用户名: 密码: 验证码:
不同外部边界及气压条件下建筑外立面开口火溢流行为特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
建筑外立面开口火溢流是在通风控制燃烧下室内火灾中的火焰伴随着烟气从窗户,破碎的玻璃幕墙等侧向开口溢出,并在建筑外立面发生持续燃烧的特殊火灾现象,在多层和高层建筑火灾中时有发生,加上近年来广泛使用的易燃外墙保温材料,极易向上形成立体蔓延,造成几(多)层同时燃烧,酿成重大灾害性后果。现实中,建筑外立面开口火溢流行为将受到不同外部边界及气压条件的影响,例如(1)在我国部分城市存在大量密集建筑群(如密集城中村建筑群),由于楼间距狭窄,某建筑内发生火灾,通过建筑外立面开口溢出的火焰将对相邻建筑及上层建筑造成很大危险;(2)在我国的部分城市,受自然地形的影响,大量(高层)建筑被迫修建在坡地上,例如,重庆市的高层建筑就有大多数建设在坡地上。受坡地地形的影响,这类建筑外立面开口火溢出火焰及烟羽流卷吸新鲜空气的行为将受到限制,使其火灾发展特征有别于常规建筑,而目前国内外对此还缺乏研究。(3)在高原地区,高原特殊的低压低氧环境对建筑外立面开口火溢流行为特征会产生很多不同方面的影响。因此,需要研究不同外部边界及气压条件下建筑外立面开口火溢流的行为特征。
     本文围绕不同外部边界及气压条件下建筑外立面开口火溢流行为特征,采用试验研究,理论分析,数值模拟相结合的方法开展研究。为了开展本文的相关研究,建立了1:4和1:8相似模拟尺度的建筑外立面开口火溢流模拟实验装置,分别在合肥和拉萨高原地区开展建筑外立面开口火溢流实验。通过对建筑外立面开口火溢流行为特征参数(火焰高度、溢出火羽流径向、竖向温度等)的实验测量,结合火灾动力学知识,揭示了不同外部边界及气压条件下建筑外立面开口火溢流行为特征的演化机制,并建立了相应的无量纲特征参数理论预测模型。具体的工作包括:
     研究了自由边界条件下建筑外立面开口火溢流火焰高度和竖向温度分布特征。在1:4相似模拟尺度的建筑外立面开口火溢流模拟实验装置开展了系列实验,基于能量守恒定量分析了燃烧室内部温升,揭示了燃烧室内部温升与开口因子的关系;并首次在建筑外立面开口火溢流结构特征中引入虚点源概念,建立了自由边界条件下建筑外立面开口外部竖向最高温升与开口大小、火源功率和特征长度的耦合关系模型。
     揭示了自由边界条件下建筑外立面开口火溢流径向温度分布规律。基于高斯分布函数,建立了建筑外立面开口火溢流径向温度分布的理论模型,并在1:4相似模拟尺度的建筑外立面开口火溢流模拟实验装置进行了实验验证,结果表明,提出的羽流有效厚度的特征长度尺度可以很好的对不同火源功率下不同开口大小的实验数据进行拟合逼近;所建立的建筑外立面开口火溢流径向温度模型可以很好的预测外立面开口溢出火羽流径向温度的测量值。
     研究揭示了竖直挡墙(vertical facing wall)和倾斜挡墙(sloping facing wall)限制下建筑外立面开口火溢流行为特征差异。通过模拟尺度实验,验证分析了竖直挡墙与建筑外立面间距对开口火焰溢出高度的影响,揭示了开口溢出火焰高度与无量纲特征距离有着较好的耦合关系,拟合规律呈现出2个分段函数特征。同时分析了倾斜挡墙角度对受限空间开口火焰溢出行为的影响,建立了无量纲角度与溢出火焰高度的耦合关系;进而从卷吸限制角度分析了两种情况限制下产生差异的物理特征并进行了表征。
     研究揭示了西藏拉萨高原环境下建筑外立面开口火溢流行为特征与平原常压地区的差别并进行了表征。在西藏拉萨火灾实验基地开展了1:8相似模拟尺度的建筑外立面开口火溢流模拟实验,量化分析了合肥和拉萨地区建筑外立面开口火溢流火焰高度,开口外部羽流竖向温升和径向分布等参数差异,并对开口外部温度竖向衰减特性理论推导分析,通过与实验结果的对比,得出拉萨地区火溢流卷吸强度约为合肥地区的0.8倍的规律,修正了开口火焰高度和开口外部羽流温升模型。
Flame ejecting behavior from a building facade opening (e.g., window, broken glass curtain wall), is a special phenomenon, with smoke, and sustained combustion outside the enclosure, it happens a lot in multi-storey and high-rise building fires. And exterior wall thermal insulation materials has been widely used in recent years, it is easy to form three-dimensional fire spread upward, cause a number of (many) layer burning at the same time, smoke and hot gases do harm to people's life, and cause injury serious consequences. In real environment, building facade ejecting fire behavior characteristics will be subjected to the influence of different external boundary and pressure. For instance,(1) In some cities of China, there are many densely populated buildings (e.g., dense urban village buildings), due to the narrow floor spacing, when a building fire, overflow of flame through the building facade openings to the adjacent buildings and super structure caused great danger.(2) In some cities in China, due to the effect of natural terrain, lots of buildings were built on hillsides. For example, lot of tall buildings in Chongqing city were built on hillsides. As an impact of the hillsides, building facade flame ejecting behavior, flame and plume entrainment is different from normal buildings. However, very few researches on it have been done so far.(3) In plateau area, plateau with low pressure and relatively low oxygen concentration can make many different effects on flame ejecting behavior from a building facade opening. Therefore, we need to study the building facade ejecting behavior characteristics under different external boundary and pressure conditions.
     Experimental research, theoretical analysis, numerical simulation method were carried out to investigate the building facade ejecting fire behavior characteristics under different external boundary and pressure conditions. In order to carry out related research, a1:4and1:8scale model were established for fire simulation test device, respectively in Hefei and Lhasa plateau. Experimental measurement carried out to obtain parameters (flame height, radial and vertical temperature of ejecting fire plume, etc.) of flame ejecting behavior from a building facade opening, combined with knowledge of fire dynamics, evolution mechanism of building facade ejecting flame behavior characteristics were revealed under different external boundary and pressure conditions, and the corresponding dimensionless characteristic parameter theoretical prediction model was established. Specific work includes:
     Facade flame behavior and plume characteristics ejected from opening of a building compartment was carried out to study flame height and vertical temperature distribution under free boundary conditions, Based on the1/4scale building external facade flame test model, internal temperature rise of combustion chamber was analyzed through quantitative calculation of energy conservation, the relationship between internal temperature rise of combustion chamber and opening factor was revealed; And virtual point source concept in building facade fire was introduced firstly, coupling relationship model of highest temperature with opening size, HRR and characteristic length were established for building facade ejecting fire under the free boundary condition.
     Radial plume temperature profile of building facade ejecting fire under free boundary condition was revealed, based on the gaussian distribution function, theoretical model analysis was carried out to study radial plume temperature of the building facade ejecting fire and the1/4scale building facade fire model test, was used for validation, the results show that the proposed characteristic length scales of the effective plume thickness under different HRR can be very good correlation with different opening size. At the same time, radial plume temperature model of building facade ejecting fire behavior can well predict measured radial plume temperature of building facade ejecting fire.
     The differences of building facade ejecting fire behavior characteristics under vertical facing wall and sloping facing wall restrict was revealed. Through the experiment, validation analysis of building facade spacing between two vertical facing walls for ejecting flame height, it found the flame height and the dimensionless characteristic distance have better coupling relationship, shows the characteristics of two segmented function. And analyzed the impact of the angle of sloping facing wall on building facade ejecting fire behavior, the coupling relationship of the angle of sloping facing wall and the flame height are obtained. From the perspective of entrainment limit, the thesis analyses the differences between vertical facing wall and sloping facing wall restrict and have been characterized.
     Research reveals the difference of facade flame behavior and plume characteristics ejected from opening of a building compartment between the plain atmospheric region and plateau region. A1:8scale model of building facade ejecting fire test device was set up in Lhasa, building facade ejecting fire behavior characteristics was the quantitative analyzed in Hefei and Lhasa data (flame height, ejecting the plume parameters such as the vertical and the radial temperature distribution difference), and theory analysis was carried out to study external vertical temperature dacay characteristic, by the comparison with the experimental results, it concluded that entrainment intensity of building facade ejecting fire in Lhasa was about0.8times than that in Hefei. Flame height and ejected plume temperature model were fixed.
引文
[1].姜玉曦,任玉新,刘秋生,室内火灾中外部燃烧现象的数值模拟[J].火灾科学.2006,15(2):92-101.
    [2].重庆市地方标准,《重庆市坡地高层民用建筑设计防火规范》[S].重庆市建设委员会,重庆,2004。
    [3].霍然,胡源,李元洲,建筑火灾安全工程导论[M].合肥;中国科学技术大学出版社,2009年9月。
    [4]. Karlsson B, Quintiere J G. Enclosure Fire Dynamics [M]. Boca Raton, FL:CRC Press,1999.
    [5]. J. G.Quintiere. Fundamentals of Fire Phenomena [M], John Wiley and Sons Ltd,2006.
    [6]. Heskestad G. Engineering relations for fire plumes [J]. Fire Safety Journal,1984,7(1): 25-32.
    [7]. McCaffrey, B. J. Purely Buoyant Diffusion Flames:Some Experimental Results [R]. NBSIR 79-1910, National Bureau of Standards,1979
    [8]. Zukoski, E.E., Kubota, T. and Cetegen, B. Entrainment in Fire Plumes [J]. Fire Safety Journal,1980,3:107-121.
    [9]. Zukoski E E. Properties of fire plumes, in Combustion Fundamentals of Fire [M]. London: Cox G, Editor. Academic Press,1995.
    [10].RR Yii, CM. Fleischmann, AH. Buchanan, Vent Flows in fire compartments with a large opening [J]. Journal of Fire Protection Engineering,2007,17 (3):211-238
    [11].Lei Wang, J.G Quintiere, An analysis of compartment fire doorway flows [J], FireSafety Journal,2009,44:718-731
    [12].Kawagoe K. Fire behavior in rooms, Report 27 [R]. Tokyo, Japan:Building Research Institute, Ministry of Construction,1958.
    [13].Poreh, M., Morgan, H.P., Marshall, N.R. and Harrison, R..Entrainment by Two-dimensional Spill Plumes [J]. Fire Safely Journal,1998,30:1-19.
    [14].Law, M.. Measurements of balcony smoke flow [J]. Fire Safety Journal,1995,24:189-195.
    [15]. W. K. Chow, J. Li. Simulation on natural smoke filling in atrium with a balcony spill plume [J]. Journal of Fire Sciences,2001,19:258.
    [16].C.L. Shi, W.Z. Lu, W.K. Chow, R. Huo. An investigation on spill plume development and natural filling in large full-scale atrium under retail shop fire [J]. International Journal of Heat and Mass Transfer,2007,50:513-529.
    [17].Yokoi S. Study on the prevention of fire spread caused by hot upward current [R]. Japan, Report 34, Report of the Building Research Institute,1960.
    [18].C.T. Webster and M.M. Rafrery, The burning of fires in rooms:Part 2,Test with cribs and high ventilation on various scales [R]. Joint Fire Research Organisatiin, Borehamwood 1959.
    [19].Seigel L G. The projection of flames from burning buildings [J]. Fire Technology,1969,5 (1):43-51.
    [20]. Thomas P H, Law M. The projection of flames from buildings on fire [J]. Fire Prevention Science and Technology,1972, (10):19-26.
    [21].Oleszkiewicz I. Fire exposure to exterior walls and flamespread on combustible cladding [J].Fire Technology,1990, (11):357-375.
    [22].Gottuk, D.T., Roby, R. J. and Beyler C. L., A Study of carbon monoxide and smoke yields from compartment fires with external burning [C]. Twenty-Fourth Symposium on Combustion,1992,24(1):1729-1735.
    [23]. Ohmiya, Y., Yusa, S., Suzuki, J.I., Koshikawa, K. and Delichatsios, MA., Aerothermodynamics of fully involved enclosure fires having external flames [C]. Fourth International Seminar Fire and Explosion Hazards,2003:121-129.
    [24]. Ohmiya, Y., Tanaka, T. and Wakamatsu, T., A room fire model for predicting firespread by external flames [J].Fire Science and Technology,1998,18(1):11-21.
    [25], Ohmiya, Y., Hori, Y., Sagimori, K. and Wakamatsu, T., Predictive method for properties of flame ejected from an opening incorporating excess fuel [C]. Proceedings of 4th Asia-Oceania Symposium on Fire Science and Technology,2000:375-386.
    [26].Lee Yee-Ping. Heat fluxes and flame heights in external facade fires [D]. University of Ulster, FireSERT,2006.
    [27]. Lee Yee-Ping, Delichatsios M A. G.W.H. Silcock, Heat fluxes and flame heights in facades from fires in enclosures of varying geometry [C], Proceedings of the Combustion Institute, 2007,31(2):2521-2528.
    [28].Lee Yee-Ping, Delichatsios M A, Ohmiya Yoshifumi. The study for the physics of the outflow from the opening of a burning enclosure [C], Proceedings of the 5th International Seminar on Fire and Explosion Hazards, Edinburgh, UK,23-27 April 2007.
    [29]. Lee Y. P., Delichatsios M. A., Ohmiya Y., et al. Heat fluxes on opposite building wall by flames emerging from an enclosure [J]. Proceedings of the Combustion Institute,2009,32: 2551-2558.
    [30]. Lee Yee-Ping, Delichatsios M A, Ohmiya Yoshifumi. The physics of the outflow from the opening of an enclosure fire and re-examination of Yokoi's correlation [J]. Fire Safety Journal.2012,49:82-88.
    [31].Akito Yanagisawa, et al. Effect of a facing wall on facade flames [C].9th International Symposium on Fire Safety Science, Germany,2008.
    [32].Tomoaki Nakao; Akito Yanagisawa; Akihide Jo; Kaoru Wakatsuki; Yoshifumi Ohmiya, Fire plume ejected from an opening in unconfined space, Part 1 experimental outline [J]. Fire Science and Technology; 2007,26(4).497-503.
    [33].A. Yanagisawa, A. Jo, T. Nakao, K. Wakatsuki, Y. Ohmiya, Fire plume Ejected from an opening in unconfined space, Part 2 generation limit of the external flame [J]. Fire Science and Technology,2007,26 (4):505-510.
    [34].Yamaguchi Jun-ichi, Tanaka Takeyoshi. Temperature profiles of window jet plume [J], Fire science and technology,2005,24(1):17-38.
    [35].Hideki Yoshioka, Hsin-Chieh Yang, Masamichi Tamura, Masashi Yoshida, Takafumi Noguchi, Manabu Kanematsu, Koji Koura, Yasuji Ozaki, Study of test method for evaluation of fire propagation along facade wall with exterior thermal insulation [J]. Fire Science and Technology.2011,30(1):27-44.
    [36].Hideki Yoshioka; Yoshifumi Ohmiya; Masaki Noaki; Masashi Yoshida, Large-scale facade fire tests conducted based on ISO 13785-2 with noncombustible facade specimens [J]. Fire Science and Technology.2012,31(1):1-22.
    [37].K. Himoto, T. Tsuchihashi, Y. Tanaka, T. Tanaka, Modeling thermal behaviors of window flame ejected from a fire compartment [J]. Fire Safety Journal.2009,44:230-240.
    [38].K. Himoto, T. Tsuchihashi, Y. Tanaka, T. Tanaka. Modeling the trajectory of window flames with regard to flow attachment to the adjacent wall [J]. Fire Safety Journal.2009,44: 250-258.
    [39].KIopovic S, Turan F. Flames venting externally during full scale flashover fires:two sample ventilation cases [J]. Fire Safety Journal,1998, (31):117-142.
    [40].Klopovic S, Turan F. A comprehensive study of externally venting flames Part Ⅰ: Experimental plume characteristics for through draft and no through draft ventilation conditions and repeatability [J]. Fire Safety Journal,2001 (36):99-133.
    [41].Klopovic S, Turan F. A comprehensive study of externally venting flames Part Ⅱ:Plume envelope and centre-line temperature comparisons, secondary fires, wind effects and smoke management system [J]. Fire Safety Journal,2001,36:135-172.
    [42].H.X. Chen, NA. Liu, W.K. Chow, Wind effects on smoke motion and temperature of ventilation-controlled fire in a two-vent compartment [J].Building and Environment,2009, 44(12):2521-2526.
    [43].H. Huang, R. Ooka, N. Liu, L. Zhang, Z. Deng, S. Kato, Experimental study of fire growth in a reduced-scale compartment under different approaching external wind conditions [J]. Fire Safety Journal.2009,44:311-321.
    [44].陈爱平,通过外墙开口喷出火焰问题的研究[J].火灾科学.1998,7(3):53-60.
    [45].亓延军 崔嵛 赵艳萍 龚伦伦 张和平,窗口溢流火燃烧试验与数值模拟研究[J].安全与环境学报.2011,11(5):144-148.
    [46].崔嵛,竖直壁面条件下常用有机外墙保温材料的火灾行为研究[D].中国科学技术大学博士学位论文,2012。
    [47].Hu, L., Lu, K., Delichatsios, M., He, L., Tang, F. An experimental investigation and statistical characterization of intermittent flame ejecting behavior of enclosure fires with an opening [J]. Combustion and Flame,2012,159(3):1178-1184.
    [48].唐飞,胡隆华,斜坡受限条件下燃烧室内及开口外部溢流的温度场分布特性[J].燃烧科学与技术.2011,17(6):243-249。
    [49].王经纬,黄德祥,周子荐,王炯,挑檐和窗槛墙阻止火灾竖向蔓延性能的数值模拟分析[J].消防科学与技术,2004,23(2):111-113。
    [50].庄蕊,窗槛墙和防火挑檐对外墙火灾蔓延影响分析[J].消防科学与技术,2011,30(8):686-689。
    [51].邢雪飞,张靖岩,李炎锋,防火挑檐对地下车库外立面开口火溢流及垂直火蔓延的阻隔技术研究[C].2012中国消防协会科学技术年会,广东,广州,2012。
    [52].唐飞,胡隆华,陆凯华,徐勇,不同宽度水平挡板限制下受限空间内及开口外部火溢流温度分布特性[C].中国工程热物理学会燃烧学会议,浙江,杭州,2011.
    [53].K.H. Lu, L.H. Hu, F. Tang, M.A. Delichatsios, X.C. Zhang, L.H. He, Facade flame heights from enclosure fires with side walls at the opening [C]. The 9th Asia-Oceania Symposium on Fire Science and Technology, Hefei, China,2012.
    [54].C.L. Chow, Numerical studies on smoke spread in the cavity of a double-skin facade [J]. Journal of Civil Engineering and Management,2011,17(3):371-392。
    [55].倪照鹏,智会强,路世昌,汪磊,呼吸式幕墙火灾特性的数值模拟研究[J].安全与环境学报,2008,8(2):129-134。
    [56].De Ris JL, Wu PK, Heskestad G, Radiation Fire Modeling [J]. Proceedings of the Combustion Institute,2000; 28:2751-2759.
    [57].De ris J L, Kanury A M. Yuen M C. Pressure Modeling of Fires [J]. Proceedings of the Combustion Institute,1973; 1033-1042.
    [58].Most JM, Mandin P, Chen J, Joulain P, Durox D, Fernandez-Pello AC, Influence of gravity and pressure on pool fire type diffusion flames [J]. Proceedings of the Combustion Institute, 1996; 26:1311-1317.
    [59]. Li ZH, He YP, Zhang H, Wang J, Combustion characteristics of n-heptane and wood crib fires at different altitudes [J]. Proceedings of the Combustion Institute,2009; 32:2481-2488.
    [60]. Hu XK, He YP, Li ZH, Wang J, Combustion characteristics of n-heptane at high altitudes [J]. Proceedings of the Combustion Institute,2011; 33:2607-2615.
    [61].Fang J, Tu R, Guan JF, Wang JJ, Zhang YM. Influence of low air pressure on combustion characteristics and flame pulsation frequency of pool fires [J]. Fuel 2011; 90:2760-2766.
    [62].Hu LH, Tang F, Wang Q, Qiu ZW, Burning characteristics of conduction-controlled rectangular hydrocarbon pool fires in a reduced pressure atmosphere at high altitude in Tibet [J]. Fuel.2013,111:298-304.
    [63].胡小康,高海拔地区油池火燃烧和烟气特性研究[D].中国科学技术大学博士论文,2012.
    [64].徐伯乐,高原环境下油池火的火焰及羽流特性研究[D].中国科学技术大学硕士论文,2010.
    [65].涂然, 高原低压低氧对池火燃烧与火焰图像特征的影响机制[D].中国科学技术大学博士论文,2012.
    [66].蔡昕,高海拔低气压条件对细水雾灭火性能影响的实验研究[D].中国科学技术大学博士论文,2009.
    [67].张英,典型可炭化固体材料表面火蔓延特性研究[D].中国科学技术大学博士论文,2012.
    [68].黄新杰,不同外界环境下典型保温材料PS火蔓延特性规律研究[D].中国科学技术大学博士论文,2011.
    [69].戴佳昆,固体可燃物热解气化及热解气对冲流场点燃过程模型与实验研究[D].中国科学技术大学博士论文,2012.
    [70].Junhui Gong, Xiaodong Zhou, Zhihua Deng, Lizhong Yang. Influences of low atmospheric pressure on downward flame spread over thick PMMA slabs at different altitudes [J]. International Journal of Heat and Mass Transfer,2013,61:191-200.
    [71].L.H Hu, Q. Wang, F. Tang, X.C. Zhang, Axial temperature profile in vertical jet fires in a reduced pressure atmosphere [J]. Fuel.2013,106:779-786.
    [1]J. G. Quintiere, Scaling Application in Fire Research [J]. Fire Safety Journal.1989,15(1): 3-29.
    [2]孙晓乾,火灾烟气在高层建筑竖向通道内的流动及控制研究[D].中国科学技术大学博士论文,2009.
    [3]Y. P. Lee. Heat fluxes and flame heights in external facade fires [D]. University of Ulster, FireSERT,2006.
    [4]Y. P. Lee, MA. Delichatsios, G.W.H. Silcock. Heat fluxes and flame heights in facades from fires in enclosures of varying geometry [J].Proceedings of the Combustion Institute.2007,31 (2):2521-2528.
    [5]Y. P. Lee, M. A. Delichatsios, Y. Ohmiya, K. Wakatsuki, A. Yanagisawa, D. Goto. Heat fluxes on opposite building wall by flames emerging from an enclosure [J]. Proceedings of the Combustion Institute,2009,32:2551-2558.
    [6]Y. P. Lee, M. A. Delichatsios, and Y. Ohmiya, The study for the physics of the outflow from the opening of a burning enclosure [C]. Proceedings of the 5th International Seminar on Fire and Explosion Hazards, Edinburgh, UK,23-27 April 2007,381-392.
    [7]K. Goble, Height of flames projecting from compartment openings [D]. University of Canterbury, New Zealand,2007.
    [8]Hideki Yoshioka, Hsin-Chieh Yang, Masamichi Tamura, Masashi Yoshida, Takafumi Noguchi, Manabu Kanematsu, Koji Koura, Yasuji Ozaki, Study of test method for evaluation of fire propagation along facade wall with exterior thermal insulation [J]. Fire Science and Technology.2011,30(1):27-44.
    [9]Tomoaki Nakao, Akito Yanagisawa, Akihide Jo, Kaoru Wakatsuki, Yoshifumi Ohmiya, Fire plume ejected from an opening in unconfined space part 1 experimental outline [J]. Fire Science and Technology.2007,26 (4):497-503.
    [10]崔嵛,竖直壁面条件下常用有机外墙保温材料的火灾行为研究[D].中国科学技术大学博士学位论文,2012。
    [11]Hu L, Tang F, Delichatsios M, Wang Q, Lu K, Zhang X. Global behaviors of enclosure fire and facade flame heights in normal and reduced atmospheric pressures at two altitudes [J]. International Journal of Heat and Mass Transfer.2013,56:119-126.
    [12]F. Tang, L.H. Hu, et al. An experimental investigation on temperature profile of buoyant spill plume from under-ventilated compartment fires in a reduced pressure atmosphere at high altitude [J]. International Journal of Heat and Mass Transfer,2012,55:5642-5649.
    [13]A.J. Reynolds, The scaling of flows of energy and mass through stairwells [J]. Building and Environment.1986,21 (314):149-153
    [14]A.J. Reynolds, M.R. Mokhtarzadeh-Dehghan and A.S. Zohrabian, The modeling of stairwell flows [J]. Building and Environment,1980,23 (1):63-66.
    [15]胡隆华,唐飞,朱伟,祝实,霍然,阳东,城市建筑外壁面火灾模拟实验装置[P].ZL2009 10184963.0。
    [16]Tang F, Hu L, Delichatsios M, Lu K, Zhu W. Experimental study on flame height and temperature profile of buoyant window spill plume from an under-ventilated compartment fire [J]. International Journal of Heat and Mass Transfer.2012,55:93-101.
    [17]Hu, L., Lu, K., Delichatsios, M., He, L., Tang, F. An experimental investigation and statistical characterization of intermittent flame ejecting behavior of enclosure fires with an opening [J]. Combustion and Flame.2012,159:1178-1184.
    [18]陈志斌,胡隆华,霍然,祝实,基于图像亮度统计分析火焰高度特征[J].燃烧科学与技术,2008,14(6),557-561.
    [19]N. Otsu, A threshold selection method from gray-level histogram [J]. IEEE Trans. Systems Man, and Cybernetics.1979,9:62-66.
    [1]S. Yokoi, Study on the prevention of fire spread caused by hot upward current [R]. Japan, Report 34, Report of the Building Research Institute,1960.
    [2]K. Himoto, T. Tsuchihashi, Y. Tanaka, T. Tanaka, Modeling thermal behaviors of window flame ejected from a fire compartment [J]. Fire Safety Journal.2009,44:230-240.
    [3]W.W. Yuen, W.K. Chow, The role of thermal radiation on the initiation of flashover in a compartment fire [J]. International Journal of Heat and Mass Transfer.2004,47:4265-4276.
    [4]Y. Ohmiya, S. Yusa, J.I. Suzuki, K. Koshikawa, and MA. Delichatsios, Aerothermodynamics of fully involved enclosure fires having external flames [C]. Fourth International Seminar Fire and Explosion Hazards,2003:121-129.
    [5]Y. Ohmiya, T. Tanaka, and T. Wakamatsu, A room fire model for predicting fire spread by external flames [J].Fire Science and Technology.1998,18(1):11-21.
    [6]Y. Ohmiya, Y. Hori, K. Sagimori, and T. Wakamatsu, Predictive method for properties of flame ejected from an opening incorporating excess fuel [C].4th Asia-Oceania Symposium on Fire Science and Technology.2000:375-386.
    [7]J.I. Yamaguchi, T. Tanaka, Temperature profiles of window jet plume [J].Fire Science and Technology.2005,24(1):17-38.
    [8]Y. P. Lee. Heat fluxes and flame heights in external facade fires [D]. University of Ulster, FireSERT,2006.
    [9]S. Klopovic, F. Turan., Flames venting externally during full scale flashover fires:two sample ventilation cases [J]. Fire Safety Journal.1998,31:117-142.
    [10]S. Klopovic, F. Turan., A comprehensive study of externally venting flames Part I: Experimental plume characteristics for through draft and no through draft ventilation conditions and repeatability [J]. Fire Safety Journal.36 (2001) 99-133.
    [11]S. Klopovic, F. Turan., A comprehensive study of externally venting flames Part II:Plume envelope and centerline temperature comparisons, secondary fires, wind effects and smoke management system [J]. Fire Safety Journal.2001,36:135-172.
    [12]X.Q. Sun, L.H. Hu, Y.Z. Li, R. Huo, W.K, Chow, N.K. Fong, Gigi C.H. Lui, K.Y. Li, Studies on smoke movement in stairwell induced by an adjacent compartment fire[J]. Applied Thermal Engineering.2009,29:2757-2765.
    [13]Y. He, C. Jamieson, A. Jeary, and J. Wang, Effect of computation domain on simulation of small compartment fires [C]. Proceedings of the ninth International Symposium on Fire Safety Science.2009:1365-1376.
    [14]X.Q. Sun, L.H. Hu, W.K. Chow, Y. Xu, F. Li, A theoretical model to predict plume rise in shaft generated by growing compartment fire[J]. International Journal of Heat and Mass Transfer.2011,54:910-920.
    [15]L. G. Seigel, The projection of flames from burning buildings [J]. Fire Technology.1969,5 (1):43-51.
    [16]P. H. Thomas, Law M. The projection of flames from buildings on fire [J]. Fire Prevention Science and Technology.1972,10:19-26.
    [17]I. Oleszkiewicz, Heat Transfer from a Window Fire Plume to a Building Facade [M].HTD-Vol. 123, collected papers in Heat Transfer, Book No. H00526,1989.
    [18]Y. P. Lee, MA. Delichatsios, GW.H. Silcock. Heat fluxes and flame heights in facades from fires in enclosures of varying geometry [J]. Proceedings of the Combustion Institute.2007,31 (2):2521-2528.
    [19]K. Himoto, T. Tsuchihashi, Y. Tanaka, T. Tanaka. Modeling the trajectory of window flames with regard to flow attachment to the adjacent wall [J]. Fire Safety Journal.2009,44:250-258.
    [20]M. Coutin, J.M. Most, MA. Delichatsios, and M.M. Delichatsios, Flame heights in wall fires: effects of width, confinement and pyrolysis length[C]. Proceedings of the sixth International Symposium on Fire Safety Science.2000:729-740.
    [21]Y. Hasemi, Experimental wall flame heat transfer correlations for the analysis of upward wall flame spread [J]. Fire Science and Technology.1984, (4):75-90.
    [22]MA. Delichatsios, Y.P. Lee, P. Tofilo, A new correlation for gas temperature inside a burning enclosure [J]. Fire Safety Journal.2009,44:1003-1009
    [23]Y. P. Lee, M. A. Delichatsios, and Y. Ohmiya, The study for the physics of the outflow from the opening of a burning enclosure [C]. Proceedings of the 5th International Seminar on Fire and Explosion Hazards, Edinburgh, UK,23-27 April 2007,381-392.
    [24]陈志斌,胡隆华,霍然,祝实,基于图像亮度统计分析火焰高度特征[J].燃烧科学与技术,2008,14(6),557-561
    [25]N. Otsu, A threshold selection method from gray-level histogram [J]. IEEE Trans. Systems Man, and Cybernetics,1979,9:62-66.
    [26]J.G. Quintere, Fundermentals of fire phenomenon [M]. Chapter 10:Fire plumes, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England,2006.
    [27]Karlsson, B. and Quintiere, J. G Fire Plumes and Flame Heights, Chapter 4, Enclosure Fire Dynamics [M]. CRC Press LLC,2000 N.W. Corporate Blvd., Boca Raton, Florida 33431.
    [1]J.G Quintere, Fundermentals of fire phenomenon [M]. Chapter 10:Fire plumes, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England,2006.
    [2]J.G Quintiere and B.S. Grove, A united analysis for fire plumes [J]. Proceedings of the Combustion Institute.1998,27,2757-2786.
    [3]H. Rouse, C.S. Yih and H.W. Humphries, Gravitational convection from a boundary source [J]. Tellus,1952,4:202-210
    [4]B.R. Morton, G. I. Taylor and J.S. turner, Turbulent gravitational convection from maintained and instaneous sources [C]. Proceedings of the Royal Society. London, Ser. A,1956, 234:1-23.
    [5]F.R. Steward, Linear flame height for various fuels [J]. Combustion and Flame,1964, 8:171-178.
    [6]S. Yokoi, Study on the prevention of fire spread caused by hot upward current [R]. Japan, Report 34, Report of the Building Research Institute,1960.
    [7]G. Heskestad, Virtual origins of fire plumes [J]. Fire Safety Journal.1983,5:109-114.
    [8]H.R. Baum, B.J. McCaffrey, Fire induced flow field:theory and experiment [C].2nd Symposium (International) on Fire Safety Science, Hemisphere, New York,1988,129-148.
    [9]P. H. Thomas, Law M. The projection of flames from buildings on fire [J]. Fire Prevention Science and Technology.1972,10:19-26.
    [10]L. G Seigel, The projection of flames from burning buildings [J]. Fire Technology.1969,5 (1):43-51.
    [11]K. Himoto, T. Tsuchihashi, Y. Tanaka, T. Tanaka, Modeling thermal behaviors of window flame ejected from a fire compartment [J]. Fire Safety Journal.2009,44:230-240.
    [12]K. Himoto, T. Tsuchihashi, Y. Tanaka, T. Tanaka. Modeling the trajectory of window flames with regard to flow attachment to the adjacent wall [J]. Fire Safety Journal.2009,44: 250-258.
    [13]Y. Ohmiya, T. Tanaka, and T. Wakamatsu, A room fire model for predicting fire spread by external flames [J].Fire Science and Technology.1998,18(1):11-21.
    [14]Y. Ohmiya, Y. Hori, K. Sagimori, and T. Wakamatsu, Predictive method for properties of flame ejected from an opening incorporating excess fuel [C].4th Asia-Oceania Symposium on Fire Science and Technology.2000:375-386.
    [15]J.I. Yamaguchi, T. Tanaka, Temperature profiles of window jet plume [J].Fire Science and Technology.2005,24(1):17-38.
    [16]I. Oleszkiewicz, Heat Transfer from a Window Fire Plume to a Building Facade[C]. HTD-Vol.123, Collected papers in Heat Transfer, Book No. H00526,1989.
    [17]S. Klopovic, F. Turan., A comprehensive study of externally venting flames Part Ⅰ: Experimental plume characteristics for through draft and no through draft ventilation conditions and repeatability [J]. Fire Safety Journal.2001,36:99-133.
    [18]S. Klopovic, F. Turan., A comprehensive study of externally venting flames Part Ⅱ:Plume envelope and centerline temperature comparisons, secondary fires, wind effects and smoke management system [J]. Fire Safety Journal.2001,36:135-172.
    [19]Y. P. Lee. Heat fluxes and flame heights in external facade fires [D]. Fire Safety Journal. University of Ulster, FireSERT,2006.
    [20]Y. P. Lee, M.A. Delichatsios, GW.H. Silcock. Heat fluxes and flame heights in facades from fires in enclosures of varying geometry [J]. Proceedings of the Combustion Institute.2007,31 (2):2521-2528.
    [21]F. Tang, L.H. Hu, M.A. Delichatsios, K.H. Lu, W. Zhu, Experimental study on flame height and temperature profile of buoyant window spill plume from an under-ventilated compartment fire[J]. International Journal of Heat and Mass Transfer.2012,55:93-101.
    [22]E.E. Zukoski, Properties of fire plumes, Combustion Fundamentals of Fire [M]. Academic Press, London,1995.
    [23]L. Yuan and G Cox, An experimental study of some fire lines [J]. Fire Safety Journal.1996, 27:123-139.
    [24]M.A. Delichatsios, C.P. Brescianini, D. Paterson, H.Y. Wang, J.M. Most, Application of the k-ε turbulent model to buoyant adiabatic wall plumes [J]. ASME-Journal Fluid Engineering. 2010,132,061202
    [25]R. Sangras, Z. Dai, GM. Faeth, Mixture fraction statistics of plane self-preserving buoyant turbulent adiabatic wall plumes [J]. ASME-Journal of Heat Transfer,1999,121:837-843.
    [1]胡隆华,唐飞,朱伟,祝实,霍然,阳东,城市建筑外壁面火灾模拟实验装置[P].发明专利ZL 2009 1 0184963.0。
    [2]Y. P. Lee, MA. Delichatsios, GW.H. Silcock., Heat fluxes and flame heights in facades from fires in enclosures of varying geometry [J]. Proceedings of Combustion Institute.2007,31 (2):2521-2528.
    [3]Y. P. Lee, Heat fluxes and flame heights in external facade fires [D]. University of Ulster, FireSERT.2006.
    [4]Y. P. Lee, M. A. Delichatsios, Y. Ohmiya, K. Wakatsuki, A. Yanagisawa, D. Goto, Heat fluxes on opposite building wall by flames emerging from an enclosure [J]. Proceedings of Combustion Institute,2009,32,2551-2558.
    [5]L.H. Hu, K.H. Lu, MA. Delichatsios, L.H. He, F. Tang, An experimental investigation and statistical characterization of intermittent flame ejecting behavior of enclosure fires with an opening [C]. Combustion and Flame,2012,159:1178-1184.
    [6]K. Goble, Height of flames projecting from compartment openings [D]. University of Canterbury.2007.
    [7]F. Tang, L.H. Hu, MA. Delichatsios, K.H. Lu, W. Zhu, Experimental study on flame height and temperature profile of buoyant window spill plume from an under-ventilated compartment fire [J]. International Journal Heat and Mass Transfer,2012,55:93-101.
    [8]Y. P. Lee, MA. Delichatsios, Y. Ohmiya, The physics of the outflow from the opening of an enclosure fire and re-examination of Yokoi's correlation [J]. Fire Safety Journal,2012, 49:82-88.
    [9]F. Tang, L.H. Hu, Q. Wang, K.H. Lu, X.C. Zhang, Y.Z. Li, An experimental investigation on temperature profile of buoyant spill plume from under-ventilated compartment fires in a reduced pressure atmosphere at high altitude [J]. International Journal Heat and Mass Transfer. 2012,55:5642-5649.
    [10]L.H. Hu, F. Tang, MA. Delichatsios, Q. Wang, K.H. Lu, X.C. Zhang, Global behaviors of enclosure fire and facade flame heights in normal and reduced atmospheric pressures at two altitudes [J]. International Journal Heat and Mass Transfer,2013,56:119-126
    [11]A. Yanagisawa, D. Goto, Y. Ohmiya, M.A. Delichatsios, Y. P. Lee, and K. Wakatsuki, Effect of a facing wall on facade flames [C].9th International Symposium on Fire Safety Science, Germany.2008.
    [12]K.H. Lu, L.H. Hu, F. Tang, M.A. Delichatsios, X.C. Zhang, L.H. He, Facade flame heights from enclosure fires with side walls at the opening [C]. The 9th Asia-Oceania Symposium on Fire Science and Technology, Hefei, China.2012.
    [13]C.L. Chow, Numerical studies on smoke spread in the cavity of a double-skin facade [J]. Journal of Civil Engineering and Management,2011,17(3):371-392
    [14]H. Huang, R. Ooka, N. Liu, L. Zhang, Z. Deng, S. Kato, Experimental study of fire growth in a reduced-scale compartment under different approaching external wind conditions [J]. Fire Safety Journal,2009,44:311-321
    [15]S. Klopovic, F. Turan., A comprehensive study of externally venting flames Part Ⅰ: Experimental plume characteristics for through draft and no through draft ventilation conditions and repeatability [J]. Fire Safety Journal,2001,36:99-133.
    [16]H.X. Chen, N.A. Liu, W.K. Chow, Wind effects on smoke motion and temperature of ventilation-controlled fire in a two-vent compartment [J]. Building and Environment,2009, 44(12):2521-2526.
    [17]Kevin McGrattan, Bryan Klein, Simo Hostikka et al. Fire Dynamics Simulator (Version 5) [R]. User's Guide. NIST Special Publication 1018-5, National Institute of Standards and Technology.2007,Gaithersburg, Maryland
    [18]游宇航.机械排烟与水喷淋作用下大空间仓室火灾及烟气特性研究[D].中国科学技术大学博士论文.2007.
    [19]M.A. Delichatsios, Y.P. Lee, P. Tofilo, A new correlation for gas temperature inside a burning enclosure [J]. Fire Safety Journal.2009.44:1003-1009.
    [20]Karlsson, B. and Quintiere, J.G., Fire Plumes and Flame Heights, Chapter 4, Enclosure Fire Dynamics [M]. CRC Press LLC, N.W. Corporate Blvd., Boca Raton, Florida 33431.2000.
    [1]Thomas PH, Hinkley PL,Theobald CR., Simms DL. Investigations into the Flow of Hot Gases in Roof Venting [J]. Fire Research Technical Paper No.7, HMSO, London,1963.
    [2]L.Audouin G Kolb JL.Torero.etcAverage Centerline Temperature of a Buoyant Pool Fire Obtained by Image processing of Video Recordings [J].Fire Safety Journal,1995,24:167-187.
    [3]Cetegen BM, Ahmed TA. Experiments on the periodic instability of buoyant plumes and pool fires[J]. Combustion and Flame,1993,93(1-2):157-184
    [4]Most JM, Mandin P, Chen JP. Joulain.Influence of gravity and pressure on pool fire-type diffusion flames [C].Proceedings of the 26th Symposium (International) on Combustion, The Combustion Institute,1996:1311-1317.
    [5]Wieser D, Jauch P, WiUi U.The Influence of High Altitude on Fire Detector Test [J]. Fire Safety Journal.1997,29:195-204.
    [6]Fang Jun,Yu Chun-Yu,Tu Ran.The influence of low atmospheric pressure on carbon monoxide of n-heptane pool fires [J] Journal of Hazardous Materials.2008,154:476-483.
    [7]Zhen-hua Li, Yaping He, Hui Zhang.Combustion characteristics of n-heptane and wood crib fires at different altitudes [J].Proceedings of the Combustion Institute.2009,32:2481-2488.
    [8]李振华.西藏高原低压低氧条件下可燃物燃烧特性和烟气特性研究[D].合肥:中国科学技术大学,2009
    [9]孙晓乾,李元洲,霍然,曾文茹,李思成,叶永飞.西藏古建筑常用木材的着火特性试验[J].中国科学技术大学学报,2006.1
    [10]Sun Xiaoqian, Li Yuanzhou, HuoUO Ran, Zeng Wenru, Ren Binbin, Li Kaiyuan, Ye Yongfei. Comparison on Generation Principle of Carbon Monoxide Concentration in Pine Combustion between Plain and Altiplano Regions[C].18th International Symposium on Analytical and Applied Pyrolysis, May,2008
    [11]孙晓乾,李元洲,霍然,胡隆华,李开源.基于羽流中CO浓度分析木材燃烧过程的实验研究[C].中国工程热物理学会燃烧学分会2008年年会,2008.10.
    [12]任彬彬.高原环境下木材着火特性及油池火羽流特性研究[D].合肥:中国科学技术大学,2009
    [13]涂然,于春雨,肖霞,方俊,王进军,张永明.TF5池火平均质量损失速率简化模型及其高原环境下的适用性研究[J].火灾科学,2009,2:73-79.
    [14]徐伯乐.高原环境下油池火的火焰及羽流特性研究[D].合肥:中国科学技术大学,2010。
    [15]Y. P. Lee, MA. Delichatsios, GW.H. Silcock. Heat fluxes and flame heights in facades from fires in enclosures of varying geometry [J].Proceedings of the Combustion Institute.2007: 2521-2528.
    [16]Y. P. Lee. Heat fluxes and flame heights in external facade fires [D]. University of Ulster, FireSERT,2006.
    [17]L.H. Hu, K.H. Lu, MA. Delichatsios, L.H. He, F. Tang, An experimental investigation and statistical characterization of intermittent flame ejecting behavior of enclosure fires with an opening [J]. Combustion and Flame,2012,159:1178-1184.
    [18]F. Tang, L.H. Hu, MA. Delichatsios, K.H. Lu, W. Zhu, Experimental study on flame height and temperature profile of buoyant window spill plume from an under-ventilated compartment fire [J]. International Journal Heat and Mass Transfer.2012,55:93-101.
    [19]Y. P. Lee, M. A. Delichatsios, and Y. Ohmiya, Effect of a Facing Wall on Facade Flames [C]. Proceedings of the 5th International Seminar on Fire and Explosion Hazards, Edinburgh, UK, 23-27 April 2007:381-392.
    [20]Y. P. Lee, M. A. Delichatsios, Y. Ohmiya, K. Wakatsuki, A. Yanagisawa, D. Goto, Heat fluxes on opposite building wall by flames emerging from an enclosure [J]. Proceedings of the Combustion Institute.2009,32:2551-2558.
    [21]A. Yanagisawa, D. Goto, Y. Ohmiya, M.A. Delichatsios, Y. P. Lee, and K. Wakatsuki, flame heights and heat fluxes on a building facade and an opposite building wall by flames emerging from an opening [C].9th International Symposium on Fire Safety Science, Germany,2008.
    [22]M.A. Delichatsios, Y.P. Lee, P. Tofilo, A new correlation for gas temperature inside a burning enclosure [J]. Fire Safety Journal.2009,44:1003-1009
    [23]Karlsson, B. and Quintiere, J.G. Fire Plumes and Flame Heights, Chapter 4, Enclosure Fire Dynamics [M]. CRC Press LLC,2000 N.W. Corporate Blvd., Boca Raton, Florida 33431.
    1. Lee, Y. P., Heat Fluxes and Flame Height in External Facades from Enclosure Fires [D]. Ph.D. Thesis, University of Ulster,2006.
    2. Delichatsios, M.A, Transition from Momentum-to Buoyancy-Controlled Turbulent Jet Diffusion Flames and Flame Height Relationships [J]. Combustion and Flame,92,349-364, 1993。
    3. Lee, Y. P., Delichatsios, M. A., Ohmiya, Y, The physics of the outflow from the opening of an enclosure fire and re-examination of Yokoi's correlation [J]. Fire Safety Journal, 49(2012):82-88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700