用户名: 密码: 验证码:
镁铝合金中连续析出沉淀相的电子显微学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金具有比强度比刚度高、导热导电性能好、阻尼减震、电磁屏蔽、易于加工成形和容易回收等优点。在汽车、电子、航空、航天、国防等领域具有重要的应用价值和广阔的应用前景。
     在镁合金系列中,运用最广泛的是Al作为主要合金元素的镁合金。AZ91是目前开发最为成功、工业应用中最多的Mg-Al系合金之一。本文以AZ91作为主要实验材料,同时由于Mg-Sn合金具有良好的力学性能,在高温下有稳定的显微结构,以及良好的铸造性能,而且成本要相对低廉,我们设计了成分为Mg-9wt%Al-1wt%Zn-0.2wt%Mn-4wt%Sn新一类镁合金。主要通过透射电子显微镜并结合其他表征手段,系统地研究了这两类时效合金的连续析出相,包括组织相态和晶体学特征,试图找出提高它们的时效强化效果的有效途径,也为开发和应用镁合金提供一定的理论依据。
     首先对固溶过后AZ91合金样品和MgAl-Zn-Sn铸锭样品在透射电镜里面进行了实时的原位时效观察,实验结果表明,两类合金样品的析出相均是随着时效时间而逐渐长大,形状趋于规则,轮廓也逐渐明显,大多数析出相是沿着基体(0001)α的板条状析出相。在这两类样品中都没有发现G.P.区。
     接下来,对电镜外200℃时效8小时的AZ91合金样品,进行了透射电子显微观察,分析了合金中连续析出相γ-Mg17Al12与基体之间的的各种位向关系(OR)。首先根据拍摄的不同方向TEM照片,统计了AZ91析出相的三维尺度分布,长度(1St_D)、宽度(2nd-D)和厚度(3rd-D)的尺寸分布分别集中在750±300 nm,45±35nm和200±100 nm的范围内。接着,结合前人的工作,确定绝大多数析出相是板条状的第一类析出相,该类析出相与基体保持Burgers OR,惯习面是(0001)α;通过高分辨电子显微学方法,还确定了与Burgers关系非常接近的Potter OR;在数量上来说,不是优先析出形态,但是具有最优的位向关系与对称性形态的CrawleyOR,还有另外一种Porter OR也在实验中也得以证实,同时存在少量的Pitsch-Schrader OR;在我们实验中还发现了一种从未报道过的析出相位向关系,[0001]α//[131]γ,(1210)α//(303)γ。结合运动学理论,对以上提到的几种位向关系进行了SAED模拟,和实验符合得很好。我们还模拟了以上几种(包括Gjonnes-OstmoeOR)析出相位向关系两相重叠的极射赤面投影图。然后结合O点阵与不变线理论,由Pitsch-Schrader OR解释了Crawley OR。
     快速凝固属于非平衡凝固,具有细化晶粒及减小第二相尺寸、扩大合金元素在基体的固溶度极限、减小偏析、出现亚稳相、获得更为均匀的组织等一系列优点、为合金提供了不同于常规凝固方式的组织结构的多种可能性。为此,我们分别制备了Mg-Al-Zn-Sn合金快速凝固的条带样品和常规凝固方式的铸态样品。通过综合热分析(DTA和DSC),先确定了这类合金的固溶温度为400℃;根据金相显微镜对铸态样品显微组织的观察结果,Sn元素的加入有细化晶粒的效果;利用X射线衍射仪和扫描电子显微镜及附带的能谱仪(EDS)对样品综合分析得到样品的主要成分除了α-Mg,γ-Mg17Al12,还有Mg2Sn, Sn元素主要分布在晶界处;对铸态样品分别进行了低温(130℃)时效和高温(250℃)时效,在低温时效样品中只确定了γ-Mg17Al12相,没有找到Mg2Sn相;在高温时效样品中找到了两类不同位向关系的Mg2Sn析出相,一类为(0001)α//(110)Mg2Sn,[1120]α//[111]Mg2Sn,还有一类为(0001)α//(110)Mg2Sn,[1120]α//[001]Mg2Sn;对于0.2mm厚条带样品中,通过TEM方法与附带的EDS分析得到样品表面分布着大量球状的析出相,这是在平衡凝固的铸态样品中所没有出现的。同时析出相组成成分为Mg、Al与Sn三种元素。在0.3mm厚的条带样品中观察到了Mg2Sn相,拍摄了其高分辨像并进行了标定与模拟。
Magnesium alloys have great potential for application in structure parts in automobiles, computers, airplanes, spaceflight and national defence due to their excellent propoties such as low density, high specific strength, superior damping characteristics, good electromagnetic shielding performance, etc.
     The most commonly used magnesium alloys are those based on the Mg-Al system. Principally, AZ91 is the most widely used commercial magnesium alloy. The study will concentrate on this kind of alloy. Concerning the Mg-Sn alloys have lots of advantages, such as good shielding performance and mechanical strength, stable microstructure in elevated temperature, and low price, we developed a new kind of magnesium alloy-Mg-9wt%Al-lwt%Zn-0.2wt%Mn-4wt%Sn. Transmission electron microscopy (TEM), optical microscopy(OM), X-ray diffraction(XRD), scanning electron microscopy with energy dispersive spectrometer(SEM/EDS) were employed to characterize the crystallography of continuous precipitations of these two kind of magnesium alloys, including microstructure, phase constitution, dimension, and orientation relationships. This study would help to provide a scientific basis for the development and applications of magnesium alloys.
     Firstly, die-cast AZ91 and Mg-Al-Zn-Sn were solution treated.Then An in-situ observation of the precipitating process of continuous precipitations in these two kinds of magnesium alloys, were carried out with a transmission electron microscope equipped with a heating stage maintained. The results showed that the size of the continuous precipitates in both alloys grew with the aging time, the figure turned regular and the shape became vivider than before. Most of continuous precipitations were lath-shaped lying along the (0001)αof the magnesium matrix phase. No G.P.zones were observed during the process of aging.
     Secondly, AZ91 specimen which aged at 200℃for 8h was observed in the transmission electron microscope. We surveyed the 3-D size as overall information by utilizing various samples along various directions. The statistical results showed that the 1st-D(along[1010]αor length),2nd-D(along [0001]αor width) and 3rd-D([1210]α or thickness) sizes are concentrated on 750±300 nm,45±35 nm and 200±100 nm, respectively. By using the selected-area electron diffraction (SAED)method with the tilting technique, the reported orientation relationships and morphologies of the continuous precipitates have been reconfirmed as follows. The predominant fraction of continuous precipitates is thin lath, with the primary habit plane parallel to the basal plane of the matrix (0001)α, and possesses the Burgers OR. We had also observed the Pitsch-Schrader OR among these thin lath-shaped precipitates. Another type, comprising only a small fraction, has the primary growth direction perpendicular to the basal plane (0001)a and has the Crawley OR. The Porter OR precipitates have the primary growth direction lying at an angle of about 16°to the normal of the (0001)a which is even less common. We had observed continuous precipitate particles with the Potter OR in an AZ91 alloy using HRTEM. However, precipitate particles with the Gjonnes-Ostmoe OR were not found in our experiment. In this study, a new orientation relationship of continuous precipitates was observed in the AZ91 alloy. By using the SAED method with the tilting technique, it was confirmed that the new orientation relationship is in the form of [0001]α//[131]γ, (1120)α//(303)γ. We had also calculated six stereographic projections for the reported orientation relationships. And the Crawley OR can be obtained from Pitsch-Schrader OR by the interpretation of O-Lattice theory and Invariant-Line theory.
     Rapid solidification is non-equilibrium solidification, which can effectively fine grains and secondary phases, increase the solid solubility of alloy elements in matrix, improve phase constitution and form new metastable phases and so on. Based on these adavantages, we made die-case Mg-Al-Zn-Sn specimen by conventional solidification and thin ribbon specimen by rapid solification. By using DTA and DSC, we confirmed the solution temperature (400℃) of the Mg-Al-Zn-Sn alloy and by using OM, and we found that the grains were fined because of addition of Sn. The constitution of the alloy includedα-Mg,γ-Mg17Al12 and Mg2Sn based on the results of XRD and EDS. Die-cast Mg-Al-Zn-Sn alloy specimen was aged at two different temperature,130℃and 250℃. No Mg2Sn phase was found in the low temperature aging specimen, but we confirmed two different orientation relationships of Mg2Sn phase at the high temperature aging specimen. Transmission electron microscopy on the ribbon specimen with 0.2nm thickness revealed lots of ball-shaped continuous precipitations on the Mg-matrix which were not observed in the conventional solidification die-cast specimen. Beside, we investigated that the ball-shaped continuous precipitates are three-element compound with Mg, Al and Sn by EDS method. Both y-Mg17Al12 phase and Mg2Sn phase were observed in the 0.3 mm thickness ribbon specimen, which were confirmed by HRTEM and simulation.
引文
[1]丁文江等,镁合金群学与技术,2007年01月第一版,科学出版社,pl-p27
    [2]潘复生等,高性能变形镁合金及加工技术,科学出版社2007年1月第一版,p4-p5
    [3]Matucha K. H., Structure and Properties of nonferrous alloys, Materials Science and Technology, (1996) 8:101-107
    [4]特别报道,第63届世界镁业大会倍受瞩目,中国金属通报,(2006)21:1
    [5]赵浩峰,刘红梅,金属镁热法生产的理论与实践,北京:中国科学技术出版社,2002年
    [6]Schumann S., Friedrich H., Current and Future Use of Magnesium in The Automobile Industry, Material Science Forum, (2003) 419-422:51-56
    [7]Aghion E., Bronfin B., Eliezer D., The Art of Developing New Magnesium Alloys for High Temperature Applications, Materials Seience Forum, (2003) 419-422: 407-418
    [8]Kaneko T., Suzuki M., Automotive Applications of Magnesium Alloys, Materials Seience Forum, (2003) 419-422:67-72
    [9]Luo A. A., Recent Magnesium Alloydevelopment for Automotive Powertrain Applications, Materials Seience Forum, (2003) 419-422:57-66
    [10]Mordike B. L., Ebert T., Magnesium Properties-Applications-Potential, Materials Science and Engineering A, (2001) 302:37-45
    [11]Friedrich H., Schumann S., Research for a "new age of magnesium" in the automotive industry, Joural of Materials Processing Technology, (2001) 117: 276-281
    [12]Dahle A. K., Lee Y. C., Nave M. D., Development of the as-cast microstructure in magnesium-aluminum alloys, Journal of Light Metals, (2001) 19:61-72
    [13]Kittel C., Introduction to solid state physics,5th Ed, New York:Wiley and Sons, 1976
    [14]Raynor G V., The Physical metallurgy of Magnesium and its alloys, Pergamon Press, (1959) 103
    [15]Lyon R., King J. F., Nuttall K., A New Magnesium HPDC alloy for elevated tempreture use//Lorimer GW, Proceedings of the third Magnesium conference, Machester, (1996)99-108
    [16]Nave M. D., Dahle A. K., StJohn D. H., Eutectic growth morphologies in Magnesium-Aluminium alloy, TMS Annual Meeting, (2000) Magnesium Technology,233-242
    [17]Bronfin B., Katsir M., Aghion E., Preparation and solidification Features of AS21 Magnesium Alloy, Materials Science and Engineering A, (2001) 302:46-50
    [18]彭立明,曾小勤,曹幸等,固溶时效处理对AM60B+xRE及AZ91D+xRE镁合金组织力学性能的影响,材料研究学报,(2003)38:709-714
    [19]袁广银,吕宜振,曾小勤等,添加微量Sb对Mg-9Al-0.8Zn合金星微组织于力学性能的影响,金属学报,(2001)37:23-28
    [20]袁广银,孙扬善,曾小勤等,Bi对AZ91镁合金时效析出动力过程的影响,上海交通大学学报,(2001)35:451-456
    [21]Ma C. J., Lin M. P., Ding W. J., Tensile properties of extruded ZK60-RE alloys, Materials Science and Engineering A, (2003) 349:207-212
    [22]Nave M. D., Dahle A. K., StJohn D. H., The role of zinc in the eutectic solidification of magnesium-aluminum-zinc alloys, TMS Annual Meeting, (2000) Magnesium Technology,243-250
    [23]Kim J. J., Kim D. H., Shin K. S., Modification of Mg-Si Morphology in Squeeze Cast Mg-Al-Zn-Si Alloy by Ca or P Addition, Scripta Materialia, (1999) 41: 333-334
    [24]Yuan G Y., Liu M. P., Ding W. J., Microstrcture and Mechanical Properties of Mg-Zn-Si-based Alloy, Materials Science and Engineering, (2003) 3:314-320
    [25]Moreno L. P., Sohn K. Y, Jones J. W., Bolt-Load Retention Behavior of a Die Cast Magnesium-Rare Earth Alloy, JE Allison Society of Antomotive Engineers, SAE Transactlons:Journal of Materials and Manufacturing, (2001) 31:431-439
    [26]Roklin L. L., Nikitina N. I., Mg-Gd and Mg-Gd-Y alloys, Zeitschrift fur Metallkunde, (1994) 85:819-823
    [27]Liu H. M., Chen Y. G., The microstructure, tensile properties, and creepbehavior of as-cast Mg-(1-10)%Sn alloys, Journal of Alloys and Compounds, (2006) 440: 122-126
    [28]Liu H. M., Chen Y. G., The microstructure and mechanical properties of permanent-mould cast Mg-5wt%Sn-(0-2.6)wt%Di alloys, Materials Science and Engineering A, (2006) 437:348-355
    [29]Liu H. M., Chen Y. G., Tensile and Indentation Creep Behavior of Mg-5%Sn and Mg-5% Sn-2%Di Alloys, Materials Science and Engineering A, (2007) 464: 124-128
    [30]沈宁福,汤亚力,关绍康等,凝固理论进展与快速凝固,金属学报,(1996)32:673-676
    [31]陈光,傅恒志等,非平衡凝固新材料,2004年8月第一版,北京:科学出版社
    [32]傅恒志,柳百成等,凝固科学技术与材料发展(香山科学会议第211次学术讨论会论文集),2005年1月,国防工业出版社
    [33]周尧和,胡壮麒等,凝固技术,1998年9月第一版,机械工业出版社
    [34]Turnbll D., Fisher J. C., Rate of nucleation in condensed system, Journal of Chemical Physics, (1949) 17:71-73
    [35]Turnbll D., Formation of Crystal Nuclei in Liquid Metals, Journal of Applied Physics, (1950) 21:1022-1028
    [36]Spaepen F., A Strcutural model for the solid-liquid interface in monatomic system, Acta Materialia, (1975) 23:729-743
    [37]Frenkel J., Statistical theory of condendation phenomenon, Journal of Chemical Physics, (1939) 7(3):200-201
    [38]Shao G., Tsakiropoulos P., Prediction of phase Select in rapid solidification using time dependent nucleation theory, Acta Materialia, (1994) 42(9):2937
    [39]王祖锦,黄韬等,亚快速定向凝固中枝胞转变的原位观测,材料研究学报,(1995)9:167-170
    [40]傅恒志,王祖锦等,亚快速单向凝固晶体生长的非稳态演化,材料研究学报,(1996)10:253-258
    [41]丁培道,蒋斌等,薄带连铸技术的发展现状与思考,中国有色金属学报,(2004)14:192-196
    [42]Luo A., Pekguleryuz M. O., Cast Magnesium alloys for elevated temperature applications, Joural of Material Science, (1994) 29:5929-5271
    [43]Aune T. K., Westengen H., Ruden T. J., The effect of varying Aluminum and rare-earth content on the mechanical properties of die cast Magnesium alloys, SAE Technical Paper, (1994) 940777
    [44]Mabuchi M., Kubota K., Higashi K., New Recycling Process by Extrusion for Machined Chips of AZ91 Magnesium and Mechanical Properties of Extruded Bars, Materials Transactions JIM, (1995) 31:1249-1254
    [45]Mabuchi M., Asahina T., Iwasaki H., Higashi K., Experimental Investigation of Superplastic Behaviour Magnesium Alloys, Materials Science and Technology, (1997)13:825-831
    [46]Cai Y., Tan J., Shen G J., Microstucture and heterogenous nucleartion phenomenon in cast SiC paticles reinforced Magnesium composite, Material Science and Engineering A, (2000) 1-2:232-239
    [47]王慧敏,陈振华,严红革,刘应科,镁合金的热处理,金属热处理,(2005)30:49-55
    [48]刘红梅,Mg-5wtSn合金固溶时效机制和价电子结构的研究,四川大学博士学位论文,(2007)p19-p21
    [49]Guinier A., Un Noveau Type de Diagrams de Rayons x, Comptes Rendus, (1938) 206:1641-1642
    [50]Preston G D., The Diffraction of Age-Hardened Aluminium-Cooper Alloys, Proceedings of the Royal Society, (1938) A:526-538
    [51]徐洲,赵连城,金属固态相变原理,2004年3月第一版,科学出版社,p146-p161
    [52]Dahmen U., Orientation relationship in precipitation system, Acta Metallurgica, (1982)30:63-73
    [53]Luo C. P., Weatherly G. C., The Invariant Line and Precipitation in a Ni-45wt%Cr Alloy, Acta Metallurgica, (1987) 35:1963-1972
    [54]Luo C. P. and Dahmen U., Interface structure of faceted lath-shaped Cr particals in a Cu-0.33wt%Cr alloy, Acta Metallurgica, (1998) 46:2063-2081
    [55]罗承萍,肖晓玲,刘江文,吴东晓,不变线应变原理及其在相变晶体学研究中的应用,自然科学进展,(2000)3:193-200
    [56]肖晓玲,罗承萍,刘江文,HCP-BCC相变不变线及晶体学特征,中国科学E辑,(2002)2:8-13
    [57]肖晓玲,罗承萍,聂建峰,B.C Muddle, AZ91镁铝合金中连续析出相的形态及晶体学特征,金属学报,(2001)37(1):1-7
    [58]Bollmann W., Crystal Defects and Cyrstalline Interfaces, Berlin, (1970) Spinger
    [59]Bollmann W., Cystal Lattice, Interfaces, Matrics, Geneva, (1982) Bolllmann
    [60]Grimmer H., A Reciprocity Relation Between the Coincidence Site Lattice and the DSC Lattice, Scripta Metallurgica, (1974) 8:1221-1224
    [61]Zhang W. Z., Application of the DSCL in Reciprocal Space for the Study of Coincidence Boundaries, Scripta Materialia, (1997) 37:187-190
    [62]Bonnet R., Durand F., Study of Intercrystalline Boundaries in terms of the Coincidence Lattice Concept, Philosophical Magazine A, (1975) 32:997-1006
    [63]Bonnet R., Cousineau E., Computation of Coincidence and Near-Coincident Cells for any two Lattice-Ralated DSC-1 and DSC-2 Lattice, Acta Crystallographica, (1977) A33:850-856
    [64]Balluffi R. W., Brokman A., King A. H., CSL/DSC Lattice Model for General Crystal-Crystal Boundaries and Their Line Defects, Acta Metallurgica, (1982) 30: 1454-1470
    [65]Ye F. and Zhang W. Z., Coincidence structures of interfacial steps and secondary misfit dislocations in the habit plane between Widmanstatten cementite and austenite, Acta Materialia, (2002) 50:2761-2777
    [66]Zhu Y. M., Zhang W. Z., Ye F., One of the potentially optimal interfaces of β-FeSi2/Si, Journal of Crystal Growth, (2005) 279:129-139
    [67]朱玉满,张文征,叶飞,β-FeSi2/Si薄膜位向关系的计算,材料科学与工程学报,(2003)21:635-639
    [68]Zhang M., Zhang W. Z., Ye F., Interpretation of Precipitation Crystallography of Mg17Al12 in a Mg-Al Alloy in Terms of Singular Interfacial Structure, Metallurgical and Materials Transactions A, (2005) 36A:1681-1688
    [69]Zhang W. Z., Purdy G R., O-lattice Analysis of Interfacial Misfit, I. General Construction, Philosophical Magazine, (1993) 68A:279-290
    [70]Zhang W. Z., Purdy G R., O-lattice Analysis of Interfacial Misfit, II. System Containing Invariant Lines, Philosophical Magazine, (1993) 68A:291-303
    [71]张文征,O点阵模型及其在界面位错计算中的应用,金属学报,(2002)38:785-794
    [72]Zhang W. Z., and Purdy G R., A TEM Study of the Crystallography and Interphase Boundary Structure of a Precipitates in a Zr-2.5wt%Nb Alloy, Acta Metallurgica, (1993) 41:543-551
    [73]Qiu D., Zhang W. Z., A systematic study of irrational precipitation crystallography in fcc-bcc systems with an analytical O-line method, Philosophical Magazine, (2003) 83:3093-3116
    [74]Duly D., Zhang W. Z., Audier M., High-Resolution Electron Microscopy Observations of the Interface Structure of Continuous Precipitates in a Mg-Al Alloy and Interpretation with the O-lattice Theory, Philosophical Magazine, (1995) 71A:187-204
    [75]Ye F., Zhang W. Z., Dislocation structure of non-habit plane of a precipitates in a Ti-7.26 wt.% Cr alloy, Acta Materialia, (2006) 54:871-879.
    [76]Zhang M., Zhang W. Z., Zhu G Z., The morphology and crystallography of polygonal Mg2Sn precipitates in a Mg-Sn-Mn-Si alloy, Scripta Materialia, (2008) 59:866-869
    [77]叶飞,Ti-7.26wt%Cr合金中β(bcc)/α (hcp)相变晶体学的研究,清华大学博士学位论文,(2004),p6-p10
    [78]Kelly P. M., Zhang M. X., Edge-to-Edge Matching-A New Approach to the Morphology and Crystallography of Precipitates, Materials Forum, (1999) 23: 41-62
    [79]Zhang M. X., Kelly P. M., Edge-to-edge matching and its applications-Part Ⅰ. Application to the simple HCP/BCC system, Acta Materialia, (2005) 53: 1073-1084
    [80]Zhang M. X., Kelly P. M., Edge-to-edge matching and its applications-Part II. Application to Mg-Al, Mg-Y and Mg-Mn alloys, Acta Materialia, (2005) 53: 1085-1096
    [81]周玉,扫描电子显微镜,材料分析测试技术——材料X射线衍射与电子显微分析,1998年8月第1版,哈尔滨工业大学出版社,p183-p197
    [82]Zaluzec N. J., Introduction to analytical electron microscopy, (1979) 1 st ed., Plenum Press, New York, p121
    [83]Shindo D., Oikawa T., Analytical electron microscopy for materials science (1999) 1st ed., Kyoritsu Shuppan Co. Ltd., Tokyo, Japan, p98-p102
    [84]Iijima S., High-resolution electron microscopy of crystal lattice of titanium-niobium oxide, Journal of Applied Physics, (1971) 42:5891-5893
    [85]Jia C. L., Lentzen M., Urban K., Atomic-resolution imaging of oxygen in perovskite ceramics, Science, (2003) 299:870-873
    [86]郭可信,叶恒强(主编),高分辨电子显微学在固体科学中的应用,1985年第1版,科学出版社,北京,p40-p118
    [87]王岩国,高分辨电子显微术,材料科学与工程手册(上卷),2004年1月第1版,化学工业出版社,p118-p120
    [88]进藤大辅,平贺贤二,材料评价的高分辨电子显微方法,1998年8月第一版,冶金工业出版社,p12-p13
    [89]Fox F. A., Lardner E., An inverstigation of the effects of precipitation treatment of binary Magnesium-Aluminium Alloys, The Journal of the Institute of Metals, (1943) 69:373-396
    [90]Leontis T. E., Nelson C. E., The aging of sand-cast Mg-Al-Zn alloys, Transaction of AIME, (1951) 191:120
    [91]Clark J. B., Age Hardening in a Mg-9wt%Al Alloy, Acta Metallurgica, (1968) 16: 141-152
    [92]Nie J. F., Xiao X. L., Luo C. P., Muddle B. C., Characterisation of precipitate phases in magnesium alloys using electron microdiffraction, Micron, (2001) 32: 857-863
    [93]Celotto S., Tem Study of Continuous Precipitation in Mg-9wt%Al-1Wt%Zn Alloy, Acta Materialia, (2000) 48:1775-1787
    [94]Crawley A. F., Milliken K. S., Precipitate Morphology and Orientation Relationship in an Aged Mg-9%Al-1%Zn-0.3%Mn Alloys, Acta Metallurgica, (1974)22:557-562
    [95]Crawley A. F., Lagowski B., Effect of two-step aging on the precipitate structure in magnesium alloy AZ91, Metallurgical and Materials Transactions B, (1974) 5: 949-951
    [96]Zhou J. P., Zhao D. S., Wang R. H., Sun Z. F., Wang J. B., Gui J. N., Zheng O., In situ observation of ageing process and new morphologies of continuous precipitates in AZ91 magnesium alloy, Material Letters, (2007) 61:4707-4710
    [97]Pitsch W., and Schrader A., Archiv fur das Eisenhuttenwesen, (1958) 29:715-721
    [98]Wang R. M., Eliezer A., Gutman E., Microstructures and dislocations in the stressed AZ91D magnesium alloys, Materials Science and Engineering A, (2002) 344:279-287
    [99]Gjonnes J., Ostmoe T., Zeitschrift fur Metallkunde, (1970) 31:604-606
    [100]Zhang M. X., Kelly P. M., Crystallography of Mg17Al12 precipitates in AZ91D alloy, Scripta Materialia, (2003) 48:647-652
    [101]Zheng O., Ma J. Y, Wang J. B., Zhou J. P., Jin L. Zhao D. S., Wang R. H., Three-dimensional size and orientation of the precipitates in AZ91 magnesium alloys measured by TEM techniques, Chinese Physics B, accepted
    [102]Zheng O., Zhou J. P., Zhao D. S., Wang J. B., Wang R. H., Gui J. N., Xiong D. X., Sun Z. F., The crystallography of continuous precipitates with a newly observed orientation relationship in an Mg-Al-based alloy, Scripita Materialia, (2009) 60:791-794
    [103]Douin J., Dahmen U., Westmacott K. H., On the formation of twinned precipitates in Al-Ge alloys, Philosophical Magazine, (1991) B63:867-890
    [104]Zhang M., Zhang W. Z., Ye F., Interpretation of Precipitation Crystallography of Mg17Al12 in a Mg-Al Alloy in Terms of Singular Interfacial Structure, Metallurgical and Materials Transactions A, (2005) 36A:1681-1688.
    [105]Duly D., Application of the Invariant Line Model for BCC/HCP Couples:a Criterion Based on Surface Variations, Acta Metallurgica(1993)41,1559-1566
    [106]罗承萍,肖晓玲,刘江文,聂建峰,Muddle B.C., AZ91镁铝合金中连续析 出相的多重位向关系及{112}γ伪孪晶关系,金属学报,(2002)38(7):709-714
    [107]Henes S., Gerold V., Zeitschrift fur Metallkunde, (1962) 53:743(in German)
    [108]Van der Planken J., Precipitation hardening in magnesium-tin alloys, Journal of Materials Science Letters, (1969) 4:927-929
    [109]Mendis C. L., Bettles C. J., Gibson M. A., Hutchinson C. R., An enhanced age hardening response in Mg-Sn based alloys containing Zn, Materials Science and Engineering A, (2006) 435-436:163-171
    [110]Sasaki T.T., Oh-ishi K., Enhanced age hardening response by the addition of Zn in Mg-Sn alloys, Scripta Materialia, (2006) 55:251-254
    [111]Zhang M., Zhang W. Z., Zhu G. Z., Yu K., Crystallography of Mg2Sn precipitates in Mg-Sn-Mn-Si alloy, Transactions of Nonferrous Metals Society of China, (2007) 17:1428-1432
    [112]孙扬善,翁坤忠,袁广银,Sn对锘镁金显微组织和力学性能的影响,中国有色金属学报,(1999)9:55-60
    [113]滕新营,王彬,王致明,耿浩然,微量Si、Ba、Sn对AZ91铸态组织的影响,特种铸造及有色合金,(2007)27:83-85
    [114]祝国珍,Mg-Sn-Mn-Si合金中Mg2Sn的晶体学研究,清华大学综合论文训练,(2007)p25-p61

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700