiol,2005,137(2):428-446
    [7]Rosakis A, Koster W. Transition metal transport in the green microalga Chlamydomonas reinhardtii-genomic sequence analysis. Res Microbiol,2004,155(3):201-210
    [8]Rosakis A, Koster W. Divalent metal transport in the green microalga Chlamydomonas reinhardtii is mediated by a protein similar to prokaryotic Nramp homologues. Biometals, 2005,18(1):107-120
    [9]Page M D, Kropat J, Hamel P P,et al. Two Chlamydomonas CTR copper transporters with a novel cys-met motif are localized to the plasma membrane and function in copper assimilation. Plant Cell,2009,21(3):928-943
    [10]Pinto E, Sigaud-kutner T C S, Leitao M A S,et al. Heavy metal-induced oxidative stress in algae. Journal of Phycology,2003,39(6):1008-1018
    [11]Nagalakshmi N, Prasad M N. Responses of glutathione cycle enzymes and glutathione metabolism to copper stress in Scenedesmus bijugatus. Plant Sci,2001,160(2):291-299
    [12]Verma S, Dubey R S. Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Science,2003,164(4):645-655
    [13]Malecka A, Jarmuszkiewicz W, Tomaszewska B. Antioxidative defense to lead stress in subcellular compartments of pea root cells. Acta Biochim Pol,2001,48(3):687-698
    [14]Gueta-Dahan Y, Yaniv Z, Zilinskas B A,et al. Salt and oxidative stress:similar and specific responses and their relation to salt tolerance in citrus. Planta,1997,203(4):460-469
    [15]Dayer R, Fischer B B, Eggen R I,et al. The peroxiredoxin and glutathione peroxidase families in Chlamydomonas reinhardtii. Genetics,2008,179(1):41-57
    [16]Leisinger U, Rufenacht K, Zehnder A J B,et al. Structure of a glutathione peroxidase homologous gene involved in the oxidative stress response in Chlamydomonas reinhardtii. Plant Science,1999,149(2):139-149
    [17]Foyer C H, Theodoulou F L, Delrot S. The functions of inter- and intracellular glutathione transport systems in plants. Trends Plant Sci,2001,6(10):486-492
    [18]Moons A. Regulatory and functional interactions of plant growth regulators and plant glutathione S-transferases (GSTs). Vitam Horm,2005,72:155-202
    [19]Fu L H, Wang X F, Eyal Y,et al. A selenoprotein in the plant kingdom. Mass spectrometry confirms that an opal codon (UGA) encodes selenocysteine in Chlamydomonas reinhardtii gluththione peroxidase. J Biol Chem,2002,277(29):25983-25991
    [20]Hamoutene D, Romeo M, Gnassia M,et al. Cadmium Effects on Oxidative Metabolism in a Marine Seagrass:Posidonia oceanica. Bulletin of Environmental Contamination and Toxicology,1996,56(2):327-334
    [21]Niyogi S, Wood C M. Biotic ligand model, a flexible tool for developing site-specific water quality guidelines for metals. Environ Sci Technol,2004,38(23):6177-6192
    [22]Hassler C S, Slaveykova V I, Wilkinson K J. Some fundamental (and often overlooked) considerations underlying the free ion activity and biotic ligand models. Environ Toxicol Chem,2004,23(2):283-291
    [23]Hassler C S, Slaveykova V I, Wilkinson K J. Discriminating between intra- and extracellular metals using chemical extractions. Limnology and Oceanography:Methods,2004,2:237-247
    [24]Simon D F, Descombes P, Zerges W,et al. Global Expression Profiling Of Chlamydomonas Reinhardtii Exposed To Trace Levels Of Free Cadmium. Environmental Toxicology and Chemistry 2008,27(8):1668-1675
    [25]Vandenbrouck T, Soetaert A, van der Ven K,et al. Nickel and binary metal mixture responses in Daphnia magna:molecular fingerprints and (sub)organismal effects. Aquat Toxicol,2009, 92(1):18-29
    [26]Craig P M, Galus M, Wood C M,et al. Dietary iron alters waterborne copper-induced gene expression in soft water acclimated zebrafish (Danio rerio). Am J Physiol Regul Integr Comp Physiol,2009,296(2):R362-373
    [27]Allen M D, Kropat J, Tottey S,et al. Manganese deficiency in Chlamydomonas results in loss of photosystem II and MnSOD function, sensitivity to peroxides, and secondary phosphorus and iron deficiency. Plant Physiol,2007,143(1):263-277
    [28]Merchant S S, Allen M D, Kropat J,et al. Between a rock and a hard place:trace element nutrition in Chlamydomonas. Biochim Biophys Acta,2006,1763(7):578-594
    [29]Conklin P L, Last R L. Differential accumulation of antioxidant mRNAs in Arabidopsis thaliana exposed to ozone. Plant Physiol,1995,109(1):203-212
    [30]Hassler C S, Wilkinson K J. Failure of the biotic ligand and free-ion activity models to explain zinc bioaccumulation by Chlorella kesslerii. Environ Toxicol Chem,2003,22(3): 620-626
    [31]Cellier M F, Bergevin I, Boyer E,et al. Polyphyletic origins of bacterial Nramp transporters. Trends Genet,2001,17(7):365-370
    [32]Kehres D G, Zaharik M L, Finlay B B,et al. The NRAMP proteins of Salmonella typhimurium and Escherichia coli are selective manganese transporters involved in the response to reactive oxygen. Mol Microbiol,2000,36(5):1085-1100
    [33]Gunshin H, Mackenzie B, Berger U V,et al. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature,1997,388(6641):482-488
    [34]Noctor G, Strohm M, Jouanin L,et al. Synthesis of Glutathione in Leaves of Transgenic Poplar Overexpressing [gamma]-Glutamylcysteine Synthetase. Plant Physiol,1996,112(3): 1071-1078
    [35]Ledford H K, Chin B L, Niyogi K K. Acclimation to singlet oxygen stress in Chlamydomonas reinhardtii. Eukaryot Cell,2007,6(6):919-930
    [36]Craig P M, Wood C M, McClelland G B. Oxidative stress response and gene expression with acute copper exposure in zebrafish (Danio rerio). Am J Physiol Regul Integr Comp Physiol, 2007,293(5):R1882-1892
    [37]Powell S R. The antioxidant properties of zinc. J Nutr,2000,130(5S Suppl):1447S-1454S
    [38]Zhu Z, Thiele D J. Toxic metal-responsive gene transcription. EXS,1996,77:307-320

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700