用户名: 密码: 验证码:
基于生物功能化纳米颗粒的药物载体、乳腺癌成像及生物分离研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米生物技术是一门新兴的交叉学科,它的发展为生物医学研究应用向纵深发展开辟了崭新的途径并提供了重要的物质基础—生物纳米材料,特别是具有特定物理化学特性及生物活性的生物功能化纳米颗粒在生物活性物质检测、生物分离、基因与药物的靶向输送、生物医学成像等领域显示出巨大的应用价值。近年来,本研究小组结合纳米技术、分析技术、生物技术以及材料制备技术,开展了以生物功能化二氧化硅纳米颗粒及生物功能化壳聚糖纳米颗粒为核心的系统研究工作。本论文在相关工作的基础上,继续瞄准这一前沿方向,拓展了生物功能化二氧化硅纳米颗粒在乳腺癌靶向成像及生物分离中的应用,并开展了生物功能化壳聚糖纳米颗粒在药物传输中的应用研究工作,主要研究工作如下:
     1.基于生物功能化二氧化硅荧光纳米颗粒的乳腺癌细胞及其组织靶向成像研究
     利用本研究小组的二氧化硅荧光纳米颗粒技术平台,发展了一种新型的多肽荧光纳米标记方法。通过溴化氰(CNBr)交联法在联钌吡啶(RuBpy)二氧化硅荧光纳米颗粒表面修饰含有精氨酸-甘氨酸-天冬氨酸(Arg-Gly-Asp)的RGD多肽,制备RGD生物功能化二氧化硅荧光纳米颗粒(RGD-FSiNPs),并开展其在细胞水平及组织水平上的靶向识别及成像研究。结果表明,RGD-FSiNPs对α_vβ_3整合素阳性表达的人乳腺癌细胞系(MDA-MB-231)的固定细胞及活细胞均能实现高特异性识别;通过将聚乙二醇(PEG)化的RGD-FSiNPs导入荷瘤裸鼠体内,可有效地减弱肝、脾对纳米颗粒的吞噬作用,其对裸鼠体内的乳腺癌组织表现出高特异性靶向特性,在组织水平上成功实现其对乳腺癌组织的靶向示踪及荧光成像。这种RGD多肽荧光纳米标记方法在肿瘤细胞靶向成像以及癌细胞微转移等研究领域具有重要的应用价值。
     2.基于生物功能化二氧化硅磁纳米颗粒的蛋白质靶向分离方法研究
     利用本研究小组的二氧化硅磁纳米颗粒(MSiNPs)技术平台,发展了一种基于生物功能化MSiNPs的蛋白质靶向分离方法。采用CNBr交联法在MSiNPs表面固定人IgG,制备人IgG生物功能化二氧化硅磁纳米颗粒(IgG-MSiNPs)。以羊抗人IgG-FITC为模型目标蛋白,利用抗原-抗体特异性作用原理和MSiNPs的超顺磁性,对目标蛋白进行特异性富集及磁分离;选择合适的解离剂对IgG-MSiNPs所捕获的目标蛋白进行解离。通过对分离条件及解离条件的进一步优化获得了较好的分离效果,捕获效率高达86.92%,选择性好;并且成功实现目标蛋白从生物功能化二氧化硅磁纳米颗粒上的解离,获得纯化的目标蛋白。该方法简便、快速,可望推广到直接从原始样品中靶向分离蛋白质等生物活性物质的研究领域中。
     3.生物功能化荧光磁性纳米颗粒的制备及其对乳腺癌细胞的分离研究
     基于化学沉降法和油包水反相微乳液制备技术,发展了一种简便、温和的二氧化硅荧光磁性纳米颗粒(FMSiNPs)制备方法。通过优化制备条件,得到由Fe_3O_4与人IgG标记的FITC混合内核及二氧化硅外壳构成的具有超顺磁性和荧光特性的FMSiNPs。采用CNBr交联法在FMSiNPs纳米颗粒表面固定RGD多肽,制备生物功能化二氧化硅荧光磁性纳米颗粒(RGD-FMSiNPs)。基于RGD多肽与MDA-MB-231乳腺癌细胞表面α_vβ_3整合素分子的亲和作用对MDA-MB-231细胞进行特异性识别及富集,利用其超顺磁性分离出靶细胞并结合流式细胞分析技术对靶细胞上所结合的RGD-FMSiNPs进行荧光检测。结果显示,RGD-FMSiNPs对乳腺癌细胞呈现良好的靶向效应和较高的分离效率。本法制备的生物功能化荧光磁性纳米颗粒有望作为一种有应用前景的免疫磁性纳米分离介质用于肿瘤细胞的磁性分离与检测。
     4.基于生物功能化壳聚糖纳米颗粒的蛋白类药物载体研究
     以天然、生物亲和性好的壳聚糖(CS)为载体,以牛血清白蛋白(BSA)为药物模型,基于CS与多聚磷酸纳(TPP)间静电作用的离子凝胶化方法,发展了一种基于生物功能化CS纳米颗粒的蛋白类药物载体的制备方法。本法实验条件温和,在最优化条件下可制备得到平均粒径小于100 nm,分散均匀、包封率大于50%的包载BSA的生物功能化CS纳米颗粒。在此基础之上,将该药物载体初步应用于丙种球蛋白的包载,包封率达到55.0%,并具有显著的缓释作用。从而为基于生物功能化壳聚糖纳米颗粒的蛋白类药物载体的开发提供了应用基础。
     5.基于生物功能化壳聚糖纳米颗粒的抗肿瘤药物载体研究
     以壳聚糖(CS)为载体,基于共价交联和离子凝胶化方法,制备了一种新型的甲氨蝶呤(MTX)缓释载体。首先通过戊二醛的醛基分别与CS和MTX的氨基发生缩合反应,形成稳定的化学键将MTX固定在CS分子上,再借助带负电荷的多聚磷酸纳(TPP)与带正电荷的CS之间的静电作用形成包载MTX的生物功能化CS纳米颗粒(CS-MTX-TPP)。本法制备条件温和,简便易行,在最佳药载比条件下,可获得平均粒径小于200 nm的CS-MTX-TPP纳米颗粒,对MTX的包封率达到53.0%。体外释放实验汪实CS与MTX之间稳定的共价键有利于保持CS-MTX-TPP纳米颗粒的缓释特征。此外,体外抗肿瘤活性研究表明MTX被CS纳米颗粒包载后,依然保持了较好的抑瘤活性。本法可望拓宽生物功能化CS纳米颗粒在抗肿瘤药物传输领域中的应用。
Bionanotechnology is a new interdiscipline,which has provided new opportunities and scientific methods for the deep extensive development of biomedicine research.As the novel products of bionanotechnology,bionanomaterials, especially biofunctionalized nanoparticles with specific physical,chemical or bioactive properties,have shown great potential in the researches of cancer diagnosis and treatment,cells and proteins separation,gene therapy and controlled drug delivery.However,many of these researches are still in their infants.Further studies need to be extended.Recently,our research group has developed systemic researches based on the biofunctionalized silica nanoparticles and chitosan nanoparticles with the combination of nanotechnology,analytical chemistry,biotechnology and material science.On the basis of our correlative researches,this dissertation has focused on the target imaging of breast cancer and bioseparation with biofunctionalized silica nanoparticles,and the further studies of the drug delivery with biofunctionalized chitosan nanoparticles.
     1.Imaging breast cancer cells and tissues using biofunctionalized fluorescent silica nanoparticles.
     A method using RuBpy doped silica nanoparticles(FSiNPs) as novel fluorescent labels of peptide has been developed for in vitro and ex vivo imaging of breast cancer cells and tissues.The biofunctionalized FSiNPs(RGD-FSiNPs) were prepared by covalent immobilization of arginine-glycine-aspartic acid(RGD) peptide onto FSiNPs according to the cyanogens bromide(CNBr) method.In vitro cell imaging showed that RGD-FSiNPs exhibited high target binding to fixed and living cells ofα_vβ_3 integrin receptor(ABIR)-positive MDA-MB-231 breast cancers.Further study regarding the ex vivo imaging of tumor tissue samples was also carried out by intravenously injecting PEGylated-RGD-FSiNPs into athymic nude mice bearing the MDA-MB-231 tumors.Tissue images demonstrated that it could reduce the phagocytosis of nanoparticles by liver and spleen and the high integrinα_vβ_3 expression level of the MDA-MB-231 tumors was clearly visible due to the special targeting effects of the RGD-FSiNPs.This RGD peptide-oriented fluorescent labeling technique based on the biofunctionalized FSiNPs will be promising for tumor cell imaging and cancer metastasis,etc.
     2.Targeted separation of protein based on biofunctionalized magnetic silica nanoparticles.
     A method of silica coated magnetic nanoparticles(MSiNPs)-based targeted separation of proteins has been developed based on the technology platform of our research group.The biofunctionalized MSiNPs(IgG-MSiNPs) were synthesized by modification of human IgG onto the surface of MSiNPs with CNBr method.Target protein(goat-anti-human IgG-FITC) was specifically recognized with IgG-MSiNPs and isolated under magnetic field.Then the target protein could be dissociated from the nanoparticles with suitable dissociation agent.The effects of separation and dissociation conditions on the separation efficiency,selectivity and dissociation effiency were studied.At the optimal conditions,the relatively high separation and dissociation efficiency and good selectivity were obtained.This study will further explore the application of functionalized magnetic silica nanoparticles in direct bio-separation of proteins from complex samples.
     3.Synthesis of biofunctionalized fluorescent magnetic nanoparticles and their potential applications in separation of breast cancer cells.
     We have developed a simple method to synthesize FITC dye doped silica fluorescent magnetic nanoparticles(FMSiNPs) with chemical precipitation method and reversed microemulsion technique under mild condition.FMSiNPs were formed by employing human IgG modified FITC dye and magnetic fluid as core and the silica as shell.The biofunctionalized FMSiNPs(RGD-FMSiNPs) were prepared by immobilizing of RGD peptide onto the surface of FMSiNPs.The specific enrichment ofα_vβ_3 integrin receptor-positive MDA-MB-231 breast cancer cells using RGD-FMSiNPs were carried out due to the specific recognition of RGD peptide andα_vβ_3 integrin.Then the target cells were isolated with RGD-FMSiNPs under magnetic field and detected by FCM based on the fluorescence properties of RGD-FMSiNPs. Results indicated that RGD-FMSiNPs exhibited high target binding to MDA-MB-231 breast cancer cells and high separation efficiency.This new kind of RGD based biofunctionalized FMSiNPs could be widely used for the magnetic separation and fluorescent detection of tumor cells.
     4.Research on protein drug carriers based on biofunctionalized chitosan nanoparticles.
     A new type of biocompatible chitosan(CS) nanoparticles encapsulated with bovine serum albumin(BSA)(CS-BSA-TPP NPs) was prepared through ionic cross-linking technique based on CS and sodium tripolyphosphate(TPP) at room temperature.The influence of formulation conditions on the properties of CS-BSA-TPP NPs was investigated.Results showed that CS-BSA-TPP NPs with diameter of below 100 nm and good dispersion were prepared at the optimal conditions,and the BSA encapsulation efficiency was more than 50%.This system was also applied in the preparation of CS nanoparticles encapsulated with Gamma Seroglobulin(CS-IG-TPP NPs),the CS-IG-TPP NPs presented the encapsulation efficiency of IG with 55.0%and displayed sustained-release property.Thus,this protein delivery system based on biofunctionalized CS nanoparticles will be promising for protein drug delivery.
     5.A novel anticancer drug delivery system based on biofunctionalized chitosan nanoparticles.
     A chitosan-methotrexate covalently conjugated nanoparticles(CS-MTX-TPP NPs) has been developed as a potential delivery system for methotrexate(MTX). MTX was first conjugated to CS by using glutaraldehyde as cross-linked agent,and followed by the process of ionic gelation between MTX-conjugated CS and sodium tripolyphosphate(TPP) to form CS-MTX-TPP NPs at mild reaction conditions.At the optimal conditions,CS-MTX-TPP NPs with diameter of sub-200-nm and encapsulation efficiency of 53.0%were obtained.Additionally,in vitro release test revealed that the stable covalent bonding of CS and MTX was beneficial for providing slow release for MTX.Especially,cellular toxicity study in MCF-7 cancer cells further demonstrated the effective anticancer efficacy of this new type of delivery for MTX.In the future,this work could be expected to broaden the applications of biofunctionalized CS NPs in anticancer drug delivery.
引文
[1]Kaebler T.Nanotechnology:basic concepts and definitions.Clinical Chemistry,1994,40(9):1797-1799
    [2]Schoonman J.Nanostructured material in solid state ionics.Solid State Ionics,2000,135(1-4):5-19
    [3]胡延义.纳米技术及其应用.天津通讯技术,2000,4:11-13
    [4]李民乾.纳米科学技术-面向21世纪的新科技.物理,1996,21(2):65-69
    [5]白春礼.纳米科技及发展前景.微纳电子技术,2002,1(1):2-5
    [6]Lowe C R.Nanobiotechnogy:the fabrication and applications of chemical and biological nanostructures.Current Opinion in Chemical Biology,2000,10(4):428-434
    [7]Roco M C.Nanotechnology:convergence with modern biology and medicine.Current Opinion in Biotechnology,2003,14(3):337-346
    [8]Greig L M,Philip D.Applying biological principles to the assembly and selection of synthetic superstructures.Chemical Society Reviews,2001,30(5):287-302
    [9]Robert A,Freitas Jr.Current status of nanomedicine and medical nanorobotics.Journal of Computational and Theoretical Nanoscience,2005,2(1):1-25
    [10]靳刚,应佩青.纳米生物技术.自然杂志,2004,23(4):211-214.
    [11]白春礼.纳米科学与技术.昆明:云南省科学技术出版社,1995,65-84
    [12]张立德,牟季美.纳米材料学.沈阳:辽宁科学技术出版社,1994,2-9
    [13]何晓晓,王柯敏,李杜等.生物亲和性功能化纳米颗粒研究与应用.化学传感器,2002,22(4):1-7
    [14]Allen T M.Ligand-targeted therapeutics in anticancer therapy.Nature Reviews Cancer,2002,2(10):750-763
    [15]Jana N R,Earhart C,Ying J Y.Synthesis of water-soluble and functionalized nanoparticles by silica coating.Chemistry of Materials,2007,19(21):5074-5082
    [16]Lin P C,Tseng M C,Su A K,et al.Functionalized magnetic nanoparticles for small-molecule isolation,identification,and quantification.Analytical Chemistry,2007,79(9):3401-3408
    [17]Gyurcs(?)nyi R E.Chemically-modified nanopores for sensing.Trends in Analytical Chemistry,2008,27(7):627-639
    [18]Cheng C,Wei H,Zhu J L,et al.Functionalized thermoresponsive micelles self-assembled from biotin-PEG-b-P(NIPAAm-co-HMAAm)-b-PMMA for tumor cell target.Bioconjugate Chemistry,2008,19(6):1194-1201
    [19]王林,李晓俊,刘小兰等.纳米材料在一些领域的应用及其前景.纳米材料与应用,2005,2(4):6-9
    [20]Zhao X J,Bagwe R P,Tan W H.Development of organic-dye-doped silica nanoparticles in a reversed microemulsion.Advanced Materials,2004,16(2):173-176
    [21]Safarik I,Safarikova M.Magnetic techniques for the isolation and purification of proteins and peptides.Biomagnetic Research and Technology,2004,2(7):1-17
    [22]Han L,Sakamoto Y,Terasaki O,et al.Synthesis of carboxylic group functionalized mesoporous silicas(CFMSs) with various structures.Journal of Materials Chemistry,2007,17(12):1216-1221
    [23]聂海龙,何晓晓,霍希琴等.不同功能化基团修饰的硅壳纳米颗粒分散性研究.高等学校化学学报,2008,29(3):477-481
    [24]Joralemon M J,Smith N L,Holowka D,et al.Antigen-decorated shell cross-linked nanoparticles:synthesis,characterization,and antibody interactions.Bioconjugate Chemistry,2005,16(5):1246-1256
    [25]杨文胜,高明远,白玉白等.纳米材料与生物技术.北京:化学工业出版社,2005.154-166
    [26]Kamimura M,Miyamoto D,Saito Y,et al.Design of poly(ethylene glycol)/streptavidin coimmobilized upconversion.Langmuir,2008,24(16):8864-8870
    [27]Cortez C,Tomaskovic-Crook E,Johnston A P R,et al.Influence of size,surface,cell line,and kinetic properties on the specific binding of A33 antigen-targeted multilayered particles and capsules to colorectal cancer cells.ACS Nanotation,2007,1(2):93-102
    [28]Kumar R,Roy I,Ohulchanskyy T Y,et al.Covalently dye-linked,surface-controlled,and bioconjugated organically modified silica nanoparticles as targeted probes for optical imaging.ACS Nanotation,2008,2(3):449-456
    [29]Basnar B,Xu J,Li D,et al.Encoded and enzyme-activated nanolithography of gold and magnetic nanoparticles on silicon.Langmuir,2007,23(5):2293-2296
    [30]Leipert D,Heiduschka P,Mack J,et al.Spatially resolved immobilization of peptides by electrochemical polymerization after photolytic cleavage of a protecting group.Angewandte Chemie International Edition,1998,37(17): 2337-2340
    [31] Ryadnov M G, Woolfson D N. Fiber recruiting peptides: noncovalent decoration of an engineered protein scaffold. Journal of the American Chemistry Society,2004, 126 (24): 7454-7455
    [32] Zhao X J, Tapec-Dytioco R, Tan W H, et al. Ultra-sensitive DNA detection using highly fluorescent bioconjugated nanoparticles. Journal of the American Chemistry Society, 2003, 125(38): 11474-11475
    [33] Herr J K, Smith J E, Medley C D, et al. Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells. Analytical Chemistry, 2006,78(9): 2918-2924
    [34] Smith J E, Medley C D, Tang Z W, et al. Aptamer-conjugated nanoparticles for the collection and detection of multiple cancer cells. Analytical Chemistry,2007, 79(8): 3075-3082
    [35] Chan W C W, Nie S M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 1998, 281(5385): 2016-2018
    [36] Sander F W, Floris V D, Stephen G H, et al. Highly luminescent water-soluble CdTe quantum dots. Nano Letters, 2003, 3(4): 503-507
    [37] Alivisatos A P. Semiconductor clusters, nanocrystals, and quantum dots.Science, 1996, 271(5251): 933-937
    [38] Andrea S, Weller H. Biofunctionalization of silica-coated CdTe and gold nanocrystals. Nano Letters, 2002, 2(12): 1363-1367
    [39] Zhelev Z, Ohba H, Bakalova R. Single quantum dot-micelles coated with silica shell as potentially non-cytotoxic fluorescent cell tracers. Journal of the American Chemical Society, 2006, 128(19): 6324-6325
    [40] Chen Y F, Rosenzweig Z. Luminescent CdSe quantum dot doped stabilized micelles. Nano Letters, 2002, 2(11): 1299-1302
    [41] Dubertret B, Skourides P, Albert L, et al. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science, 2002, 298(5599): 1759-1762
    [42] Gao X H, Cui Y Y, Nie S M, et al. In vivo cancer targeting and imaging with semiconductor quantum dots. Nature biotechnology, 2004, 22(8): 969-976
    [43] Jaiswal J K, Mattoussi H, Mauro J M, et al. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nature biotechnology, 2003,21(1): 47-51
    [44] Goldman E R, Anderson G P, Mattoussi H, et al. Multiplexed toxin analysis using four colors of quantum dot fluororeagents. Analytical Chemistry, 2004, 76(3):684-688
    [45]Green M.Semiconductor quantum dots as biological imaging agents.Angewandte Chemie International Edition,2004,43(32):4129-4131
    [46]Alivisatos A P.The Use of nanocrystals in biological detection.Nature Biotechnology,2004,22(1):47-52
    [47]段菁华,王柯敏,谭蔚泓等.新型有机荧光染料嵌合的核壳荧光纳米材料的研制.高等学校化学学报,2003,24(2):255-259
    [48]He X X,Wang K M,Tan W H,et al.Photostable luminescent nanoparticles as biological label for cell recognition of system lumpus erythematosus patients.Journal of Nanoscience and Nanotechnology,2002,2(3):317-320
    [49]原茵,何晓晓,王柯敏等.嵌合异硫氰酸罗丹明B核壳荧光纳米颗粒制备的新方法研究.高等学校化学学报,2005,26(3):446-448
    [50]何晓晓,陈基耘,王柯敏等.吲哚类菁染料Cy3嵌入的核壳荧光纳米颗粒的制备及其性质研究.高等学校化学学报,2006,27(10):1835-1839
    [51]Rheinlander T,Kotitz R,Weitschies W,et al.Magnetic fluids:biomedical applications and fraetionation.Journal of Magnetism and Magnetic Materials,2000,10(3):179-198
    [52]赵强,庞小峰.磁性纳米生物材料研究进展及其应用.原子与分子物理学报,2005,22(2):222-225
    [53]Ntziachristos V,Weissleder R.Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized born approximation.Optics Letters,2001,26(12):893-895
    [54]Josephson L,Kircher M F,Mahmood U,et al.Near-infrared fluorescent nanoparticles as combined MR/optical imaging probes.Bioconjugate Chemistry,2002,13(3):554-560
    [55]Yang J,Lee J,Kang J,et al.Hollow silica nanocontainers as drug delivery vehicles.Langmuir,2008,24(7):3417-3421
    [56]Ohulchanskyy T Y,Roy I,Goswami L N,et al.Organically modified silica nanoparticles with covalently incorporated photosensitizer for photodynamic therapy of cancer.Nano Letters,2007,7(9):2835-2842
    [57]He X X,Wang K M,Tan W H,et al.A novel gene carrier based on amino-modified silica nanoparticles.Chinese Science Bulletin,2003,48(3):223-228
    [58]He X X,Wang K M,Tan W H,et al.Bioconjuated nanoparticles for DNA protection from cleavage.Journal of the American Chemical Society, 2003,125(24):7168-7169
    [59]殷焕顺,艾仕云,汪建民.制备金纳米粒子的研究进展.材料应用与研究:2007,1(4):277-280
    [60]Hashimoto K,Ito K,Ishimori Y.Novel DNA sensor for electrochemical gene detection.Analytica Chimica Acta,1994,286(2):219-224
    [61]Elghanian R,Storhoff J J,Mirkin C A,et al.Selective colormetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles.Science,1997,277(5329):1078-1081
    [62]逄键涛,张敏丽,文思远等.金标记银增强方法检测HIV抗体的蛋白质微阵列.军事医学科学院院刊,2005,29(3):223-226
    [63]Aliabadi H M,Lavasanifar A.Polymeric micelles for drug delivery.Expert Opinion on Drug Delivery,2006,3(1):139-162
    [64]冷静,苏华.纳米高分子材料在生物医学领域的研究与应用.中国药事,2007,21(1):35-37
    [65]刘海峰,常津,姚康德.纳米高分子材料在医用载体方面的应用.化学通报,2001,64(6):332-338
    [66]陈江浩,李郁,凌瑞等.阿霉素纳米脂质体不同途径给药治疗晚期兔VX2乳腺移植癌模型.中华医学杂志,2005,85(43):3039-3042
    [67]邹江,孙慧.纳米控释紫杉醇对小鼠乳癌的凋亡诱导研究.中国肿瘤临床,2007,34(7):407-410
    [68]Van der Lubben I M,Kersten G,Fretz M M,et al.Chitosan microparticles for mucosal vaccination against diphtheria:oral and nasal efficacy studies in mice.Vaccine,2003,21(13-14):1400-1408
    [69]Galindo-Rodriguez S A,Allemann E,Fessi H,et al.Polymeric nanoparticles for oral delivery of drugs and vaccines:a critical evaluation of in vivo studies.Critical Reviews in Therapeutic Drug Carrier Systems,2005,22(5):419-464
    [70]Ravi Kumar M N V,Muzzarelli R A A,Muzzarelli C,et al.Chitosan chemistry and pharmaceutical perspectives.Chemical Reviews,104(12):6017-6084
    [71]Elghanian R,Storhoff J J,Mirkin C A,et al.Selective colormetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles.Science,1997,277(5329):1078-1081
    [72]Tanton T A,Mirkin C A,Letsinger R L,et al.Scanometric DNA array detection with nanoparticle probes.Science,2000,289(8):1757-1759
    [73]Xu X Y,Georganopoulou D G,Hill H D,et al.Homogeneous detection of nucleic acids based upon the light scattering properties of silver-coated nanoparticle probes.Analytical Chemistry,2007,79(17):6650-6654
    [74]Li H,Rothberg L.Detection of specific sequences in RNA using differential adsorption of single-stranded oligonucleotides on gold nanoparticles.Analytical Chemistry,2005,77(19):6229-6233
    [75]Wang L,Lofton C,Popp M,et al.Using luminescent nanoparticles as staining probes for affymetrix genechips.Bioconjugate Chemistry,2007,18(3):610-613
    [76]Yang R,Jin J,Chen Y,et al.Carbon nanotube-quenched fluorescent oligonucleotides:probes that fluoresce upon hybridization.Journal of the American Chemical Society,2008,130(26):8351-8358
    [77]Kragh-Hansen U.Molecular aspects of ligand binding to serum albumin.Pharmacological Reviews,1981,33(1):17-53
    [78]Gregor I M,Drummond O.Immunoassay of human plasma cellular prion protein.Transfusion,2001,41(11):1453-1454
    [79]Aoyagi S,Iwata T,Miyasaka T,et al.Determination of human serum albumin by chemiluminescence immunoassay with luminol using a platinum-immobilized flow-cell.Analytica Chimica Acta,2001,436(1):103-108
    [80]魏琴,吴丹,张慧等.蛋白质分析技术的发展趋势.济南大学学报(自然科学版),2003,17(4):312-320
    [81]Ye Z,Tan M,Wang G,et al.Preparation,characterization,fluorometric application of silica-terbium(Ⅲ) fluorescent nanoparticles.Analytical Chemistry,2004,76(3):513-518
    [82]Wang Z,Lee J S,Cossins A R,et al.Microarray-based detection of protein binding and functionality by gold nanoparticle probes.Analytical Chemistry,2005,77(17):5770-5774
    [83]Cui R J,Pan H C,Zhu J J,et al.Versatile immunosensor using CdTe quantum dots as electrochemical and fluorescent labels.Analytical Chemistry,2007,79(22):8494-8501
    [84]Nam J M,Thaxton C S,Mirkin C A.Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins.Science,2003,301(5641):1884-1886
    [85]Tsai H Y,Hsu C F,Chiu I W,et al.Detection of C-reactive protein pased on immunoassay using antibody-conjugated magnetic nanoparticles.Analytical Chemistry,2007,79(21):8416-8419
    [86]柯诗剑,计剑.万古霉素修饰磁性纳米粒子的制备及其细菌分离功能.高等 学校化学学报, 2007, 28(1): 26-28
    [87] Zhao X J, Hilliard L R, Mechery S J, et al. A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(42):15027-15032
    [88] Wang L, Zhao W, O'Donoghue M B, et al. Fluorescent nanoparticles for multiplexed bacteria monitoring. Bioconjugate Chemistry, 2007, 18(2):297-301
    [89] Qin D L, He X X, Wang K M, et al. Fluorescent nanoparticle-based indirect immunofluorescence microscopy for detection of mycobacterium tuberculosis.Journal of Biomedicine and Biotechnology, 2007, Article ID 89364, 1-9
    [90] Qin D L, He X X, Wang K M, et al. Using fluorescent nanoparticles and SYBR Green I based two-color flow cytometry to determine mycobacterium tuberculosis avoiding false positives. Biosensors & Bioelectronics, 2008, 24(4):626-631
    [91] Gu H, Ho P L, Tsang K W T, et al. Using biofunctional magnetic nanoparticles to capture vancomycin-resistant enterococci and other gram-positive bacteria at ultralow concentration. Journal of the American Chemical Society, 2003,125(51): 15702-15703
    [92] Perez J M, Simeone F J, Saeki Y, et al. Viral-induced self-assembly of magnetic nanoparticles allows the detection of viral particles in biological media. Journal of the American Chemical Society, 2003, 125(34): 10192-10193
    [93] Kaittanis C, Naser S A, Perez J M. One-Step, nanoparticle-mediated bacterial detection with magnetic relaxation. Nano Letters, 2007, 7(2): 380-383
    [94] Peng J F, Wang K M, Tan W H, et al. Identification of liver cancer cells in a mixed cell system using galactose-conjugated fluorescent nanoparticles.Talanta, 2007, 71(2): 833-840
    [95] Li Z H, Wang K M, Tan W H, et al. Immunofluorescent labeling of cancer cells with quantum dots synthesized in aqueous solution. Analytical Biochemistry,2006,354(2): 169-174
    [96] Wu X, Liu H, Liu J, et al. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nature Biotechnology, 2003, 21(1): 41-46
    [97] Stroh M, Zimmer J P, Duda D G, et al. Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo. Nature Medicine, 2005, 11(6): 678-682
    [98] Weissleder R. Molecular imaging: exploring the next frontier. Radiology, 1999,212(3): 609-614
    [99] Lauterbur P C. Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature, 1973, 242(3): 190-191
    [100] Hamm B, Staks T, Taupitz M. Contrast-enhanced MR imaging of liver and spleen, first experience in mans with new superparamagnetic iron oxide.Journal of Magnetic Resonance Imaging, 1994, 4(5): 659-668
    [101] Rheinlander T, Kotitz R, Weitschies W, et al. Magnetic fluids: biomedical applications and fractionation. Journal of Magnetism and Magnetic Materials,2000, 10(3): 179-198
    [102] Choi H, Choi S R, Zhou R, et al. Iron oxide nanoparticles as magnetic resonance contrast agent for tumor imaging via folate receptor-targeted delivery.Academic Radiology, 2004, 11(9): 996-1004
    [103] Lee J H, Huh Y M, Jun Y, et al. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nature Medcine, 2007, 13(1): 95-99
    [104] Harisinghani M G, Barentsz J, Hahn P F, et al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. The New England Journal of Medicine, 2003, 348(25): 2491-2499
    [105] Massoud T F, Gambhir S S. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes & Development, 2003,17(5): 545-80
    [106] Akerman M E, Chan W C, Laakkonen P, et al. Nanocrystal targeting in vivo.Proceedings of the National Academy of Sciences, 2002, 99(20): 12617-12621
    [107] Kim S, Lim Y T, Soltesz E G, et al. Near-infrared fluorescent type Ⅱ quantum dots for sentinel lymph node mapping. Nature Biotechnology, 2004, 22(1):93-97
    [108] Cai W, Shin D W, Chen X Y, et al. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Letters, 2006, 6(4):669-676
    [109] Josephson L, Kircher M F, Mahmood U, et al. Near-infrared fluorescent nanoparticles as combined MR/optical imaging probes. Bioconjugate Chemistry,2002, 13(3): 554-560
    [110] Kelly K A, Allport J R, Tsourkas A, et al. Detection of vascular adhesion molecule-1 expression using a novel multimodal nanoparticle. Circulation Research,2005,96(3):327-336
    [111]Vuu K,Xie J W,McDonald M A,et al.Gadolinium-rhodamine nanoparticles for cell labeling and tracking via magnetic resonance and optical imaging.Bioconjugate Chemistry,2005,16(4):995-999
    [112]Bridot J L,Faure A C,Laurent S,et al.Hybrid gadolinium oxide nanoparticles:multimodal contrast agents for in vivo imaging.Journal of the American Chemical Society,2007,129(16):5076-5084
    [113]周加祥,刘铮.生物分离技术与过程研究进展.化工进展,2000,19(6):38-41
    [114]赵强,庞小峰.磁性纳米生物材料研究进展及其应用.原子与分子物理学报,2005,22(2):222-225
    [115]Chiang C L,Sung C S,Wu T F,et al.Application of superparamagnetic nanoparticles in purification of plasmid DNA from bacterial cells.Journal of Chromatography B,2005,822(1-2):54-60
    [116]Zhao X J,Tapec-Dytioco R,Tan W H,et al.Collection of trace amounts of DNA/mRNA molecules using genomagnetic nanocapturers.Analytical Chemistry,2003,75(14):3476-3483
    [117]何晓晓,王柯敏,谭蔚泓等.超顺磁性DNA纳米富集器应用于痕量寡聚核苷酸的富集.高等学校化学学报,2003,24(1):40-42
    [118]He X X,Huo H L,Wang K M,et al.Plasmid DNA isolation using amino-silica coated magnetic nanoparticles(ASMNPs).Talanta,2007,73(4):764-769
    [119]Chiang C L,Sung C S.Purification of transfection-grade plasmid DNA from bacterial cells with superparamagnetic nanoparticles.Journal of Magnetism and Magnetic Materials,2006,302(1):7-13
    [120]Saiyed Z M,Bochiwal C,Gorasia H,et al.Application of magnetic particles (Fe_3O_4) for isolation of genomic DNA from mammalian cells.Analytical Biochemistry,2006,356(2):306-308
    [121]Xie X,Nie X,Yu B,et al.Rapid enrichment of leucocytes and genomic DNA from blood based on bifunctional core-shell magnetic nanoparticles.Journal of Magnetism and Magnetic Materials,2007,311(1):416-420
    [122]Hatch G P,Stelter R E.Magnetic design considerations for devices and particles used for biological high-gradient magnetic separation(HGMS)systems.Journal of Magnetism and Magnetic Materials,2001,225(1-2):262-276
    [123]Xu C,Xu K,Xu B,et al.Nitrilotriacetic acid-modified magnetic nanoparticles as a general agent to bind histidine-tagged proteins.Journal of the American Chemical Society,2004,126(11):3392-3393
    [124]Oh B K,Park S,Millstone J E,et al.Separation of tricomponent protein mixtures with triblock nanorods.Journal of the American Chemical Society,2006,128(36):11825-11829
    [125]Park H Y,Schadt M J,Zhong C J.Fabrication of magnetic Core@Shell Fe Oxide@Au manoparticles for interfacial bioactivity and bio-separation.Langmuir,2007,23(17):9050-9056
    [126]He X X,Chen Y J,Wang K M,et al.Selective separation of proteins with pH-dependent magnetic nanoadsorbents,Nanotechnology,2007,18(36):365604(6pp).
    [127]李贵平,张辉,汪勇先.磁性纳米微粒在磁性分离技术中的应用进展.放射免疫学杂志,2005,18(5):380-383
    [128]Chen W,Shen H,Li X,et al.Synthesis of immunomagnetic nanoparticles and their application in the separation and purification of CD34~+ hematopoietic stem cells.Applied Surface Science,2006,253(4):1762-1769
    [129]Odaba(?) S,Sayar F,G(u|¨)ven G,et al.Separation of mesenchymal stem cells with magnetic nanosorbents carrying CD105 and CD73 antibodies in flow-through and batch systems.Journal of Chromatography B,2008,861(1):74-80
    [130]Wang D,He J,Rosenzweig N,et al.Superparamagnetic Fe_2O_3 beads-CdSe/ZnS quantum dots core-shell nanocomposite particles for cell separation.Nano Letters,2004,4(3):409-413
    [131]Li L,Choo E S G,Liu Z,et al.Double-layer silica core-shell nanospheres with superparamagnetic and fluorescent functionalities.Chemical Physics Letters,2008,461(1-3):114-117
    [132]Gu H,Ho P L,Tsang K W,et al.Using biofunctional magnetic nanoparticles to capture vancomycin-resistant enterococci and other gram-positive bacteria at ultralow concentration.Journal of the American Chemical Society,2003,125(51):15702-15703
    [133]Veyret R,Elaissari A,Marianneau P,et al.Magnetic colloids for the generic capture of viruses.Analytical Biochemistry,2005,346(1):59-68
    [134]Varshney M,Li Y,Srinivasan B,et al.A label-free,microfluidics and interdigitated array microelectrode-based impedance biosensor in combination with nanoparticles immunoseparation for detection of Escherichia coli O157:H7 in food samples.Sensors and Actuators B,2007,128(1):99-107
    [135] Muller R H, Jacobs C, Kayser O. Nanosuspensions as particulate drug formulations in therapy rationale for development and what we can expect for the future. Advanced Drug Delivery Reviews, 2001, 47(1): 3-19
    [136] Karel U, Vladimir S. Polymeric anticancer drugs with pH-controlled activation.Advanced Drug Delivery Reviews, 2004, 56(7): 1023-1050
    [137] Vila A, Sanchez A, Tobio M, et al. Design of biodegradable particles for protein delivery. Journal of Controlled Release, 2002, 78(1-3): 15-24
    [138] Vila A, Gill H, McCallion O, et al. Transport of PLA-PEG particles across the nasal mucosa: effect of particle size and PEG coating density. Journal of Controlled Release, 2004, 98(2): 231-244
    [139] Prego C, Garcia M, Torres D, et al. Transmucosal macromolecular drug delivery. Journal of Controlled Release, 2005, 101(1-3): 151-162
    [140] Pan Y, Li Y J, Zhao H Y, et al. Bioadhesive polysaccharide in protein delivery system: chitosan nanoparticles improve the intestinal absorption of insulin in vivo. International Journal of Pharmaceutics, 2002, 249(1-2): 139-147
    [141] Ma Z, Lim T M, Lim L Y. Pharmacological activity of peroral chitosan-insulin nanoparticles in diabetic rats. International Journal of Pharmaceutics, 2005,293(1-2): 271-280
    [142] Sarmento B, Ribeiro A, Veiga F, et al. Oral bioavailability of insulin contained in polysaccharide nanoparticles. Biomacromolecules, 2007, 8(10): 3054-3060
    [143] Mitra A, Lin S. Effect of surfactant on fabrication and characterization of paclitaxel-loaded polybutylcyanoacrylate nanoparticulate delivery systems.Journal of Pharmacy and Pharmacology, 2003, 55(7): 895-902
    [144] Ooya T, Lee J, Park K. Hydro tropic dendrimers of generations 4and 5:synthesis, characterization, and hydrotropic solubilization of paclitaxel.Bioconjugate Chemestry, 2004, 15(6): 1221-1229
    [145] Zhang L, Chan J M, Gu F X, et al. Self-assembled lipid-polymer hybrid nanoparticles: a robust drug delivery platform. ACS Nanotation, 2008, 2(8):1696-1702
    [146] You J, Hu F Q, Du Y Z, et al. Polymeric micelles with glycolipid-like structure and multiple hydrophobic domains for mediating molecular target delivery of paclitaxel. Biomacromolecules, 2007, 8(8): 2450-2456
    [147] Ye Y Q, Yang F L, Hu F Q, et al. Core-modified chitosan-based polymeric micelles for controlled release of doxorubicin. International Journal of Pharmaceutics, 2008, 352(1-2): 294-301
    [148]Yang X,Zhang Q,Wang Y,et al.Self-aggregated nanoparticles from methoxy poly(ethylene glycol)-modified chitosan:synthesis;characterization;aggregation and methotrexate release in vitro.Colloids and Surfaces B:Biointerfaces,2008,61(2):125-131
    [149]Kommareddy S,Amiji M.Preparation and evaluation of thiol-modified gelatin nanoparticles for intracellular DNA delivery in response to glutathione.Bioconjugate Chemistry,2005,16(6):1423-1432
    [150]常津,刘海峰,刘晓秋等.一种新型纳米基因载体的制备及体外实验.中国生物医学工程学报,2002,21(6):515-519
    [151]Liu W G,Zhang X,Sun S J,et al.n-Alkylated chitosan as a potential nonviral vector for gene transfection.Bioconjugate Chemistry,2003,14(1):782-789
    [152]Dufes C,KeithW N,Bilsland A,et al.Synthetic anticancer gene medicine exploits intrinsic antitumor activity of cationic vector to cure established tumors.Cancer Research,2005,65(18):8079-8084
    [153]Pille J Y,Li H,Blot E,et al.Intravenous delivery of anti-RhoA small interfering RNA loaded in nanoparticles of chitosan in mice:safety and efficacy in xenografted aggressive breast cancer.Human Gene Therapy,2006,17(10):1019-1026
    [154]Liu X,Howard K A,Dong M,et al.The influence of polymeric properties on chitosan/siRNA nanoparticle formulation and gene silencing.Biomaterials,2007,28(6):1280-1288
    [155]胡志洁,张志耘.纳米技术在医药学领域中研究应用进展.天津药学,2001,13(5):1-3
    [156]Snedecor S J,Sullivan S M,Ho R J.Feasibility of weekly HIV drug delivery to enhance drug localization in lymphoid tissues based on pharmacokinetic models of lipid-associated indinavir.Pharmaceutical Research,2006,23(8):1750-1755
    [157]Durra T,Agashe H B,Garg M,et al.Poly(propyleneimine) dendrimer based nanocontainers for targeting of efavirenz to human monocytes/macrophages in vitro.Journal of Drug Target,2007,15(1):89-98
    [158]Kaur A,Jain S,Tiwary A K.Mannan-coated gelatin nanoparticles for sustained and targeted delivery of didanosine:in vitro and in vivo evaluation.Acta Pharmaceutica,2008,58(1):61-74
    [159]Costanzo P J,Liang E,Patten T E,et al.Bio-molecule detection via target mediated nanoparticle aggregation and dielectrophoretic impedance measurement.Lab Chip,2005,5(6):606-610
    [160]Gupta S,Dube A,Vyas S P.Antileishmanial efficacy of amphotericin B bearing emulsomes against experimental visceral leishmaniasis.Journal of Drug Target,2007,15(6):437-444
    [161]Ahmad Z,Pandey R,Sharma S,et al.Alginate nanoparticles as antituberculosis drug carriers:formulation development,pharmacokinetics and therapeutic potential.Indian Journal of Chest Diseases and Allied Sciences,2006,48(3):171-176
    [162]Pandey R,Khuller G K.Nanoparticle-based oral drug delivery system for an injectable antibiotic-streptomycin.Evaluation in a murine tuberculosis model.Chemotherapy,2007,53(6):437-441
    [163]He X X,Liu F,Wang K M,et al.Bioeffects of different functionalized silica nano-particles on HaCaT cell line.Chinese Science Bulletin,2006,51(16):1939-1946
    [164]Gong P,Li H M,He X X,et al.Preparation and antibacterial activity of Fe_3O_4@Ag nanoparticles.Nanotechnology,2007,18(28):285604/1-285604/7
    [165]Peng J F,Xing X L,Wang K M,et al.Influence of anions on the formation and properties of chitosan-DNA nanoparticles.Journal of Nanoscience and Nanotechnology,2005,5(5):713-717
    [166]王柯敏,胡建兵,何晓晓等.一种PEG化脂质体纳米颗粒[P].中国专利:CN10100294.2,申请日期:2007-01-08
    [167]Lee H J.Protein drug oral delivery:the recent progress.Archives of Pharmacal Research,2002,25(5):572-584
    [168]Carino G P,Mathiowitz E.Oral insulin delivery.Advanced Drug Delivery Reviews,1999,35(2-3):249-257
    [169]Yao K D,Peng T,Feng H B,et al.Swelling kinetics and relase characteristic of crosslinked chitosan polyether polymer network(semi-IPN) hydrogels.Journal of Polymer Science Part A:Polymer Chemistry,1994,32(7):1213-1223
    [170]刘海峰,常津,姚康德.纳米高分子材料在医用载体方面的应用.化学通报,2001,64(6):332-338
    [171]Song C X,Labhasetwar V,Murohy H,et al.Formulation and characterization of biodegradable nanoparticles for intravascular local drug delivery.Journal of Controlled Release,1997,43(5):197-212
    [172]Gref R,Minamitake Y,Peracchia M T.Biodegradable long-circulating polymeric nanospheres.Science,1994,263(5153):1600-1603
    [173]Allemann E,Brasseur N,Benrezzak O,et al.PEG coated poly(lactic acid)nanoparticles for the delivery of hexadecafluoro zincphthalocyanine to EMT-T mouse mammary tumours.Journal of Pharmacy and Pharmacology,1995,47(5):382-387
    [174]Larry L H,Joulia M P.Third-generation biomedical materials.Science,2002,295(8):1016-1017
    [175]Van Der Lubben I M,Verhoef J C,Junginger H E,et al.Chitosan and its derivatives in mucosal drug and vaccine delivery.European Journal of Pharmaceutical Science,2001,14(3):201-207
    [176]Lee R J,Huang L.Folate-targeted anionic liposome entrapped polylysine condensed DNA for tumor cell-specific gene transfer.Journal of Biological Chemistry,1996,271(14):8481-8487
    [177]Calvo P,Remunan-Lopez C,Vila-Jato J L,et al.Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines.Pharmaceutical Research,1997,14(10):1431-1436
    [178]袁弘,胡富强,应晓英等.胰岛素纳米粒的制备.中国药学杂志,2002,37(5):349-3528
    [179]Fernaddez-Urrusuno R,Calvo P,Vila-Jato J L,et al.Enhancement of nasal absorption of insulin using chitosan nanoparticles.Pharmaceutical Research,1999,16(10):1576-1581
    [180]Smith P K,Krohn R I,Hermanson G T,et al.Measurement of protein using bicinchoninic acid.Analytical Biochemistry,1985,150(1):76-85
    [181]Crommelin D J,Storm G,Jiskoot W,et al.Nanotechnological approaches for the delivery of macromolecules.Journal of Controlled Release,2003,87(1-3):81-88
    [182]Schipper N G M,Varum K M,Artusson P.Chitosans as absorption enhancers for poorly absorbable drugs:influence of molecular weight and degree of acetylation.European Journal of Pharmaceutical Sciences,1996,4(1):153-153
    [183]董英敏.壳低聚糖的合成及其应用.化工进展,1994,1(1):42-47
    [184]Son Y J,Jang J S,Cho Y W,et al.Biodistribution and anti-tumor efficacy of doxorubicin loaded glycol-chitosan nanoaggregates by EPR effect.Journal of Controlled Release,2003,91(1-2):135-145
    [185]Duthie S J.Folic-acid-mediated inhibition of human colon-cancer cell growth.Nutrition,2001,17(9):736-737
    [186]Oh J M,Park M,Kim S T,et al.Efficient delivery of anticancer drug MTX through MTX-LDH nanohybrid system. Journal of Physics and Chemistry of Solids, 2006, 67 (5-6): 1024-1027
    [187] Alvarez-Figueroa M J, Blanco-Mendez J. Transdermal delivery of methotrexate:iontophoretic delivery from hydrogels and passive delivery from microemulsions. International Journal of Pharmaceutics, 2001, 215 (1-2): 57-65
    [188] Van Dooren-Greebe R J, Kuijpers A LA, Mulder J, et al. Methotrexate revisited:effects of longterm treatment in psoriasis. The British Journal of Dermatology,1994,130(2): 204-210
    [189] Hung C M, Gupta P K. Formulation and characterization of magnetic polygluteraldehyde nanoparticles as carriers for poly-L-lysine-methotrexate.Drug Development and Industrial Pharmacy, 1990, 16(3): 509-521
    [190] Narayani R, Rao K P. Controlled release of anticancer drug methotrexate from biodegradable gelatin microspheres. Journal of Microencapsulation, 1994,11(1): 69-77
    [191] Narayani R, Rao K P. Biodegradable conjugates microspheres using two different gelatin drugs for the controlled delivery of methotrexate. International Journal of Pharmaceutics, 1996, 128(1-2): 261-268
    [192] Chau Y, Tan F E, Langer R. Synthesis and characterization of dextran-peptide-methotrexate conjugates for tumor targeting via mediation by matrix metalloproteinase Ⅱ and matrix metalloproteinase Ⅸ. Bioconjugate Chemistry,2004, 15(4): 931-941
    [193] Batrakova E V, Vinogradov S V, Robinson S M, et al. Polypeptide point modifications with fatty acid and amphiphilic block copolymers for enhanced brain delivery. Bioconjugate Chemistry, 2005, 16(4): 793-802
    [194] Modi S, Jain J P, Domb A J, et al. Copolymers of pharmaceutical grade lactic acid and sebacic acid: drug release behavior and biocompatibility. European Journal of Pharmaceutics and Biopharmaceutics, 2006, 64(3): 277-286
    [195] Reszka R, Beck P, Fichtner I, et al. Body distribution of free, liposomal and nanoparticle-associated mitoxantrone in B16-melanoma-bearing mice. Journal of Pharmacology and Experimental Therapeutics, 1997, 280(1): 232-237
    [196] Alexiou C, Arnold W, Klein R J, et al. Locoregional cancer treatment with magnetic drug targeting. Cancer Research, 2000, 60(23): 6641-6648
    [197] Torchilin V P, Levchenko T S, Lukyanov A N, et al. p-Nitrophenylcarbonyl-PEG-PE-liposomes: fast and simple attachment of specific ligands, including monoclonal antibodies, to distal ends of PEG chains via p-nitrophenylcarbonyl groups. Biochimica & Biophysica Acta, 2001, 1511(2): 397-411
    [198] Zhang Y, Kohler N, Zhang M. Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials, 2002,23(7): 1553-1561
    [199] Kohler N, Sun C, Wang J, et al. Mefhotrexate-modified superparamagnetic nanoparticles and their intracellular uptake into human cancer cells. Langmuir,2005,21(19): 8858-8864
    [200] Patri A K, Kukowska-Latallo J F, Baker J R Jr. Targeted drug delivery with dendrimers: comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex. Advanced Drug Delivery Reviews,2005, 57(15): 2203-2214
    [201] Gurdag S, Khandare J, Stapels S, et al. Activity of dendrimer-methotrexate conjugates on methotrexate-sensitive and-resistant cell lines. Bioconjugate Chemistry, 2006, 17(2): 275-283
    [202] Dhanikula R S, Hildgen P. Influence of molecular architecture of polyether-co-polyester dendrimers on the encapsulation and release of methotrexate.Biomaterials, 2007, 28(20): 3140-3152
    [203] Dhanikula R S, Argaw A, Bouchard J F, et al. Methotrexate loaded polyether-copolyester dendrimers for the treatment of gliomas: enhanced efficacy and intratumoral transport capability. Molecular Pharmaceutics, 2008,5(1): 105-116
    [204] Padilla De Jes(?)s O L, Ihre H R, Gagne L, et al. Polyester dendritic systems for drug delivery applications: in vitro and in vivo evaluation. Bioconjugate Chemistry, 2002, 13(3): 453-461
    [205] Ravi Kumar M N V, Muzzarelli R A A, Muzzarelli C, et al. Chitosan chemistry and pharmaceutical perspectives. Chemical Reviews, 2004, 104(12): 6017-6084
    [206] 常津.纳米高分子材料在抗癌药物控释方面的应用.中国生物医学工程学报,1996,15(2):102-105
    [207] Zhang H, Mardyani S, Chan W C W, et al. Design of biocompatible chitosan microgels for targeted pH-mediated intracellular release of cancer therapeutics.Biomacromolecules, 2006, 7(5): 1568-1572
    [208] Grenha A, Grainger C I, Dailey L A, et al. Chitosan nanoparticles are compatible with respiratory epithelial cells in vitro. European Journal of Pharmaceutical Sciences, 2007, 31(2): 73-84
    [209] Jang K, Lee H G. Stability of chitosan nanoparticles for L-ascorbic acid during heat treatment in aqueous solution. Journal of Agricultural and Food Chemistry,2008, 56(6): 1936-1941
    [210] Soo P L, Luo L, Maysinger D, et al. Incorporation and release of hydrophobic probes in biocompatible polycaprolactone-block-poly (ethylene oxide) micelles:implications for drug delivery. Langmuir, 2002, 18(25): 9996-10004
    [211] Denizot F, Lang R. Rapid colorimetric assay for cell growth and survival.Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. Journal of Immunological Methods, 1986, 89(2): 271-277
    [212] Vulic I, Feijen J, Vuli I, et al. Heparin-containing block copolymers. J Material Science: Materials in Medicine, 1993, 4(4): 353-365
    [213] Hobbs S K, Monsky W L, Yuan F, et al. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(8):4607-4612
    [214] Arnaout M A. Integrin structure: new twists and turns in dynamic cell adhesion.Immunological Reviews, 2002, 186(1): 125-140
    [215] Arnaout M A, Goodman S L, Xiong J P. Coming to grips with integrin binding to ligands. Current Opinion in Cell Biology, 2002, 14(5): 641-651
    [216] Weber W A, Haubner R, Vabuliene E, et al. Tumor angiogenesis targeting using imaging agents. Journal of Nuclear Medicine, 2001, 45(2): 179-182
    [217] Zitzmann S, Ehemann V, Schwab M. Arginine-glycine-aspartic acid (RGD)-peptide binds to both tumor and tumor-endothelial cells in vivo. Cancer Research, 2002, 62(18): 5139-5143
    [218] Liu S. Radiolabeled multimeric cyclic RGD peptides as integrin alphavbeta3 targeted radiotracers for tumor imaging. Molecular Pharmaceutics, 2006, 3(5):472-487
    [219] Brooks P C, Stromblad S, Klemke R, et al. Antiintegrin α_vβ_3 blocks human breast cancer growth and angiogenesis in human skin. The Journal of Clinical Investigation, 1995,96(4): 1815-1822
    [220] Burke P A, DeNardo S J, Miers L A, et al. Cilengitide targeting of α_vβ_3 integrin receptor synergizes with radioimmunotherapy to increase efficacy and apoptosis in breast cancer xenografts. Cancer Research, 2002, 62(15):4263-4272
    [221] Su Z F, Liu G, Gupta S, et al. In vitro and in vivo evaluation of a technetium-99m-labeled cyclic RGD peptide as a specific marker of α_vβ_3 integrin for tumor imaging.Bioconjugate Chemistry,2002,13(3):561-570
    [222]Hood J D,Bednarski M,Frausto R,et al.Tumor regression by targeted gene delivery to the neovasculature.Science,2002,296(5577):2404-2407
    [223]Chen X Y,Liu S,Hou Y,et al.MicroPET imaging of breast cancer α_ν-integrin expression with ~(64)Cu-labeled dimeric RGD peptides.Molecular Imaging &Biology,2004,6(5):350-359
    [224]Cai W,Zhang X,Wu Y,et al.A thiol-reactive ~(18)F-labeling agent,N-[2-(4-~(18)F-fluorobenzamido) ethyl]maleimide,and synthesis of RGD peptide-based tracer for PET imaging of α_νβ_3 integrin expression.Journal of Nuclear Medicine,2006,47(7):1172-1180
    [225]Zhang C,Jugold M,Woenne E C,et al.Specific targeting of tumor angiogenesis by RGD-conjugated ultrasmall superparamagnetic iron oxide particles using a clinical 1.5-T magnetic resonance scanner.Cancer Research,2007,67(4):1555-1562
    [226]Haubner R,Wester H J,Burkhart F,et al.Glycosylated RGD-containing peptides:tracer for tumor targeting and angiogenesis imaging with improved biokinetics.Journal of Nuclear Medicine,2001,42(2):326-336
    [227]Bloch S,Xu B,Ye Y,et al.Targeting beta-3 integrin using a linear hexapeptide labeled with a near-infrared fluorescent molecular probe.Molecular Pharmaceutics,2006,3(5):539-549
    [228]Fung J C,Marshall W F,Dernburg A,et al.Homologus chromosome paring in drosophila melanogaster proceeds through multiple independent initiations.Journal of Cell Biology,1998,141(1):5-20
    [229]Bornhop D J,Hubbard D S,Houlne M P,et al.Fluorescent tissue site-selective lanthanide chelate,Tb-PCTMB for enhanced imaging of cancer.Analytical Chemistry,1999,71(14):2607-2615
    [230]何晓晓,王柯敏,谭蔚泓等.基于生物荧光纳米颗粒的新型荧光标记方法及其在细胞识别中的应用.科学通报,2001,46(16):1353-1356
    [231]Schall C A,Wiencek J M.Stability of nicotinamide adenine dinucleotide immobilized to cyanogen bromide activated agarose.Biotechnology and Bioengineering,1997,53(1):41-48
    [232]Cai W,Shin D W,Chen K,et al.Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects.Nano Letters,2006,6(4):669-676
    [233]Fukushima S,Miyata K,Nishiyama N,et al.PEGylated polyplex micelles from triblock catiomers with spatially ordered layering of condensed pDNA and buffering units for enhanced intracellular gene delivery.Journal of the American Chemical Society,2005,127(9):2810-2811
    [234]陈伟,杨祥良.聚乙二醇修饰的共聚物纳米粒研究进展.生物医学工程学杂志,2003,20(1):143-147
    [235]Wheatley M A,Lathia J D,Oum K L.Polymeric ultrasound contrast agents targeted to integrins:importance of process methods and surface density of ligands.Biomacromolecules,2007,2(8):516-522
    [236]Gao X H,Cui Y,Levenson R M,et al.In vivo cancer targeting and imaging with semiconductor quantum dots.Nature Biotechnology,2004,22(8):969-976
    [237]钱小红,贺福初.蛋白质组学:理论与方法.北京:科学出版社,2003,1-10
    [238]Hunter T C,Andon N L,Koller A,et al.The functional proteomics toolbox:methods and applications.Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences,2002,782(1-2):165-181
    [239]Bidlingmaier S,Liu B.Interrogating yeast surface-displayed human proteome to identify small molecule-binding proteins.Molecular & Cellular Proteomics,2007,6(11):2012-2020
    [240]沈同,王镜岩.生物化学.上册.第三版.北京:高等教育出版社,2002,2-314
    [241]Miklos G L,Maleszka R.Protein functions and biological contexts.Proteomics,2001,1(2):169-178
    [242]Kusnezow W,Hoheisel J D.Antibody microarrays:promises and problems.Biotechniques,2002,10(33):14-23
    [243]许亚平,林俊岳.蛋白质提纯研究进展.天津化工,2006,20(4):9-12
    [244]郭勇.现代生化技术.第二版.北京:科学出版社,2005,109-116
    [245]Tong X D,Xue B,Sun Y.A novel magnetic affinity support for protein adsorption and purification.Biotechnology Progress,2001,17(1):134-139
    [246]Bucak S,Jones D A,Laibinis P E,et al.Protein separations using colloidal magnetic nanoparticles.Biotechnology Progress,2003,19(2):477-484
    [247]Bao J,Chen W,Liu T,et al.Bifunctional Au-Fe_3O_4 nanoparticles for protein separation.ACS Nanotation,2007,1(4):293-298
    [248]Herdt A R,Kim B S,Taton T A.Encapsulated magnetic nanoparticles as supports for proteins and recyclable biocatalysts.Bioconjugate Chemistry, 2007,18(1):183-189
    [249]Smith J E,Wang L,Tan W H.Bioconjugated silica-coated nanoparticles for bioseparation and bioanalysis.Trends in Analytical Chemistry,2006,25(9):848-855
    [250]Philipse A P,Van Bruggen M P B,Pathmamanoharan C.Magnetic silica dispersions:preparation and stability of surface-modified silica particles with a magnetic core.Langmuir,1994,10(1):92-99
    [251]蒋中华,张建辉.生物分子固定化技术及其应用.北京:化学工业出版社,1998.91-95
    [252]杨文胜,高明远,白玉白.纳米材料与生物技术.北京:化学工业出版,2005.80-103
    [253]Pappas D,Wang K.Cellular separations:a review of new challenges in analytical chemistry.Analytica Chimica Acta,2007,601(1):26-35
    [254]肖旭贤,何琼琼,黄可龙.磁性纳米生物材料在医学上的应用.生物技术通报,2006,45(3):11-13
    [255]Chatterjee J,Haik Y,Chen C J.Modiffication and characterization of polystyrene-based magnetic microspheres and comparison with albumin-based magnetic microspheres.Journal of Magnetism and Magnetic Materials,2001,225(1-2):21-29
    [256]Hoshino A,Ohnishi N,Yasuhara M,et al.Separation of murine neutrophils and macrophages by thermoresponsive magnetic nanoparticles.Biotechnology Progress,2007,23(6):1513-1516
    [257]Said T M,Agarwal A,Zborowski M,et al.Utility of magnetic cell separation as a molecular sperm preparation technique.Journal of Andrology,2008,29(2):134-142
    [258]Wang G P,Song E Q,Pang D W,et al.Biofunctionalization of fluorescent-magnetic-bifunctional nanospheres and their applications.Chemical Communications,2005,34:4276-4278
    [259]Xie H Y,Zuo C,Liu Y,et al.Cell-targeting multifunctional nanospheres with both fluorescence and magnetism.Small,2005,1(5):506-509
    [260]何晓晓,王柯敏,谭蔚泓等.静电相互作用对微乳液法制备核壳纳米颗粒的影响.科学通报,2005,50(20):2185-2190
    [261]Mujumdar R B,Ernst L A,Mujumdar S R,et al.Cyanine dye labeling reagents:sulfoindocyanine succinimidyl esters.Bioconjugate Chemistry,1993,4(2):105-111
    [262] Green R E, Sosik H M, Olson R J, et al. Flow cytometric determination of size and complex refractive index for marine particles: comparison with independent and bulk estimates. Applied Optics, 2003, 42(3): 526-541
    [263] B(?)scher K, Helm C A, Gross C, et al. Nanoparticle composition of a ferrofluid and its effects on the magnetic properties. Langmuir, 2004, 20(6): 2435-2444

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700