用户名: 密码: 验证码:
视频中火焰和烟气探测方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
火的使用是人类社会的一个伟大创举,它为社会发展和进步起着不可估量的作用。人们只要掌握各种用火场所的规律,提高用火的警惕性,采取可靠地预防手段,火就会造福于人类。相反,火一旦在时间或空间上失去控制,就会酿成火灾。它常常危及人的生命,破坏自然环境,损毁物质财富,给人类社会造成巨大的损失。火灾是各类灾害中发生最频繁、并极具毁灭性的灾害之一。
     人类经过多年与火灾的顽强斗争,逐渐了解和掌握了一些火灾的形成和发展规律,积累许多预防火灾的经验和治理火灾的方法和措施。随着社会的发展和技术进步,人们使用各种方法和技术探测火灾。传统的火灾探测方法是基于感烟和感温的探测器,探测值超过设定阈值,则探测器报警。这是应用较为广泛和成熟的火灾探测技术。但是它们不适宜高大空间建筑和开阔区域。目前,也存在一些基于红外线和紫外线的探测技术,但此类光学探测设备相对较贵。随着视频监控系统在城市和消防重点保护单位地普及,随着人工智能和模式识别技术不断地发展,基于视频的火灾探测方法愈来愈受到重视。相比光学探测设备,CCD或CMOS等视频探测设备价格相对较低。该方法也可和已有的视频监控设备融合在一起,甚至无需购买部分硬件设备,降低了火灾探测系统的成本。它也适宜在高大空间建筑和开阔区域探测火灾。
     根据早期烟气发生时的运动特性,本文提出一种摇摆运动目标检测算法;根据烟气的摇摆和扩散特征,提出一种基于摇摆和扩散特征的烟气探测算法。根据火焰的动态、颜色和面积变化特性,提出一种火焰探测综合算法。研究烟气和火焰边缘曲线的独特形状有助于火灾的探测,受此启发,提出一种基于成长型神经网络的以线段为基元曲线重建算法,尝试在下一步的工作中重建火焰和烟气的边缘曲线。
     主要研究成果有以下几个方面:
     1.提出一种摇摆运动目标检测算法。一些运动目标(如早期的烟气、火焰等)存在比较独特的视觉特征。它们的底部位置变化比较小。而顶部位置变化比较大。本文称之为摇摆特征。基于此特征,本文提出一种摇摆运动目标检测算法。算法首先利用模糊积分提取视频序列帧中的运动目标;其次,使用基于质心的摇摆目标识别算法把摇摆目标从运动目标中提取出来。
     2.提出视频中的早期烟气具有摇摆特征。根据气体的物理运动特征,烟气流受到空气浮力和涡流的影响而扩散。一般情况下,视频中的早期烟气不断向其上方、左上方和右上方扩散。烟气底部区域位置比顶部区域位置变化小,顶部稳定性小于底部的稳定性,本文把烟气的这种特性称之为烟气的摇摆特征。
     3.提出一种基于烟气摇摆特征和扩散特征的烟气识别方法。当早期火灾烟气发生时,视频中的烟气存在比较独特的视觉特征:摇摆和扩散。烟气底部位置变化相对较小,底部质心位置变化较小;而烟气顶部位置变化相对比较大,顶部质心位置变化较大。该特性表现为摇摆特征。烟气具有不断扩散的特征,这使得烟气底部浓度较高,底部基本表现为烟气的颜色;烟气顶部浓度较低,表现为背景颜色和烟气颜色的混合颜色。烟气的底部和顶部形成不同的颜色纹理:底部纹理较为粗糙,顶部纹理较细。基于烟气这两个特征,本文提出一种基于摇摆特征和扩散特征的烟气识别方法。首先利用模糊积分融合YCbCr颜色模型中各分量提取视频序列帧中运动目标;其次计算各序列帧中运动目标质心,把序列帧中具有摇摆特征的运动目标作为烟气候选区域。最后根据烟气扩散造成烟气顶部和底部形成不同的纹理,利用烟气候选区域的顶部和底部灰度共生矩阵把烟气从其他候选区域中区别出来。
     4.提出一种火焰探测综合算法。首先利用模糊积分融合火焰颜色特征和纹理特征提取图像中的运动目标。算法融合了YCbCr颜色模型中相互独立的亮度分量、红色分量和局部二元模式纹理特征提取运动目标,有效地避免了视频序列帧中亮度变化对运动目标检测的干扰;其次,使用均值滤波平滑序列帧中像素RGB值,通过火焰颜色识别算法提取候选火焰区域。最后利用火焰面积变化识别算法从候选火焰区域中提取真实火焰。
     5.烟气和火焰的边缘形状独特,提取和分析火焰和烟气的边缘曲线有助于火灾的探测。受此启发,本文提出以线段为基元,使用成长型神经网络重建曲线的方法。首先设定曲线的散乱点数据和一初始网络(折线),通过此算法优化网络上的神经元(顶点)位置,使网络更好地逼近散乱点数据;不断分裂网络上活动性强的神经元和删除活动性最弱的神经元,使网络上神经元的分布与散乱点数据的概率分布保持一致。此算法为下一步重建火焰和烟气的边缘曲线奠定了基础。
The use of fire is a great creation of human society, and it plays an immeasurable role for social development and progress. The fire benefits humankind if people can grasp the laws in various fire places, improve the vigilance of using fire and take a reliable means of prevention. On the contrary, once the fire flame is out of control in time or space, it will lead to a fire which often endangers human life, destroys natural environment, damages material wealth and causes huge losses to human society. The fire is the most frequent and the highly destructive one in various types of disasters.
     Struggling tenaciously with the fire for many years, people got to know some laws of fire formation and development, and they also accumulated a lot of experience, methods and measures of prevention of fire. With social development and technological progress, people use a variety of fire detection methods and techniques to detect fire. Traditional fire detection methods are based on temperature detectors and smoke detectors. When the detection value exceeds the set threshold, the detector will alarm. This fire detection method is the most widely used and the most mature technology. However, they are not suitable to detect fire for large space buildings and open areas. Currently, there exist some detection technologies based on infrared and ultraviolet. However, these kinds of devices are relatively expensive. Video surveillance systems are popularized in the city and fire key protection units now. With the development of artificial intelligence and pattern recognition technique, fire detection method based on video is attached more and more importance. Comparing to the optical detection equipment, the price of CCD and CMOS is lower. This method can also use the existing video surveillance equipment and even some hardware equipment is not necessarily purchased, which can reduce the cost of fire detection system. It is also suitable to detect fire for large space buildings and open areas.
     According to the motion characteristics of early smoke, a swaying object detection algorithm was presented in this paper. According to the swaying and diffusion feature of smoke, a method of early smoke detection in video using swaying and diffusion feature was presented in this paper. According to the motion, pixel color and area variation feature of fire flame, a flame detection synthesis algorithm was presented in this paper. Research on unique edge shape of smoke and flame contributes to fire detection. Inspired by this idea, a new algorithm based on growing cell structures to realize curve reconstruction using line segment was presented. Flame and smoke edge curves will be reconstructed in the next step. The main research results are as follows:
     1. A swaying object detection algorithm was presented. Some moving objects such as early smoke and flame have unique vision features. Their bottom region is less mobile than their top region. This motion mode is called swaying feature in this paper. For this swaying feature, a swaying object detection algorithm was presented in this paper. Firstly, fuzzy integral is adopted to extract moving objects from video frames. Secondly, a swaying identification algorithm based on centroid calculation is used to distinguish the swaying object from other moving objects.
     2. Early smoke in video has swaying feature. According to the physical motion characteristics of gas, smoke is diffused as it is influenced by buoyancy of the air and eddy. Generally speaking, early smoke in video spreads towards upward, left upper side or right upper side. Smoke bottom region is less mobile than top region and smoke upper position is less stable than the lower position. This motion feature of smoke is called swaying feature in this paper.
     3. A method of early smoke detection in video using swaying and diffusion feature was presented. When an early smoke event occurs, smoke in video has unique vision features, namely swaying and diffusion. Smoke bottom position has relatively a small change, correspondingly to a relatively small change for centroid position of smoke bottom. Smoke top position has relatively a big change, correspondingly to a relatively big change for centroid position of smoke top. Therefore, a swaying feature is shown. Smoke has a continuous diffusion feature. In the bottom of smoke, smoke concentration is higher and the color basically shows smoke color. In the top of smoke, smoke concentration is lower and the color appears to be blended with smoke color and background color. In other words, the texture is comparatively rough in smoke bottom region and the texture is comparatively silky in the top region. Based on the two features of smoke, a method of early smoke detection in video using swaying and diffusion feature was presented in this paper. Firstly, choquet fuzzy integral is adopted using each component in YCbCr color model to extract moving regions from video frames, and then, a swaying identification algorithm based on centroid calculation is used to distinguish candidate smoke region from other moving regions. Secondly, smoke diffusion makes different textures between bottom region and top region of smoke. Gray Level Co-occurrence Matrixs are used to differentiate smoke from other candidate smoke regions.
     4. A flame detection synthesis algorithm was presented. Firstly, choquet fuzzy integral is adopted to integrate flame color features and texture feature for extracting moving regions from video frames. In YCbCr model, red and brightness components are independent with each other. The algorithm integrates the two components and local binary pattern texture for extracting moving object, which effectively avoids the interference of brightness variation in the video frames. Secondly, mean filtering is used to smooth RGB value of video frame pixels and detected moving regions are filtered by a flame color filtering algorithm to extract candidate flame regions. Finally, a flame area variation identification algorithm is used to distinguish true flames from candidate flame regions.
     5The edges of smoke and flame have unique shape. Extracting and analyzing edge curve feature of flame and smoke contribute to fire detection. An algorithm based on growing cell structures to realize curve reconstruction using line segment was presented. Given a set of unorganized data points and an initial polygonal line,the vertex position of polygonal line can be optimized by using the algorithm to make the vertexes of polygonal line gradually approach the given unorganized data points. In order to make the vertexes of polygonal line distribution coincide the space distribution of unorganized data points, the very active vertexes are split and the least active ones are deleted continually. This algorithm lays a foundation for edge curve reconstruction of flame and smoke for the next step.
引文
[1]范维澄,王清安,张人杰,等.1993.火灾科学导论[M].武汉:湖北科学技术出版社.
    [2]范维澄.1995.火灾学简明教程[M].合肥:中国科学技术大学出版社.
    [3]吴龙标,袁宏永.1999.火灾探测与控制工程[M].合肥:中国科学技术大学出版社.
    [4]廖光煊,王喜世,秦俊.2003.热灾害实验诊断方法[M].,合肥:中国科学技术大学出版社.
    [5]田玉敏.2007.消防经济学[M].北京:化学工业出版社.
    [6]陈南.2001。智能建筑火灾监控系统设计[M].北京:清华大学出版社.
    [7]刘亮亮.2007.基于视频监控的火灾图像识别研究[D].北京:华北电力大学,硕士学位论文.
    [8]吴龙标,方俊,谢启源.2006.火灾探测与信息处理[M].北京:化学工业出版社.
    [9]王殊,窦征.1998.火灾探测及其信号处理[M].武汉:华中理工大学出版社.
    [10]Meili E.1952. The Ionization Chamber Smoke Detector[J]. Swiss Electrotechnical Association, Bulletin No.23.
    [11]荣建忠.2012.基于多特征的火焰图像探测研究及实现[D]合肥:中国科学技术大学,博士学位论文.
    [12]张永坚.2007.智能建筑技术[M].北京:中国水利水电出版社.
    [13]I. Kopilovic, B. Vagvolgyi, I. Sziranyi.2000. Application of panoramic annular lens for motion analysis tasks:surveillance and smoke detection[C]. Proceeding of 15th International Conference on Pattern Recognition,4:714-717.
    [14]Jerome. Vicente, Philippe.2002. Guillemant. An image processing technique for automatically detecting forest fire[J]. International Journal of Thermal Sciences,41: 1113-1120.
    [15]F. Gomez-Rodriguez, S. Pascual-Pena, B.C. Arrue, et al.2002. smoke detection using image processing[C], Proceedings of the 4th International Conference of Forest Fire Research Wildland Fire Safety summit,59.
    [16]F. Gomez-Rodriguez, B.C. Arrue, A. Ollero.2003. Smoke Monitoring and Measurement Using Image Processing:Application to Forest Fires[C]. Proceedings of SPIE:automatic Target Recognition XIII,5094,404-411.
    [17]Fujiwara, N. Terada, K.2004. Extraction of a smoke region using fractal coding [C]. IEEE International Symposium on Communications and Information Technology,2:659-662.
    [18]Toreyin BU, Dedeoglu Y, Cetin AE.2005. Wavelet based real-time smoke detection in video[C]. Proceedings of the 13th European Signal Processing Conference.
    [19]Toreyin BU, Dedeoglu Y, Cetin AE.2006. Contour based smoke detection in video using wavelets[C]. Proceedings of 14th European Signal Processing Conference,1-5.
    [20]Thou-Ho Chen, Yen-Hui Yin, Shi-Feng Huang, et al.2006. The smoke Detection for Early Fire-Alarming system Base on Video Proceesing[C]. Proceedings of the 2006 International Conference on Intelligent Information Hiding and Multimedia Signal Processing,427-430.
    [21]Xiong. Z, Caballero. R, Wang. H, et al.2007. Video-based smoke detection:possibilities, techniques and challenges[C]. Fire suppression and detection research and applications-A technical working Conference.
    [22]Catrakis.H.J, Dimotakis. P.E.1998. Shape Complexity in Turbulence. Phys.Rev. Lett[J], 80(5):968-971.
    [23]Zhengguang Xu, Jialin Xu.2007. automatic fire smoke detection based on image visual features[C]. International Conference on Computational Intelligence and Security Workshops, 316-319.
    [24]Cui Y, Dong H, Zhou E.2008. An early fire detection method based on smoke texture analysis and discrimination[C]. Proceedings of the 2008 congress on image and signal processing,3:95-99.
    [25]Piccinini, P. Calderara, S.2008. Cucchiara, R. Reliable smoke detection in the domains of image energy and color[C].15th IEEE International Conference on Image Processing, 1376-1379.
    [26]Jing Yang, Feng Chen, Weidong Zhang.2008. Visual-Based Smoke Detection Using Support Vector Machine[C]. Fourth International Conference on Natural Computation,4:301-305.
    [27]Yuan F.2008. A fast accumulative motion orientation model based on integral image for video smoke detection[J]. Pattern Recognition Letters,29(7):925-932.
    [28]W Zheng, W Xingang, A Wenchuan, et al.2009. Target-tracking based early fire smoke detection in video[C]. Proceedings of the 5th IEEE International conference on image and graphics,172-176
    [29]Rubaiyat Yasmin.2009. Detection of Smoke Propagation Direction Using Color Video Sequences[J]. International Journal of Soft Computing,4(1):45-48.
    [30]Chao-Ching Ho.2009. Mahine vision-based real-time early flame and smoke detection[J]. Measurement Science and Technology,20(4):045502.
    [31]Dongil Han, Byoungmoo Lee.2009. Flame and smoke detection method for early real-time detection of a tunnel fire[J]. Fire Safety Journa,44(7):951-961.
    [32]J. Gubbi, S.Marusic, M. Palaniswami.2009. Smoke detection in video using wavelets and support vector machines[J]. Fire Safety Journal,44(8):1110-1115.
    [33]Li Ma, Kaihua Wu, Zhu, L.2010. Fire Smoke Detection in Video Images Using Kalman Filter and Gaussian Mixture Color Model[C].2010 International Conference on Artificial Intelligence and Computational Intelligence (AICI),1:484-487.
    [34]Yu Chunyu, Fang Jun, Wang jinjun, et al.2010. Video fire smoke detection using motion and color features[J]. Fire Technology,46(3):651-663.
    [35]Truong Xuan Tung, Jong-Myon Kim.2011. An effective four-stage smoke-detection algorithm using video images for early fire-alarm systems[J]. Fire Safety Journal,46(5): 276-282.
    [36]Feiniu Yuan.2011. Video-based smoke detection with histogram sequence of LBP and LBPV pyramids[J]. Fire Safety Journal,46(3):132-139.
    [37]Simone Calderara, Paolo Piccinini, Rita Cucchiara.2011. Vision based smoke detection system using image energy and color information[J]. Machine Vision and Applications,22(4): 705-719.
    [38]Chen-Yu Lee, Chain-Teng Lin, Chao-Ting Hong, et al.2012. Smoke detection using spatial and temporal analyses[J] International Journal of Innovative Computing,Information and Control,8(7):4749-4770.
    [39]吴爱国,杜春燕,李明.2008.基于混合高斯模型与小波变换的火灾烟雾探测[J]仪器仪表学报.29(8):1622—1626.
    [40]袁非牛,张永明,刘士兴,等.2009.基于累积量和主运动方向的视频烟雾检测方法[J].中国图象图形学报,13(4):808-813.
    [41]杨猛,赵春晖,潘泉,等.2009.基于小波分析的烟雾多特征融合和空间精度补偿森林火情检测算法[J].中国图象图形学报,14(4):694-700.
    [42]吴章宪,杨国田,刘向杰,等.2010.基于Gabor小波的火灾烟气识别新方法[J].仪器仪表学报,31(1):1-7。
    [43]王涛、刘渊、谢振平.2011.基于自适应神经模糊推理系统的视频烟雾检测[J].计算机工程,37(23):186—188.
    [44]王涛、刘渊、谢振平.2011.一种基于飘动性分析的视频烟雾检测新方法[J].电子与信息学报,33(5):1024—1029.
    [45]李文辉,肖林厂,王莹等.2012.一种基于块的视频烟雾检测算法[J].吉林大学学报(理工版),50(5):979—986
    [46]高彦飞,王慧琴,胡燕.2012.基于空间区域生长和模糊推理的视频烟雾检测算法[J],38(4):287-289.
    [47]Healey G, Slater D, Lin T, et al.1993. A system for real-time fire detection[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR'93), 605-606.
    [48]Noda S, Ueda K.1994. Fire detection in tunnels using an image processing method[C]. Proceedings of 1994 Vehicle Navigation and Information Systems Conference(VNIS),1994: 57-62.
    [49]Foo S Y.1996. A rule-based machine vision system for fire detection in aircraft dry bays and engine compartments[J]. Knowledge Based Systems,9(8):531-540.
    [50]Yamagishi, Yamaguchi.1999. Development of Fire Flame Detection Using Contour Fluctuation Information[C]. Proceedings of Symposium on Sensing via Image Information,5: 7-12.
    [51]Walter. Phillips III, M. Shah, N. V. Lobo.2002. Flame recognition in video[J]. Pattern Recognition Letters,23(1-3):319-327.
    [52]Chen T, Yuan HY, Su GF, et al.2004. An automatic fire searching and suppression system for large spaces[J]. Fire Safety Journal,39(4):297-307.
    [53]Liu CB, Ahuja N.2004. Vision based fire detection[C]. Proceedings of the 17th International conference on pattern recognition (ICPR'04),4:134-137.
    [54]Chen TH, Wu PH, Chiou YC.2004. An early fire-detection method based on image processing[C]. Proceedings of 2004 IEEE International Conference on image processing,3: 1707-1710.
    [55]Wen-Bing Horng, Jim-Wen Peng.2005. A New Image-Based Real-Time Flame Detection Method Using Color Analysis[C]. Proceedings of the 2005 IEEE International Conference on Networking, Sensing and Control,100-105.
    [56]Dedeoglu Y, Toreyin BU, Gudukbay U, et al.2005. Real-time fire and flame detection in video[C]. Proceedings of 2005 IEEE International Conference on acoustics, speech, and signal processing,669-672.
    [57]Toreyin BU, Dedeoglu Y, Cetin AE.2005. Flame detection in video using hidden markov models[C]. Proceedings of 2005 International conference on image processing, II-1230-3.
    [58]Toreyin BU, Dedeoglu Y, Gudukbay U, Cetin AE.2006. Computer vision based method for real-time fire and flame detection[J]. Pattern Recognition Letters,27(1):49-58.
    [59]Marbach G, Loepfe M, Brupbacher T.2006. An image processing technique for fire detection in video images[J]. Fire Safety Journal,41(4):285-289
    [60]Schultze T, Kempka T, Willms I.2006. Audio-video fire-detection of open fires[J]. Fire Safety Journal,41(4):311-314.
    [61]Jinhua Zhang, Jian Zhuang, Haifeng Du, et al.2006. A Flame Detection Algorithm Based on Video Multi-feature Fusion[J]. Lecture Notes in Computer Science,4222:784-792,
    [62]Ono T, Ishii H, Kawamura K, et al.2006. Application of neural network to analyses of CCD colour TV-camera image for the detection of car fires in expressway tunnels[J]. Fire Safety Journal,41(4):279-84
    [63]Han D, Lee B.2006. Development of early tunnel fire detection algorithm using the image processing [J]. Lecture Notes in Computer Science,4292:39-48.
    [64]Celik T, Demirel H, Ozkaramanli H, et al.2007. Fire detection using statistical color model in video sequences[J]. Journal of Visual Communication and Image Representation,18(2): 176-185.
    [65]Byoung Chul Ko, Kwang-Ho Cheong, Jae-Yeal Nam.2009. Fire detection based on vision sensor and support vector machines[J]. Fire Safety Journal,44(3):322-329
    [66]Kandil Magy, Salama May, Rashad S, et al.2010. Fire detection using a dynamically developed neural network[C]. ELMAR 2010 PROCEEDINGS,97-100.
    [67]Chen J, He Y, Wang J.2010. Multi-feature fusion based fast video flame detection[J]. Building and Environment,45(5):1113-1122.
    [68]Steven Verstockt, Ioannis Kypraios, Pieterjan De Potter, et al. WAVELET-BASED MULTI-MODAL FIRE DETECTION[C],19th European Signal Processing Conference (EUSIPCO 2011),903-907.
    [69]Yusuf Hakan Habiboglu, Osman Gunay, A. Enis Cetin.2012. Covariance matrix-based fire and flame detection method in video[J]. Machine Vision and Applications,23(6):1103-1113.
    [70]Amaj Chamankar, Sasan Mohammadi, Mohammad Jamshidian.2012. Fire detection with image processing and PIR sensor[J], International Journal of Science and Engineering Investigations,1(4):24-28.
    [71]Changwoo Ha, Ung Hwang, Gwanggil Jeon, et al.2012. Vision-Based Fire Detection Algorithm Using Optical Flow[C].2012 Sixth International Conference on Complex, Intelligent and Software Intensive Systems (CISIS),526-530.
    [72]Sofie Van Hoeckeb, Tarek Bejic, Bart Mercic, et al.2013. A multi-modal video analysis approach for car park fire detection[J]. Fire Safety Journal,57:44-57.
    [73]程晓舫,吴建华,徐新宇.2001.CCD影像中高温目标的甄别[J].自然科学进展,11(3):293-299.
    [74]Cheng X F, Wu J H, Yuan X, Zhou H.1999. Principles for a video fire detection system[J]. Fire Safety Journal,33(1):57-69.
    [75]吴龙标,宋卫国,卢结成.1997.图象火灾监控中一个新颖的火灾判据[J].火灾科学,6(2):60-66.
    [76]袁宏永,刘炳海,陈晓军等.1998.图像型火灾智能自动探测与空间定位技术[J].消防科技,2:2-4.
    [77]卢结成,吴龙标,宋卫国.2001.一种火灾图像探测系统的研究[J].仪器仪表学报,22(4): 437-440.
    [78]吴爱国,李明,陈莹.2006.大空间图像型火灾探测算法的研究[J].计算测量与控制,14(7):869-871.
    [79]陈莹,吴爱国.2006.基于图像处理的火灾监测系统软件设计[J].低压电器,1:32-35.
    [80]史海山,吕厚余,仲元红,等.2006.基于遗传神经网络的火灾图像识别及应用[J].计算机科学,33(11):233-236.
    [81]沈诗林,于春雨,袁非牛,等.2007.一种基于视频图像相关性的火灾火焰识别方法[J].安全与环境学报,7(6):96-99.
    [82]沈诗林,陈礼涛,袁非牛,等.2009.一种基于质心距脉动特征的火焰轮廓识别算法[J].安全与环境学报,1:135.138.
    [83]张晓颜,韩斌,周世友.2009.离散余弦变换在火焰识别中的应用[J].核电子学与探测技术,29(6):1319-1323.
    [84]韩殿元.2010.YCbCr颜色模式下基于L-M算法优化的火焰识别方法[J].计算机科学,37(8):287-289.
    [85]马宗方,程咏梅,潘泉,等.2010.基于快速支持向量机的图像型火灾探测算法[J],计算机应用研究,27(10):3985-3987.
    [86]廖勇,王慧琴,肖立波.2011.基于边界链码幅度谱的图像型火灾探测算法[J].计算机工程,37(24):210-212.
    [87]王华秋,刘轲.2011.改进CMAC在森林火焰识别中的应用[J].计算机应用,31(3):860-864.
    [88]温雨春.2011.基于视频的火灾识别算法研究[D].杭州:浙江大学硕士学位论文.
    [89]胡燕,王慧琴,马宗方,等.2012.基于独立成分分析和支持向量机的图像型火灾探测[J].计算机应用,32(3):889-892.
    [90]梁俊山,王慧琴,胡燕,等.2012.基于模糊聚类的图像型火灾检测[J].计算机工程,38(4):196-198.
    [1]荣建忠.2012.基于多特征的火焰图像探测研究及实现[D].合肥:中国科学技术大学,博士学位论文.
    [2]黎洪松.2006.数字视频处理[M].北京:北京邮电大学出版社.
    [3]曹茂永.2007.数字图像处理[M].北京:北京大学出版社.
    [4]宋建华.2007.基于支持向量机的彩色图像人脸检测[D].长春:吉林大学,硕士学位论文.
    [5]刘大会.2007.数字电视实用技术[M].北京:北京邮电大学出版社.
    [6]刘清堂.2008.数字媒体技术导论[M].北京:清华大学出版社.
    [7]何明一.2008.数字图像处理[M].北京:科学出版社.
    [8]陈兵旗.2008.实用数字图像处理与分析[M].北京:中国农业大学出版社.
    [9]吴国平.2007数字图像处理原理[M].北京:中国地质大学出版社.
    [10]黄爱民.2005.数字图像处理与分析基础[M].北京:中国水利水电出版社.
    [11]高程程,惠晓威.2010.基于灰度共生矩阵的纹理特征提取[J].计算机系统应用,19(6):195.198.
    [12]王瑶.2008.图像分割中关键技术的研究[D].无锡:江南大学,硕士学位论文.
    [13]孙君顶,马媛媛.2010.纹理特征研究综述[J].计算机系统应用,19(6):245-250.
    [14]Cross, George R. Jain, Anil K.1983. Markov Random Field Texture Models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,5(1):25-39.
    [15]曹媛媛,杨波,徐光祐.2007.基于分形纹理特征和小波变换的网状纹理检测方法[J].自动化学报,33(7):688-693.
    [16]徐贵力,毛罕平.2004.利用傅里叶变换提取图像纹理特征新方法[J].光电工程,31(11):55-58.
    [17]张志龙,李吉成,沈振康.2006.局部傅里叶变换系数各阶矩的纹理鉴别性能分析[J].中国图象图形学报,11(1):33-40.
    [18]吴均,赵忠明.2001.利用基于小波的尺度共生矩阵进行纹理分析[J].遥感学报,5(2):100—103.
    [19]李亚标,王宝光,李温温.2009.基于小波变换的图像纹理特征提取方法及其应用[J].传感技术学报,22(9):1308-1311.
    [20]王世坤.2010.基于纹理特征的绝缘子目标识别与跟踪研究[D].北京:华北电力大学,硕士学位论文.
    [21]李建华.2010.信息内容安全管理及应用[M].北京:机械工业出版社.
    [22]黄春龙.2009.基于纹理的水系信息提取及其特征分析[D].长春:吉林大学,硕士学位论文.
    [23]M. Tahir, A. Bouridane, F. Kurugollu.2005. An FPGA Based Coprocessor for GLCM and Haralick Texture Features and their Application in Prostate Cancer Classification[J], Analog Integrated Circuits and Signal Processing,43(2):205-215.
    [24]高振宇,杨晓梅,龚剑明,等.2010.图像复杂度描述方法研究[J].中国图象图形学报,15(1):129—135.
    [25]Feiniu Yuan.2011. Video-based smoke detection with histogram sequence of LBP and LBPV pyramids. Fire Safety Journal,46(3):132-139.
    [26]丁莹,李文辉,范静涛,等.2010.基于Choquet模糊积分的运动目标检测算法[J].电子学报,38(2):263-268.
    [27]王玲.2009.基于LBP的特征提取研究[D].北京:北京交通大学大学,硕士学位论文.
    [1]Horn BK, Schunk BG.1981. Determining optical flow[J]. Artificial Intelligence,17:185-203.
    [2]张泽旭,李金宗,李宁宁.2003.基于光流场分割和Canny边缘提取融合算法的运动目标检测[J].电子学报,31(9):1299-1302.
    [3]William B. Thompson, Ting-Chuen Pong.1990. Detecting moving objects[J]. International Journal of Computer Vision,4(1):39-57.
    [4]C. Braillon, C. Pradalier, James. L Crowley, et al.2006. Real-time moving obstacle detection using optical flow models[C]. Proceedings of 2006 IEEE Intelligent vehicles symposium, 466-471.
    [5]Hai-yan Zhang.2010. Multiple moving objects detection and tracking based on optical flow in polar-log images[C]. Proceedings of 2010 International Conference on Machine Learning and Cybernetics,3:1577-1582.
    [6]袁红卫,卢雁,毛海岑,等.2012.基于光流的运动小目标检测算法[J].光学与光电技术,10(1):67-70.
    [7]王新余,张桂林.2004.基于光流的运动目标实时检测方法研究[J].计算机工程与应用,40(1):43.46.
    [8]Shibata Masaaki, Yasuda Yuichiro, Ito Masahide.2008. Moving Object Detection for Active Camera Based on Optical Flow Distortion[C]. Proceedings of the 17th International Federation of Automatic Control IFAC World Congress,17:14720-14725.
    [9]C.-C. Chang, T.-L. Chia, C.-K. Yang.2005. Modified temporal difference method for change detection[J]. Opt. Eng,44(2):027001.
    [10]J.-E. Ha, W.-H. Lee.2010. Foreground objects detection using multiple difference images[J]. Opt. Eng,49(4):047201-047201-5.
    [11]WanHyun Cho, Sunworl Kim, Gukdong Ahn.2011. Detection and recognition of moving objects using the temporal difference method and the hidden Markov model[C]. Proceedings of 2011 IEEE International Conference on Computer Science and Automation Engineering,4: 119-123.
    [12]LI Ren-jie, YU Song-yu, XIONG Hong-kai.2008. Spatio-temporal Compensation Based Object Detection for Video Surveillance Systems[J]. JOURNAL OF DONGHUA UNIVERSITY,25(2):123-129.
    [13]Chaohui Zhani Xiaohui Duan, Shuoyu, et al.2007. An Improved Moving Object Detection Algorithm Based on Frame Difference and Edge Detection[C]. Proceedings of the Fourth International Conference on Image and Graphics,519-523.
    [14]Yuyong CUI, Zhiyuan ZENG, Weihong CUI, et al.2012. Moving Object Detection Based Frame Difference and Graph Cuts[J]. Journal of Computational Information Systems 8: 21-29.
    [15]李娅姬.2009.基于可视光流的视频运动检测方法研究[D].广州:中山大学,硕士学位论文.
    [16]Barron M, Fleet D J, Beauchemin S S, et al.1994. Performance of optical flow techniques[J]. International Journal of Computer Vision,12(1):43-47.
    [17]Horn B.K.P, Schunck B.G.1981. Determining optical flow[J]. Artificial Intelligence 17: 185-203.
    [18]Lucas. B, Kanade. T.1981. An Iterative image registration technique with an Application to Stereo vision[C]. Proceedings of the 7th international joint conference on Artificial intelligence,2:674-679.
    [19]Lucas B.D.1984. Generalized Image Matching by the Method of Differences[D]. Carnegie Mellon University, doctoral dissertation.
    [20]张俨娜.2009.运动目标检测与跟踪相关算法研究[D].开封:河南大学,硕士学位论文.
    [21]林佳乙,于哲舟,张健,等.2008.基于背景差分法和帧间差分法的视频运动目标检测[J].仪器仪表学报,29(4):111:114.
    [22]聂烜,陈怀民,朱怡安.2009.一种用于目标检测的复合差分法[J].西北工业大学学报,27(1):88-92.
    [23]Liyuan Li, Weimin Huang, Irene Y. H. Gu, et al.2003. Foreground object detection from videos containing complex background[C]. Proceedings of the eleventh ACM international conference on Multimedia,2-10.
    [24]Mittal A, Paragios N.2004. Motion-based background subtraction using adaptive kernel density estimation[C]. Proceedings of 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.2:Ⅱ-302-Ⅱ-309.
    [25]Kyungnam Kim.Thanarat H, Chalidabhongse, et al.2005. Real-time foreground-background segmentation using codebook model[J]. Real-Time Imaging,11(3):172-185.
    [26]侯志强,韩崇昭.2005.基于像素灰度归类的背景重构算法[J].软件学报,16(9):1568-1576.
    [27]D Culibrk, O Marques, D Socek, et al.2007. Neural network approach to background modeling for video object segmentation[J]. IEEE Transactions on Neural Networks,18(6): 1614-1627.
    [28]R Zhang, S Zhang, S Yu.2007. Moving objects detection method based on brightness distortion and chromaticity distortion[J]. IEEE Transactions on Consumer Electronics,53(3): 1177-1185.
    [29]齐美彬,王倩,蒋建国,等.2008.基于背景像素值频次最高假设的背景重构算法[J].中国图象图形学报,13(4):723-728.
    [30]刘鑫,刘辉,强振平,等.2008.混合高斯模型和帧间差分相融合的自适应背景模型[J].中国图象图形学报,13(4):729-734.
    [31]L Maddalena, A Petrosino.2008. A self-organizing approach to background subtraction for visual surveillance applications [J]. IEEE Transactions on Image Processing,17(7): 1168-1177.
    [32]李波,姚春莲,李炜,等.2008.利用相邻帧和背景信息的运动对象检测[J]电子学报,36(11):2154-2159.
    [33]万成凯,袁保宗,苗振江.2009.一种基于活动轮廓和Gauss背景模型的固定摄像机运动目标分割算法[J].中国科学F辑:信息科学,39(4):391-396.
    [34]王永忠,梁彦,潘泉,等.2009.基于自适应混合高斯模型的时空背景建模[J].自动化学报,35(4):371-378.
    [35]T Huang, J Qiu, T Sakayori, et al.2009. Motion detection based on background modeling and performance analysis for outdoor surveillance[C].2009 International Conference on Computer modeling and simulation(ICCMS),38-42.
    [36]Zhiyu Wang, Hui Xu, Lifeng Sun et al.2009. Background subtraction in dynamic scenes with adaptive spatial fusing[C]. Proceeding of 2009 IEEE International Workshop on Multimedia Signal Processing,1-6.
    [37]郭春生,王盼.2010.一种基于码本模型的运动目标检测算法[J].中国图象图形学报A,15(7):1079-1083.
    [38]徐成,田峥,李仁发.2010.一种基于改进码本模型的快速运动检测算法[J],计算机研究与发展,47(12):2149-2156.
    [39]刘丁,杨延西,赵豆.2010.改进PIC的背景重构算法与运动目标检测新方法[J],仪器仪表学报,31(4):885-891.
    [40]丁莹,李文辉,范静涛,等.2010.基于Choquet模糊积分的运动目标检测算法[J].电子学报,38(2):263-268.
    [41]王志明,张丽,包宏。2011.基于混合结构神经网络的自适应背景模型[J].电子学报,39(5):1053-1058.
    [42]Pojala Chiranjeevi, Somnath Sengupta.2011. Moving object detection in the presence of dynamic backgrounds using intensity and textural features [J]. Journal of Electronic Imaging, 20(4):043009-043009-11.
    [43]Shengyong Chen, Jianhua Zhang, Youfu Li, et al.2012. A hierarchical model incorporating segmented regions and pixel descriptors for video background subtraction[J]. IEEE Transactions on Industrial Informatics,8(1):118-127.
    [44]荣建忠.2012.基于多特征的火焰图像探测研究及实现[D]合肥:中国科学技术大学,博士学位论文.
    [45]傅昌宁.2009.基于高斯混合模型图像序列运动目标检测技术研究[D].武汉:武汉理工大学,硕士学位论文.
    [46]李刚,何小海,张生军,等。2011.改进的基于GMM的运动目标检测方法[J].计算机 应用研究,28(12):4738—4741.
    [47]苏兵李刚王洪元.2012.基于改进的高斯混合模型的运动目标检测方法[J].计算机工程.38(2):210-212.
    [48]宋杨.2008.基于高斯混合模型的运动目标检测算法研究[D].大连:大连理工大学,硕士学位论文.
    [49]马若飞.2010.基于高斯混合模型的运动目标检测算法研究[D].兰州:兰州大学,硕士学位论文.
    [50]杨海岳.2005.几种分类器融合方法的比较[J].保定:河北大学,硕士学位论文.
    [51]张国防.2007.基于Choquet模糊积分的多分类器系统多样性研究[J].保定:河北大学,硕士学位论文.
    [52]M. Grabisch, T Murofushi, M Sugeno.2000. Fuzzy Measures and Integrals. Theory and Applications[M], Physica Verlag:Heidelberg Press,314-319.
    [53]H. J. A. M. Heijmans, Luc. Vincent.1993. Graph morphology in image analysis. Mathematical Morphology in Image Processing,34,171-203.
    [54]Berthold K.P. Horn.1986. Robot Vision[M], Cambridge, MA, USA, MIT Press,46-58.
    [1]Toreyin BU, Dedeoglu Y, Cetin AE.2005. Wavelet based real-time smoke detection in video[C]. Proceedings of the 13th European Signal Processing Conference.
    [2]Yu Chunyu, Fang Jun, Wang jinjun, et al.2010. Video fire smoke detection using motion and color features[J]. Fire Technology,46:651-663.
    [3]Chen TH, Wu PH, Chiou YC.2004. An early fire-detection method based on image processing[C]. Proceedings of 2004 IEEE International Conference on image processing,3: 1707-1710.
    [4]安德列也夫.1959.工业烟气在大气中之扩散[M],北京:冶金工业出版社.
    [5]大气扩散和烟气抬升规律的研究编辑组[M].1985.大气扩散和烟气抬升规律的研究[M],北京:科学出版社.
    [6]李建华.2010.信息内容安全管理及应用[M].北京:机械工业出版社.
    [7]黄春龙.2009.基于纹理的水系信息提取及其特征分析[D].长春:吉林大学, 硕士学位论文.
    [8]M. Tahir, A. Bouridane, F. Kurugollu.2005. An FPGA Based Coprocessor for GLCM and Haralick Texture Features and their Application in Prostate Cancer Classification[J], Analog Integrated Circuits and Signal Processing,43(2):205-215.
    [1]Byoung Chul Ko, Kwang-Ho Cheong, Jae-Yeal Nam.2009. Fire detection based on vision sensor and support vector machines[J]. Fire Safety Journal,44(3):322-329
    [2]Chen J, He Y, Wang J.2010. Multi-feature fusion based fast video flame detection[J]. Building and Environment,45(5):1113-1122.
    [3]丁莹,李文辉,范静涛,等.2010.基于Choquet模糊积分的运动目标检测算法[J].电子学报,38(2):263-268.
    [4]张国防.2007.基于Choquet模糊积分的多分类器系统多样性研究[J].保定:河北大学,硕士学位论文.
    [5]M. Grabisch, T Murofushi, M Sugeno.2000. Fuzzy Measures and Integrals. Theory and Applications[M], Physica Verlag:Heidelberg Press,314-319.
    [6]Feiniu Yuan.2011. Video-based smoke detection with histogram sequence of LBP and LBPV pyramids[J]. Fire Safety Journal,46:132-139.
    [7]卢官明,郎苏娟.2009.基于YCbCr颜色空间的背景建模及运动目标检测[J].南京邮电大学学报(自然科学版),29(6):17-22.
    [8]Liu CB, Ahuja N.2004. Vision Based Fire Detection[C]. Proceedings of 17th International Conference on Pattern Recognition(ICPR'04),4:134-137.
    [9]Cheng X, Wang DC, Yin DL.2005. Image type fire flame detecting principle. Fire Safety Science,14(4):239-245.
    [10]Chen T H, Wu P H, Chiou YC.2004. An early fire-detection method based on image processing[C]. Proceedings of IEEE International Conference on Image Processing(ICIP'04), 1707-1710.
    [11]陈娟.2009.基于多特征融合的视频火焰探测方法研究[D].合肥:中国科学技术大学,硕士学位论文.
    [12]Cetegen B M, Ahmed T A.1993, Experiments on the periodic instability of buoyant plumes and pool fires [J]. Combustion and Flame,93(1-2):157-184.
    [13]Cetegen B M, Dong Y.2000. Experiments on the instability modes of buoyant diffusion flames and effects of ambient atmosphere on the instabilities[J]. Experiments in Fluids, 28(2-6):546-558.
    [14]Albera B W, Ajay K.1999. Schliercn analysis of an oscillating gus-jet diffusion [J]. Combustion and Flame,119(1-2):84-94.
    [15]Hertzberg M, Litton C D, Donaldson W F, et al.1975. The infrared radiance and the optical detection of fires and explosions [C]. The 15th International Symposium on Combustion, 15(1):137-144.
    [16]Schultze T, Kempka T, Willms I.2006. Audio-video fire-detection of open fires[J]. Fire Safety Journal,41(4):311-314.
    [17]Takahashi N.1999. Behavior of luminous zones appearing on plumes of large scale pool fires of kerosene [J]. Fire safety Journal,33(1):1-10.
    [18]袁宏永,苏国锋,安志伟,等.1999.基于实时序列红外图像的火灾频闪频率测量研究[C].1999城市火灾安全国际学术会议,162—166.
    [19]杨君涛,魏东,张学魁,等.2006.着火油罐燃烧特性的理论分析[J].工程热物理学报,27(01): 151—154.
    [20]陈志斌,胡隆华,霍然,等.2008.基于图像相关性提取的火焰振荡频率[J].燃烧科学与技术,14(4):367-371.
    [1]Goshtasby A A.2000. Grouping and parameterizing irregularly spaced points for curve fitting [J]. ACM Transaction on Graphics,19(3):185-203.
    [2]Lee IK.2000. Curve reconstruction from unorganized points[J]. Computer Aided Geometric Design,17(2):161-177.
    [3]Varady Tamas, Ralph R R, Jordan Coxf.1997. Reverse engineering of geometric models-An introduction [J]. Computer-Aided Design,29(4):255-268.
    [4]Alrashdan Abdalla,Motavalli Saeid,Fallah Behrooz.2000, Automatic segmentation of digitized data for reverse engineering applications [J]. IIE Transactions,32(1):59-69
    [5]Huang Jianbing, Menq Chia-Hsiang.2001. Automatic data segmentation for geometric feature extraction from unorganized 3-D coordinate points[J]. IEEE Transactions on Robotics and Automation,17(3):268-279.
    [6]黄童心,王文珂,张慧,等.2010.基于场分布的平面散乱点集B样条曲线重建算法[J].工程图学学报,2:73.83.
    [7]Levin D.1998. The approximation power of moving least-squares [J]. Mathematics of Computation,67(224):1517-1531.
    [8]Pottmann H, Randrup T.1998. Rotational and helical surface approximation for reverse engineering [J]. Computing,60(4):307-322.
    [9]Fang L, Gossard D C.1995. Multidimensional curve fitting to unorganized data points by nonlinear minimization [J]. Computer Aided Design,27(1):48-58.
    [10]Taubin, G., Rondfard, R.1996. Implicit simplicial models for adaptive curve reconstruction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,18(3): 321-325.
    [11]Amenta N, Bern M, Eppstein D.1998. The crust and theβ-skeleton:combinatorial curve reconstruction [J]. Graphical Models and Image Processing,60(2):125-135.
    [12]钟纲,杨勋年,汪国昭.2002.基于场表示的平面无序点集曲线重建算法[J].计算辅助设计与图形学学报,14(11):1074—1079.
    [13]钟纲,杨勋年,汪国昭.2002.平面无序点集曲线重建的跟踪算法[J].软件学报,13(11):2188—2193.
    [14]Lin H W, Chen W, Wang G J.2005. Curve reconstructionbased on an interval B-spline curve [J]. Visual Comput,21(6):418-427.
    [15]G6za Kos, Martin R R,V6rady Tamas.2000. Methods to recover constant radius rolling ball blends in reverse engineering[J]. Computer Aided Geometric Deign,17(2):127-160.
    [16]Lu Zhen, Ke Yinglin, Sun Qing, et al.2003. Extraction of blend body feature in reverse engineering [J].Chinese Journal of Mechanical Engineering,16(3):248-251.
    [17]Ke Yinglin, Wangqing.2005. Research on Point Cloud Slicing Technique in Reverse Engineering[J], Journal of computer-aided design & Computer graphics,17(8):1798-1802.
    [18]Ke Yinglin, LiAn.2005, Extruded Surface Extraction Base on Unorganized Point Cloud in Reverse Engineering[J], Journal of computer-aided design & Computer graphics,17(6): 1329-1334.
    [19]Jun Y, Raja V,Park S.2001. Geometric feature recognition for reverse engineering using neural networks[J]. International Journal of Advanced Manufacturing Technology,17(6): 462-470.
    [20]Xiao Shaoyong, Jin Shigang, Shi Wenjun.2000. Curve Reconstruction Based on Orthogonal Neural Network [J]. Journal of image and graphics,5(1):62-65.
    [21]I.P.IVRISSIMTZIS, W-K.JEONG, H-P. SEIDEL.2003. Using growing cell structures for surface reconstruction[J]. Proceedings of Shape Modeling International 2003,78-86.
    [22]王旭.2007.人工神经元网络原理与应用(第二版)[M].沈阳:东北大学出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700