用户名: 密码: 验证码:
高速陶瓷电主轴的设计与制造关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电主轴单元是一种直接依赖于高速精密轴承技术、高速电机与驱动技术、油气润滑与冷却技术、精密制造与装配技术等关键技术及相关配套技术的高度机电一体化的数控机床关键功能部件。利用高性能结构陶瓷作为高速主轴轴承及主轴材料研制开发陶瓷电主轴单元,可以充分发挥陶瓷材料密度小、耐高温、耐磨损、高强度等优良性能,极大地减少主轴部件高速旋转的离心力和惯性力,提高主轴单元的刚度和回转精度,使我国数控机床及其主轴功能部件的产品档次明显提高。
     本文以提高陶瓷电主轴的性能并实现其在数控机床中的应用为目标,围绕高速陶瓷电主轴单元的设计与制造关键技术问题进行了深入系统的研究。
     (1)创新性的设计并制造了一种无内圈式陶瓷电主轴。该陶瓷电主轴的支撑轴承为无内圈式热压氮化硅全陶瓷球轴承,转子轴采用氧化锆陶瓷烧结制成,轴上加工有轴承内滚道。通过对陶瓷电主轴关键技术的研究,进行了陶瓷轴承内部结构参数优化和陶瓷电主轴总体结构设计,实现了高速陶瓷电主轴单元的精密装配。
     (2)首次将陶瓷材料应用于主轴电机转子轴芯,并对陶瓷主轴电机主要设计参数进行了设计确定。建立了主轴电机的数学模型,并对其直接转矩控制进行了仿真分析,实现了基于PMAC的陶瓷电主轴的直接转矩控制。
     (3)研究了陶瓷主轴零件的制备工艺,实现了高强、高韧陶瓷主轴的近净尺寸烧结。研究了陶瓷材料的磨削机理、磨削力、磨削表面质量控制方法及相应工艺参数的优化问题,实现了陶瓷主轴及陶瓷球轴承的精密加工,陶瓷滚道表面粗糙度Ra<0.05μm,滚道轮廓度Pt接近1μm,无内圈式陶瓷主轴-轴承单元的精度达到P4级轴承检测标准。
     (4)对所研制的无内圈式陶瓷电主轴样机进行综合性能试验与分析,试验结果表明,其最高转速达到30000r/min,最大功率达到15kW,主轴静态精度≤1μm,在最佳润滑条件和最佳预紧力条件下,陶瓷主轴系统的径向静刚度可达322N/μm,空载振动<0.8mm/s,空载温升<10℃。已应用于数控机床,且运行稳定可靠,精度保持性好。
     通过本文的研究,不仅为数控机床高速无内圈式陶瓷电主轴的设计开发提供了主要理论依据和技术支持,还在陶瓷电主轴结构设计与优化、陶瓷零部件设计与加工、主轴电机设计与驱动控制等方面的基础理论和关键技术上取得了具有自主知识产权的原创成果,从而推动了高速陶瓷电主轴单元在数控机床上应用与发展。
High performance spindle system is one of the key function units of NC machine tools. Motorized spindle is the main form of high-speed spindle system, which integrates many key technologies such as high-speed precision bearings, high-speed motor and driving, oil-air lubrication and cooling, precision manufacturing and assembling, and some other related supporting technologies. In this research, a high speed ceramic motorized spindle equipped with high-performance structural ceramic shaft and bearings is designed and developed. Because of engineering ceramics' extraordinary physical properties such as high hardness, low thermal expansion, light weight, abrasion resistant and good chemical and thermal stability, it can reduce the high-speed rotational centrifugal force and inertia force and increase the stiffness and rotation accuracy of spindle-bearing system greatly, so as to accommodate very well the high-speed and precision requirements of spindle system. In addition, it can reduce friction and decrease the temperature response, accordingly effectively reduce the energy consumption and save resources. Development of ceramic motorized spindle can improve the performance and quality of the spindle system and NC machine tool significantly.
     In this paper, in order to improve the performance of ceramic motorized spindle and achieve its application in NC machine tools, the following key technologies of ceramic motorized spindle in process of design and manufacturing are researched.
     (1) Innovative high speed ceramic motorized spindle with a bearing without inner rings is designed and manufactured. The bearings are a kind of hot isostatically pressed silicon nitride (HIPSN) fully-ceramic ball bearings, whose rotor shaft is made from yttria partially stabilized zirconia (Y-PSZ), on which the outer race is designed. Ceramic ball bearings'kinematics, dynamics, failure mechanism and life prediction and other basic theoretical problems are researched. Internal structure parameters of ceramic bearings and the overall structure of ceramic motorized spindle are designed and optimized. It achieves an assembly of high-speed ceramic motorized spindle with high precision.
     (2) The ceramic material is used in the motor rotor shaft of spindle. Through creating motor model of the ceramic spindle, primary design parameters of ceramic spindle motor are optimized. Direct torque control system of ceramic motorized spindle based on PMAC is designed and researched. The theoretical analysis and simulation research on it are finished.
     (3) The near-net size sintered process of ceramic parts is researched. High-strength and high toughness ceramic spindle blank parts are sintered successfully. The grinding mechanism, grinding force, grinding surface quality control methods and the corresponding process parameters optimization of ceramic grinding are studied. The high-precision machining technologies of ceramic balls, ceramic rings and ceramic shafts are achieved. The surface roughness of ceramic bearing race is less than0.05μm. The machining accuracy of ceramic spindle shafts and ceramic bearing rings reach grade P4of the testing standard for precision of bearing components.
     (4) Performance test and analysis of the developed ceramic motorized spindle are finished. The test results show that the maximum speed achieves30000r/min, the maximum power achieves15kW, radial runout of shaft is less than μm, in the condition of best lubrication and appropriate preload, radial rigidity of the ceramic spindle system achieves322N/μm, no-load vibration is less than0.8mm/s, no-load temperature rise is less than10℃. Ceramic motorized spindle has been applied in NC machine tools successfully.
     This study not only provides the theoretical basis and technical support for design and development of ceramic motorized spindle without inner rings on high-speed NC machine tools, but also obtains original achievements with independent intellectual property rights on basic theories and key technologies of structural design and optimization of ceramic spindle, design and processing of ceramic parts, spindle motor design and drive control, and so on., accordingly promotes the application and development of high-speed ceramic motorized spindle in NC machine tools.
引文
[1]吴玉厚.数控机床电主轴单元技术[M].北京:机械工业出版社,2006.
    [2]谢桂珍.2010年《全球制造业白皮书》发布:全球10大制造强国座次排定,中国位居第三[N].机电商报,2010,8,9(A08).
    [3]李大庆.我国首次跃居世界机床制造第一大国[N].科技日报,2010,2,27(A02).http://www.stdaily.com/kjrb/content/2010-02/27/content_l 60074.htm
    [4]中华人民共和国国务院.国家中长期科学和技术发展规划纲要(2006-2020)[R].2006.
    [5]国务院关于加快振兴装备制造业的若干意见(国发[2006]8号文).
    [6]Weck M, Koch A. Spindle-Bearing Systems for High-Speed Applications in Machine Tools[J]. Annals of the CIRP,1993,42(1):445-448.
    [7]Weck M. Machine Tools for High Speed Machining. Proceedings of the Improving Machine Tool Performance[J].1998,7:27-41.
    [8]王重海,张伟儒.全陶瓷轴承的研究现状及其应用前景[J].现代技术陶瓷,2003,3:30-32.
    [9]张珂,吴玉厚等.陶瓷轴承在数控机床主轴单元中的试验研究[J].机械制造,2002,(4):33-35.
    [10]Quintana G, Ciurana de J, Campa F J. Machine Tool Spindles//Machine Tools for High Performance Machining[M]. de Lacalle L. N. L., Lamikiz A. New York:Springer,2009.75-127.
    [11]Arnone M. High Performance Machining[M]. Cincinnati, USA:Hanser Gardner Publications.1998.
    [12]周延祐,李中行.电主轴技术讲座第一讲主轴概述[J].制造技术与机床,2003,(06):15-17.
    [13]周延祐,李中行.电主轴技术讲座第二讲电主轴的基本参数与结构(一)[J].制造技术与机床,2003,(07):21-23.
    [14]徐同申,余篷.内装式电主轴在国内机床行业中的发展[J].金属加工(冷加工),2010,6:18-19.
    [15]徐同申.内装式电主轴单元的工程化开发研究报告[R].洛阳:洛阳轴承研究所.2001.
    [16]Brecher C, Spachtholz G, Paepenmuller F. Developments for High Performance Machine Tool Spindles[J]. Annals of the CIRP,2007,56(1):395-399.
    [17]熊万里.我国高性能机床主轴技术现状分析[J].金属加工(冷加工),2011,09:15-16.
    [18]熊万里,李芳芳,纪宗辉等.角接触球轴承电主轴系统动力学研究进展[J].制造技术与机床,2010,3:25-30.
    [19]Jiang S Y, Zhen S F. Dynamic design of a high speed motorized spindle-bearing system[J]. Journal of Mechanical Design,2010,132:034501-1-034501-5.
    [20]熊万里,吕浪,阳雪兵等.高频变流诱发的电主轴高次谐波振动及其抑制方法[J].振动工程学报,2008,21(6):600-607.
    [21]熊万里,王文华,吕浪.基于逆变器-电动机动态特性仿真的高速电主轴电动机的研究[J].制造技术与机床,2009,4:31-36.
    [22]孟杰,陈小安,合烨.高速电主轴电动机-主轴系统的机电耦合动力学建模[J].机械工程学报,2007,43(12):160-165.
    [23]王蕴,刘峰.水润滑陶瓷滑动轴承研究综述[J].机床与液压,2010,38(11):123-126.
    [24]吴玉厚,李颂华.一种热等静压氮化硅全陶瓷电主轴及其制造方法[P]:中国,ZL200610134117.4,2008.
    [25]吴玉厚,李颂华.一种无内圈式热等静压氮化硅全陶瓷球轴承及其制造方法[P]:中国,ZL200610134118.9,2009.
    [26]吴玉厚,张珂.一种基于PMAC的高速精密数控磨削加工装置[P]:中国,ZL200410050459.9,2006.
    [27]Zhang K, Wu Y H, Sun H. Study on Precise Rubbing Technology of HIPSN Ceramic Balls[J]. Key Engineering Materials,2006,304-305:364-368.
    [28]吴玉厚,刘小文,张珂等.170SD30全陶瓷电主轴有限元分析及其振动性能测试[J].沈阳建筑大学学报(自然科学版),2010,26(4):767-771.
    [29]杨贵杰,秦冬冬.高速电主轴的关键技术及发展趋势[J].伺服控制,2010,(02):22-23.
    [30]闫红卫,徐同申.国内高速电主轴的应用与发展[J].现代制造,2007,(05):31-33.
    [31]许强,杜佳星.浅谈数控机床电主轴的发展趋势[J].伺服控制,2007,(06):27-29.
    [32]储开宇.数控高速电主轴技术及其发展趋势[J].机床与液压,2006,(10):13-16.
    [33]Jedrzejewski J, Kowal Z, Kwasny W, et al. High-speed precise machine tools spindle units improving[J]. Journal of Materials Processing Technology,2005,162-163:615-621.
    [34]张曙.数控机床发展的新趋势[J].机电产品与创新,2005,(5):149-151.
    [35]李玉亭,李丽,李彦等.数控机床用电主轴[J].机械研究与应用,2009,(3):125-128.
    [36]Weck M, Koch A. Spindle-Bearing Systems for High-Speed[J]. Applications in Machine Tools. Annals of the CIRP,1993,42(1):445-448.
    [37]Chiu Y P, Pearson P K, Dezzani M, el al. Fatigue lire and performance testing of hybrid ceramic ball bearing [J]. ASME, Lubrication Engineering,1996,52(3):198-204.
    [38]Narnba Y, Wada R, Unno K and Tsuboi A. Ultra-Precision Surface Grinder Having a Glass-Ceramic Spindle of Zero-Thermal Expansion[J]. Annals of the CIRP,1989,8(1):331-334.
    [39]王春光.国外超精密机床的发展[J].机床,1991,7:1-11.
    [40]于金,李成山.陶瓷机床主轴的优化设计[J].机床与液压,1995,4:199-202.
    [41]许宝杰,韩秋实,王红军等.陶瓷主轴特性的实验研究[J].机械工程师,1999,10:51-52.
    [42]Kyung Geun Bang, Dai Gil Lee. Design of carbon fiber composite shafts for high speed air spindles[J]. Composite structures,2002,55:247-299.
    [43]Week M, Spachtholz G.3 and 4 Contact Point Spindle Bearings-a new Approach for High Speed Spindle Systems[J]. Annals of the CIRP,2003,52(1):311-316.
    [44]Lawn B R, Evans A G, Marshall D B. Elastic/plastic indentation damage in ceramic:the median/radial crack system[J]. J. Am. Ceram. Soc.,1980,63:576.
    [45]Inasaki I. Grinding of Hard Brittle Materials[J]. Annals of the CIRP,1987,36,(2):463-471.
    [46]Bifano T. G., Dow T. A., Scattergood R. O. Ductile-Regime Grinding of Brittle Materials: Experimental Results and the Development of a Model[J]. SPIE,1988,966:108-115.
    [47]Bifano T. G., Dow T. A., Scattergood R. O.. Ductile-Regime Grinding:A New Technology for Machining Brittle Materials[J]. ASME J. Eng'g for Industry,1991,113(2):184-189.
    [48]Malkin S, Hwang T W. Grinding mechanisms for ceramics[J]. Annals of the CIRP,1996,45(2):1-12.
    [49]Subramanian K, Ramanath S, Tricard M. Mechanisms of material removal in the precision production grinding of ceramics[J]. Journal of Manufacturing Science and Engineering,1997,119:509-519.
    [50]Gou C, Wu Y, Malkin S. Temperatures and energy partition for grinding with vitrified CBN wheels[J]. Annals of the CIRP,1999:48(1):247-250.
    [51]于思远,林彬.工程陶瓷材料的加工技术及其应用[J].北京:机械工业出版社,2008.
    [52]Malkin S, Guo C S.Grinding Technology:theory and application of machining with abrasives[M]. Dearborn:SME,2009.
    [53]蔡光起.磨削技术现状与新进展[J].制造技术与机床,2000,5(9):10-11.
    [54]邓朝晖,万林林,张荣辉.难加工材料高效精密磨削技术研究进展[J].中国机械工程,2008,19(24):3018-3023.
    [55]邓朝晖,刘战强,张晓红.高速高效加工领域科学技术发展研究.机械工程学报,2010,46(23):106-120.
    [56]郑建新,徐家文,吕正兵.陶瓷材料延性域磨削机理[J].硅酸盐学报,2006,(5):18-21.
    [57]田欣利,杨俊飞,刘超等.利用电极引弧微爆炸加工工程陶瓷的方法及其装置.中国,ZL200810240608.6[P],2008.
    [58]Tian Xinli, Yang Junfei, Liu Chao, et al. Study of engineering ceramic machining with a new design of ripple controlled microdetonation of electrode arc striking[J]. Int J Adv. Manuf. Technol.,2010, 48(5):529-536.
    [59]杨俊飞,田欣利,吴志远等.结构陶瓷材料加工技术的新进展[J].兵工学报,2008,29(10):1249-1255.
    [60]Tian X.L., Zhang B.G., Yang J.F.. Research on the removal mechanism of engineering ceramics based on energy density[J]. Key Engineering Materials,2010,443:439-444.
    [61]谢桂芝,黄红武,黄含等.工程陶瓷材料高效深磨的试验研究[J].机械工程学报,2007,43(1):176-184.
    [62]谢桂芝,黄含,徐西鹏等.氮化硅陶瓷高效深磨温度的研究[J].机械工程学报,2009,45(3):109-114.
    [63]Xie G.Z., Huang H.. An experimental investigation of temperature in high speed deep grinding of partially stabilized zirconia[J]. International Journal of Machine Tools &Manufacture,2008,48(14): 1562-1568.
    [64]Huang H., Liu Y.C.. Experimental investigations of machining characteristics and removal mechanisms of advanced ceramics in high speed deep grinding [J]. International Journal of Machine Tools & Manufacture,2003,43 (8):811-823.
    [65]Chen Jianyi, Shen Jianyun, Huang Hui, et al. Grinding characteristics in high speed grinding of engineering ceramics with brazed diamond wheels[J]. Journal of Materials Processing Technology, 2010,210 (6-7):899-906.
    [66]刘超,杨俊飞,田欣利.工程陶瓷材料磨削加工工艺研究现状与进展[J].新技术新工艺,2009,(7):6-11.
    [67]王西彬等.结构陶瓷磨削力的实验研究[J].中国机械工程,1996,(2):78-80.
    [68]李湘钒.工程陶瓷零件的车削工艺探讨[J].苏州大学学报工学版,2002,(1):70-73.
    [69]Ang et al. Chemically assisted process for the machining of ceramics. USA:5447466[P],1995.
    [70]沈剑云,徐燕申,曾伟民等.Si3N4陶瓷材料的磨削试验研究[J].轴承,2003,(12):25-28.
    [71]林彬,于思远,徐燕申等.Zr02和SiC陶瓷的表面磨削温度[J].天津大学学报,2000,11:740-742.
    [72]徐燕申,田欣利,于爱兵等.工程陶瓷材料加工技术的研究进展[J].中国机械工程,1996,7(6):59-62.
    [73]牛文铁,徐燕申.工程陶瓷缓进给磨削磨削力的实验研究[J].金刚石与磨料磨具工程,2003(2):24-27.
    [74]仇中军,张飞虎,栾殿荣等.不同结合剂金刚石砂轮磨削氧化铝陶瓷工艺实验研究[J].金刚石与磨料磨具工程,2000,120(6):25-28.
    [75]张飞虎,朱波,栾殿荣,袁哲俊.ELID-磨削硬脆材料精密和超精密加工的新技术[J].宇航材料工艺,1999,1:51-55.
    [76]关佳亮,郭东明,袁哲俊.ELID镜面磨削砂轮氧化膜生成机理[J].中国机械工程,1999,10(6):15-18.
    [77]尚振涛,黄含,盛晓敏等.氮化硅陶瓷的ELID高速磨削工艺试验研究[J].湖南大学学报(自然科学版),2007,32(12):30-34.
    [78]尹韶辉,曾宪良,范玉峰等.ELID镜面磨削加工技术研究进展[J].中国机械工程,2010,21(6):750-755.
    [79]Ohmori H, Lia W, Makinouchi A, Bandyopadhyay B P. Efficient and precision grinding of small hard and brittle cylindrical parts by the centerless grinding process combined with electro-discharge truing and electrolytic in-process dressing[J]. Journal of Materials Processing Technology,2000,98: 322-327.
    [80]Kawamura H. New perspectives in engir.e applications of engineering ceramics[J]. Key Engineering Materials,1999, (2):9-15.
    [81]Raghunandan M, Umehara N, et al. Magnetic float polishing of ceramics[J]. Transactions of the ASME,1997,119:520-528.
    [82]Zhang B, Akira Nakajima. Dynamics of magnetic fluid support grinding of Si3N4 ceramic balls for ultra-precision bearing and its importance in spherical surface generation[J]. Precision Engineering, 2003, (27):1-8.
    [83]Aldo Boglietti. Predicting iron losses in soft magnetic materials with arbitrary voltage supply:an engineering approach[J]. IEEE Trans, Magnetics,2003,39(2):981-989.
    [84]Mathias Larsson, Mikael Johansson, Leif Naslund et al. Design and evaluation of high speed induction machine[C]//International Electric Machines and Drives Conference. Madision, USA,2003, (1):77-82.
    [85]Johansson M, Larsson M, Naslund L, et al. Small high speed induction motor[C]//International Electric Machines and Drives Conference. Madision, USA,2003:279-284.
    [86]Depenbrock M. Direct Self-Control(DSC) of inverterfed induction machine[J]. IEEE Transactions on Power Electronics,1988,3(4):420-429.
    [87]Cao Y Z, Altintas Y. A general method for the modeling of spindle-bearing systems[J]. ASME, Journal of Mechanical Design,2004,126:1089-1104.
    [88]Altintas Y, Cao Y. Virtual design and optimization of machine tool spindles[J]. Annals of the CIRP: Manufacturing Technology,2005,54:379-382.
    [89]Kim S M, Lee K J, Lee S K. Effect of bearing support structure on the high-speed spindle bearing compliance[J]. International Journal of Machine Tools and Manufacture,2002,42:365-373.
    [90]Li H Q, Shin Y C. Analysis of bearing configuration effects on high speed spindles using an integrated dynamic thermo-mechanical spindle model[J]. International Journal of Machine Tools and Manufacture,2004,44:347-364.
    [91]Li H Q, Shin Y C. Integrated dynamic thermo-mechanical modeling of high speed spindles, Part1: model development[J]. ASME, Journal of Manufacturing Science and Engineering,2004,126: 148-158.
    [92]高尚晗,孟光.机床主轴系统动力学特性研究进展[J].振动与冲击,2007,26(6):103-109.
    [93]Maedao, CaoY Z, AltintasY. Expert spindle design system[J]. International Journal of Machine Tools and Manufacture,2005,45:537-548.
    [94]杨玉海,吕全英,孙金花.电主轴定子绕组绝缘可靠性与失效分析[J].轴承,1999,9:33-36.
    [95]秦少军,傅敏士,吴宏岐.机床电主轴系统的可靠性研究.[J]机床与液压,2001,5:57-58.
    [96]秦少军.基于多影响因子的电主轴可靠性分析[J].组合机床与自动化加工技术,2001,6:38-39.
    [97]俞志根.电动主轴的可靠度研究[J].机械研究与应用,2004,17(5):37-38.
    [98]巫少龙,楼白杨.机床主轴模糊可靠性设计[J],机械工程师,2004,7:35-36.
    [99]魏宗平,李飞舟.机床主轴的非概率可靠性优化设计[J],组合机床与自动化加工技术,2009.12:17-20.
    [100]伍良生,杨勇,周大帅.机床主轴径向回转误差的测试与研究[J].机械设计与制造,2009,1:107-109.
    [101]张珂,吴玉厚,高晓佳等.大功率陶瓷轴承电主轴的研制[J].制造技术与机床,2003,(4):17-19.
    [102]张珂,吴玉厚等.陶瓷轴承主轴单元的设计研究[J].东北大学学报,2002.(12):221-223.
    [103]Seung H, Chang W, Lee D G. Performance of high speed air spindle motor equipped with composite squirrel cage rotor[J]. Composite Structures,2002,55:419-427.
    [104]Weck M, Hennes N, Krell M. Spindle and tool systems with high damping[J]. Annals of the CIRP, 1999,48:297-302.
    [105]Wu Y H, Zhang L X, Zhang K. Design on High-Speed Precision Grinder[J]. Key Engineering Materials,2006,304-305:492-496.
    [106]张伯霖,夏红梅,黄晓明.数控机床高速化的研究与应用[J].中国机械工程,2001,12(10):32-37.
    [107]周延祐,李中行.电主轴技术讲座第四讲:电主轴的性能参数[J].制造技术与机床,2003,10:83-85.
    [108]吴玉厚,王军,郑焕文等.陶瓷球轴承的制造工艺及其相关技术[J].制造与机床,1996,(11):8-10.
    [109]孙红,张珂,吴玉厚.高速主轴用混合式陶瓷球轴承[J].机械设计与制造,1997,(5):54-56.
    [110]孙红,张珂,王军等.陶瓷轴承发展状况[J].沈阳建筑工程学院学报,1997,13(4):405-409.
    [111]张宝林,庄汉锐,李文兰等.混合型氮化硅陶瓷轴承的新进展[J].轴承,2000,4(6):44-45.
    [112]Harris T. A.著.滚动轴承分析[M].罗继伟等泽.洛阳:洛阳轴承研究所.2000.
    [113]杨晓蔚.机床主轴轴承最新技术[J].轴承,2010,1:61-63.
    [114]吴玉厚.高精度热压氮化硅陶瓷球轴承及其制造方法[P]:中国,ZL200410088856.5,2008.
    [115]孙红,张珂,王军等.HPSN陶瓷球混合轴承疲劳寿命的探讨[J].沈阳建筑工程学院学报,1997,13(3):273-277.
    [116]Ren C Z, Wang T Y, Jin X M, et al. Experimental research on the residual stress in the surface of silicon nitride ceramic balls[J]. Journal of Materials Processing Technology,2002,129:446-450.
    [117]Kang J, Hadfield M. Comparison of four-ball and five-ball rolling contact fatigue tests on lubricated Si3N4/steel contact[J]. Material and Design,2003, (24):595-604.
    [118]Harris T. A., Yu W. K.. Lundberg-Palmgren fatigue theory:considerations of failure stress and stressed volume[J]. Journal of Tribology,1999,121(1):85-90.
    [119]Zaretsky E V, Pop lawski J V, Peters SM. Comparision of life theories for rolling element bearing [J]. Trib.Trans.,1996,39(2):237-248.
    [120]Chen J S, Hu W Y. Characterizations and models for the thermal growth of a motorized high speed spindle[J]. International Journal of Machine Tools & Manufacture,2003,43:1163-1170.
    [121]Bernd B., Jay F. T. A thermal model for high speed motorized spindles[J]. International Journal of Machine Tools and Manufacture,1999,39:1345-1366.
    [122]Dupont R. On an isotropic and centrifugal force invariant layout of a conically shaped gas-lubricated high-speed spiral-groove bearing[J]. Precision Engineering,2003,27:346-361.
    [123]Ramesha K, Yeob S H, Zhongb Z W, et al. Ultra-high-speed thermal behavior of a rolling element upon using oil-air mist lubrication[J]. Journal of Materials Processing Technology,2002,127: 191-198.
    [124]Li S H, Wu Y H, Zhang K. Parameter optimization for oil/ah lubrication of a high speed ceramic motorized spindle without bearing inner rings[J]. Applied Mechanics and Materials,2010,37-38: 839-843.
    [125]Yeo S H, Ramesh K, Zhong Z W. Ultra-high-speed grinding spindle characteristics upon using oil/air mist lubrication[J]. International Journal of Machine Tools and Manufacture,2002,42: 815-823.
    [126]闫大鹏,吴玉厚.高速电主轴轴承油气润滑系统的研究[J].机电工程与自动化,2006,(2):11-13.
    [127]汤蕴璆,史乃.电机学(第二版)[M].北京:机械工业出版社,2008.
    [128]Delaere K, Belmans R. H. May Influence of rotor slot wedges on stator currents and stator vibration spectrum of induction machines:a transient finite element analysis[C]//IEEE Transactions on Magnetics. Kay,2003,39(3):1492-1494.
    [129]Xu F., Zhang K., Wu Y H. Based on u-n under the flux observer Spindle motor Direct Torque Control System Simulation[C]//International Conference on Information Management, Innovation Management and Industrial Engineering, IEEE Computer Society, Wuhan, China,2009.1:117-121.
    [130]白晖宇,荆建平,孟光.电机不平衡磁拉力研究现状与展望.噪声与振动控制[J].2009,12(6):5-7.
    [131]郭丹,何永勇,褚福磊.不平衡磁拉力及对偏心转子系统振动的影响[J].工程力学,2003,20(2):116-121.
    [132]韩东武.电机振动原因的分析及监测[J].电力学报,2003,18(4):280-282.
    [133]王正华,陈乐生,陈大跃.SPWM中载波对电机振动和噪声的影响[J].噪声与振动控制,2006,(4):73-79.
    [134]梁京辉,乔鸣忠,张晓锋.气隙大小对五相异步电动机性能影响的分析[J].船电技术,2010,30(1):21-24.
    [135]张珂,徐湘辉,佟俊等.电主轴直接转矩控制系统的设计与仿真研究[J].制造技术与机床,2007,(8):31-35.
    [136]张珂,徐湘辉,王利杰等.PMAC2下高速电主轴直接转矩控制系统设计[J].沈阳建筑大学学报(自然科学版),2006,22(4):691-695.
    [137]Li S H, Wu Y.H., Zhang K.. Simulation and investigation of direct torque control for high speed ceramic motorized spindles[C]//Proceedings of the 8th International Conference on Frontiers of Design and Manufacturing (ICFDM2008), Tianjin, China.,2008.
    [138]钦征骑主编.新型陶瓷材料手册[M].南京:江苏科学技术出版社,1995.
    [139]王树海,李安明,乐红志等.先进陶瓷的现代制备技术[M].北京:化学工业出版社,2007.
    [140]Wu Y H, Zhang K, Sun H. Rubbing process technology of HIPSN ceramic balls[J]. Key Engineering Materials,2004,258-259:185-188.
    [141]陆峰,吴玉厚,张珂.混合轴承陶瓷球的锥形研磨加工工艺[J].东北大学学报,2004,25(1):82-85.
    [142]朱晨.钢球研磨力学原理[M].郑州:河南科学技术出版社,1995.夏新涛,马伟,颉谭成等著.滚动轴承制造工艺学[M].北京:机械工业出版社,2007.
    [143]Sanjay A, Venkateswara P. R. A probabilistic approach to predict surface roughness in ceramic grinding[J]. International Journal of Machine Tools and Manufacture,2005, (45):609-616.
    [144]Huang H, Yin L, Zhou L B. High speed grinding of silicon nitride with resin bond diamond wheels[J]. Journal of Materials Processing Technology,2003,141:329-336.
    [145]Jin Kyung Cho, Dai Gil Lee. Thermal characteristics of the spindle bearing system with a gear located on the bearing span[J]. International Journal of Machine Tools and Manufacture,1998,38: 1017-1030.
    [146]李立毅,崔淑梅等.高频电主轴的发热及其对策[J].微电机,2008,33(3):47-49.
    [147]Bossmanns B., Tu J.F. A thermal model for high speed motorized spindles[J]. International Journal of Machine Tools & Manufacture,1999,391:345-1366.
    [148]Bang K.G., Lee D. G. Design of carbon fiber composite shafts for high speed air spindles[J]. Composite Structures,2002,55:247-259.
    [149]Ramesha K., Yeo S.H., Zhong Z.W. Ultra-high-speed thermal behavior of a rolling element upon using oil-air mist lubrication[J]. Journal of Materials Processing Technology,2002,127:191-198.
    [150]Wu C.H., Kung Y.T. A parametric study on oil/air lubrication of a high-speed spindle[J]. Precision Engineering,2004,28:232-238.
    [151]Vafaei S, Rahnejat H, Aini R. Vibration monitoring of high speed spindles using spectral analysis techniques[J]. International Journal of Machine Tools and Manufacture,2002,42:1222-1234.
    [152]Chang C F. Chen J J. Vibration monitoring of motorized spindles using spectral analysis techniques[J]. Mechatronics,2009.19(5):726-734.
    [153]Bert R. Jorgensen, Yung C. Shin. Dynamics of machine tool spindle/bearing systems under thermal growth[J]. Journal of Tribology,1997,119(10):875-882.
    [154]Chen J. S., Hwang Y. W. Centrifugal force induced dynamics of a motorized high-speed spindle[J]. Int J Adv Manuf Technol,2006,30:10-19.
    [155]Lin C W, Jay F. T. An integrated thermo-mechanical-dynamic model to characterize motorized machine tool spindles during very high speed rotation[J]. International Journal of Machine Tools & Manufacture,2003,43:1035-1050.
    [156]Lv L, Xiong W L, Gao H. Mechanical-electric coupling dynamical characteristics of an ultra-high speed grinding motorized spindle system[J]. Chinese Journal of Mechanical Engineering,2008, 21(5):34-40.
    [157]孙巩长.如何进行电主轴的振动分析[J]. Equipment Manufacturing Technology,2008, (10): 82-84.
    [158]贺容波,胡凯,吴仲阳等.内圆磨床低噪声高速电主轴设计问题探讨[J].电机与控制应用,2007,34(7):50-53
    [159]杨晓蔚,李红涛.滚动轴承振动与噪声的相关性解析[J].轴承,2011,(7):22-24.
    [160]汪久根,章维明.滚动轴承噪声的分析[J].轴承.2005,(9):14-16.
    [161]张春梅,田效伍.提高主轴轴承精度和刚度的措施[J].机床与液压,2004,(9):195-196.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700