用户名: 密码: 验证码:
碳材料表面抗氧化涂层的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着碳材料在各个领域的广泛应用,碳复合材料的研发得到了迅猛发展。但是由于碳材料在氧化性气氛下极易氧化,大大限制了其使用环境,应用范围缩小。因此在碳材料表面制备抗氧化涂层成为提高其应用性的主要途径。在碳材料表面制备防护涂层不仅能够提高其抗氧化性能,同时还能够提高其力学性能,并且不影响基体的自身机能。本文围绕碳材料抗氧化涂层的制备,利用场发射扫描电子显微镜(FESEM)、X射线衍射仪(XRD)、透射电子显微镜(TEM)、热分析仪(TG/DSC)、傅里叶变换红外光谱(FTIR)以及拉曼光谱(Raman)等分析手段对涂层及增强体的形貌、组织结构、成分、热性能、化学结构等进行表征测试,对纯SiC涂层的失效机理、增强体对涂层性能的影响、涂层制备工艺、增强体引入方法等进行了研究。
     通过包埋法在碳材料表面制备一层纯SiC涂层,通过氧化及热震实验,对比其实验前后形貌及结构变化,分析涂层对基体的防护及失效机理,得到以下结论:所制备的纯SiC涂层对石墨基体具有一定的抗氧化作用,但是其效果并不显著,在1400℃下氧化2h,进行3次循环后氧化失重不能满足实际应用要求。纯SiC涂层能够在一定程度上提高碳材料的抗氧化性能且表现出一定的自愈合能力,但是其自愈合过程中对于涂层本身的消耗较大,这也对其防护作用造成了一定程度的影响。热震实验中的失效主要是由于其本身致密性较低,不能在低温起到很好的防护作用,且热失配造成的涂层开裂较为严重。纯SiC涂层在对基体的抗氧化过程中主要受两个阶段的控制:当温度较低时,氧化过程由氧化反应和扩散反应共同控制,基体发生均匀氧化反应;温度较高时,氧化过程由扩散速度控制,基体发生不均匀氧化反应。纯SiC涂层在高温氧化实验和热震实验中的裂纹产生机理不同:高温氧化实验最初是涂层外表面微裂纹的生成,且在反复氧化实验中,裂纹能够自愈合,随着涂层的自身消耗,裂纹贯穿涂层直到基体表面而失效;而在热震实验中,涂层表面裂纹不愈合,且随着实验的进行,产生于涂层与基体界面结合处的裂纹相互串联扩展,并最终导致SiC涂层脱落。
     以纯SiC涂层的失效机理研究为基础,通过引入SiC晶须层,改善包埋法制备的SiC涂层性能,通过氧化实验,对比了其不同温度氧化实验前后形貌及结构变化,分析涂层对基体的防护机理。以低成本的H-PSO为原料引入SiC晶须后制备的涂层,表现出较好的高温抗氧化性能。在氧化过程中,涂层表面微孔能够愈合,1400℃下氧化4h,氧化失重仅为0.71%。SiC晶须的存在,对Si的过度渗透有一定的抑制作用,但是由于涂层本身仍存在微孔,因此涂层的抗氧化性能仍有待提高。
     通过物理掺杂引入MoSi2增强体,在石墨基体表面制备MOSi2改性SiC复合涂层,通过氧化及热震实验,对比其实验前后形貌及结构变化,分析了涂层对基体的防护机理。通过均匀设计试验研究了复合涂层的最佳制备工艺,结果表明:包埋法制备复合涂层的工艺参数中对涂层性能影响最大的是热处理的保温时间。根据实验结果及条件允许范围,我们选用的试验参数是:热处理温度为1600℃,保温时间为2h,气流量为150ml/min。经过循环静态空气氧化实验发现MoSi2改性SiC涂层能够较好的起到抗氧化作用,其1400℃下的氧化失重明显低于纯SiC涂层,经1400℃氧化8h,氧化失重小于4%。MoSi2增强体的引入有利于涂层与基体间热应力调节,减少了涂层制备过程中由于热应力作用产生的裂纹。此外,由于MoSi2自身的高温软塑性及体积膨胀使得所制备的涂层致密性提高。然而,MOSi2增强体的引入对提高试样的低温抗热震性能作用不大。
     用H-PSO作先驱体,分别以石墨材料和C/C复合材料为基体,通过浸渍烧结引入SiC晶须层,此方法制备工艺简单,成本低。在碳材料表面制备SiC晶须层的基础上又经过二次包埋制备SiC/Si/MoSi2复合涂层。涂层厚度约为300μm,且涂层与基体结合较好,涂层表面连续致密。通过1000℃和1400℃下氧化实验及热震实验,分析了改性涂层的效果。以石墨材料为基体制备的试样在氧化实验前,1400℃的4h的预氧化处理使得试样产生0.045%的增重。之后的氧化循环实验表明,所制备的SiC/Si/MOSi2复合涂层具有良好的抗氧化性能,它能够使石墨材料在1000℃氧化12h后,氧化失重低于1%,且在氧化过程中,涂层表现出一定的自愈合能力。SiC晶须层不仅能够有效调节应力,减少裂纹的产生,同时能够有效减小熔融Si的渗透深度,得到厚度适中且连续致密的SiC/Si/MoSi2复合涂层。MOSi2的引入能够有效提高涂层抗氧化性能。其中的MoSi2在氧化过程中快速生成的SiO2能够及时填补涂层自身孔隙,起到自愈合的作用。而以MoSi2为增强体相较于Mo表现出更好的效果,1400℃下氧化10h,氧化失重约为1%。对于C/C复合材料基体制备的涂层,引入SiC晶须层能够一定程度的抑制熔融Si的过度渗入,调节涂层与基体热膨胀差异,但是其在1400℃下的抗氧化性能还有待提高。在石墨基体表面制备SiC/Si/MOSi2复合涂层能够有效地改善试样的抗热震性能。
     同样以H-PSO为先驱体,通过粉末法制备SiC晶须,并以结晶率为指标,用正交试验法研究制备工艺对晶须生长的影响。通过不同温度下生成物的结构及形貌变化,研究了SiC晶须的生长机理。此外,以新的SiC晶须制备方法在石墨基体表面引入了晶须层,经二次包埋烧结制备出最终的复合涂层。通过相应的氧化实验及热震实验,借助测试手段观察涂层的形貌及物相变化,得到以下结论:热处理温度是影响SiC晶须生成最重要的因素,其影响程度远远大于其他参数。高的热处理温度、较高的气流量、较小的孔隙率、长的保温时间有利于SiC晶须的生成长大。所生成的SiC晶须是以结晶相的β一SiC为核,以硅氧化物为壳的核壳结构,且沿(111)晶面方向生长的。晶须形貌均一,呈长直态分布在基体表面,长径比大。碳基体的存在有利于SiC晶须的生成长大,且SiC晶须的生成先后遵循defect-vapor-vapor及Vapor-liquid-defect-solid反应机理。以新方法引入SiC晶须层,再通过包埋法制备的复合涂层使得试样的抗氧化能力得到明显的提高,在1400℃下氧化10h,其热失重不超过1%。
Due to excellent high-temperature performance, carbon materials were widely used in many industries. However, the deadly problem for the application of these materials lay in their quick oxidation at high temperature in the presence of oxygen, which seriously affected the performance and service life of carbon materials. Thus, preparing anti-oxidation coating on the surface of the matrix was the ideal method to improve oxidation resistance and mechanical property of carbon materials without bad influence on the matrix's own performance. The article centered on preparation of oxidation resistance coating, and characterized the organization structure, composition, thermal property, and chemical structure by field emission scanning electron microscopy (FESEM), X-Ray Diffraction (XRD), transmission electron microscope (TEM), thermo-analytical instrument (TG/DSC), Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy (Raman). Based on the above, the failure mechanism of pure SiC coating, effect of the reinforcement on the performance of the coating, preparation technology of the coating, and the introduction methods of the reinforcement were investigated.
     We prepared pure SiC coating on carbon materials by embedding method, and contrasted the morphology and structure changes before and after oxidation test and thermal shock test, then analyzed the protection and failure mechanism of the coating to the matrix. The results showed that the pure SiC coating had a certain antioxidant effect on graphite matrix, but its effect was not significant. The oxidation weightless could not satisfy the practical application, with oxidation for2h at1400℃after three cycles. Pure SiC coating had a certain degree of oxidation resistance for carbon materials and showed some self-healing ability, but self-consumption of the coating was bigger in the self-healing process, which caused a degree of negative influence to its protection. In thermal shock test, the failure was mainly due to its own low density, which induced the coating not able to play well protection at low temperature, and the cracking of the coating caused by thermal mismatch was more serious. Pure SiC coating in the oxidation test was mainly controlled by two stages:When the temperature was low, the oxidation process was controlled by both oxidation and diffusion reaction, and homogeneous oxidation reaction occurred on the surface of the matrix; at higher temperature, the oxidation process was controlled by the diffusion rate, and uneven oxidation reaction occurred on the surface of the matrix. The crack mechanisms of the pure SiC coatings were different in high temperature oxidation test and thermal shock test. The micro crack formation was on outside the surface of coating in high temperature oxidation test, and with the oxidation test repeated, the crack could be self-healing. However, in thermal shock test, the cracks were through the coating to the matrix surface, and as the experiment progressed, the crack didn't heal, eventually led to fall off.
     Taking the research on failure mechanism of the pure SiC coating as the foundation, through the introduction of SiC whisker layer, we improved the performance of SiC coating prepared by the embedding method. Comparing the morphology and structural changes before and after the oxidation tests, we analyzed the protection mechanism of the coating to the matrix. Introduction of SiC whisker with H-PSO as a raw material before preparation of the final coating, which made the coating showed good oxidation resistance at high temperature. In the process of oxidation, micro pores of the coating surface could heal. The oxidation weight loss was only0.71%after oxidation at1400℃for4h. The presence of SiC whisker had a certain inhibition for excessive penetration of silicon, but because there was still a micro porous coating, the oxidation resistance of coating still needed to be improved.
     We prepared the composite coating on surface of graphite matrix. The coating was reinforced by MoSi2through physical doping. Comparing the morphology and structure changes before and after the oxidation and thermal shock tests, the protection mechanism of the coating to the matrix was analyzed. The best preparation process of the composite coating was studied by uniform design experiment. The results showed that the most important parameter influence on composite coating prepared by embedding method was the holding time. According to the experimental results and conditions permissible range, we chose the test parameters were:heat temperature was1600℃, holding time was2h, and gas flow rate was150ml/min. After cyclic static air oxidation test, the coating showed better antioxidant property, and its weightlessness was lower than that of pure SiC coating, after oxidation at1400℃for8h, and the oxidation weight loss was less than4%. The introduction of MoSi2was beneficial to thermal stress adjustment between coating and matrix, and reduced the coating cracks due to thermal stress generated in the process of preparation. Because of high temperature plasticity and volume expansion, MoSi2made the density of the coating increased. However, as strengthen body, the introduction of MoSi2was not obvious for thermal shock effect at low temperature.
     With H-PSO as a pioneer body, we introduced SiC whisker layer on the graphite or C/C matrix surface by dipping sintering process. The preparation of SiC whisker was simple and low cost. A SiC/Si/MoSi2coating for carbon materials was prepared by subsequent embedding technique. The thickness of the coating was about300μm. In addition, the coating combined with matrix well, and the surface was continuous and dense. Through oxidation test at1000℃or1400℃and thermal shock test at800℃, the performance of the coating was investigated. For graphite matrix coated by the SiC/Si/MoSi2coating, the oxidation pretreatment experiment was carried out in the static air at1400℃for4h before oxidation test and the sample had0.045%weight gain. Subsequent oxidation test showed that, the SiC/Si/MoSi2multi-coating had excellent anti-oxidation property, which could protect graphite materials from oxidation at1000℃in air for12h and the corresponding weight loss was below1%. Based on the surface morphology changes, oxidation pretreatment experiment and oxidation test enhanced densification of multi-coating and the coating had a certain self-healing ability. SiC whisker layer on the matrix surface could effectively regulated stress and reduced the generation of cracks. In addition, the existence of the whisker layer could effectively inhibit excess infiltration of molten Si and control the thickness of the coating. The introduction of MoSi2could effectively improve oxidation resistance of the coating. The formation of SiO2during oxidation process of MoSi2could fill the pores of the coating itself, showing the self-healing property. MoSi2had better effect compared with Mo, which could protect graphite materials from oxidation at1400℃in air for10h and the corresponding weight loss was about1%. For C/C composite, introduction of SiC whisker layer could inhibit excess infiltration of molten Si at a certain degree, and adjust thermal expansion differences between coating and matrix, but anti-oxidation property at1400℃needed to be improved. In addition, preparation of SiC/Si/MoSi2composite coating on graphite matrix could effectively improve the thermal shock resistance of the coating.
     Same with H-PSO as the pioneer body, we introduced of SiC whisker layer on the graphite matrix surface by powder method, and used orthogonal test method to research the influence of preparation technology on growth of SiC whisker, with the crystalline fraction as target. The growth mechanism of SiC whisker was studied through comparing the changes of structure and morphology of the products at different temperatures. In addition, introducing SiC whisker layer by the new method, the final composite coating was formed on graphite matrix after subsequent embedding technique. By the corresponding oxidation test and thermal shock test, with the help of the test method to observe the changes of the coating morphology and phase, we got the following conclusion:The heat treatment temperature (T) was the most important factor that influenced the growth of SiC whisker, far exceeding the other factors. High temperature, higher gas flow, lower porosity and longer holding time were favorable to whisker generation. The SiC whisker was of core-shell structure with SiC phase as core and silicon oxide as the shell, growing along the direction of (111). The morphology of the whisker was uniform, distributing on the matrix surface with long straight state and larger length-diameter ratio. The existence of carbon matrix was beneficial to the growth of SiC whisker, and the growth of SiC whisker had followed defect-vapor-vapor and vapor-liquid-defect-solid mechanism. Introduction of SiC whisker layer by the new method, and then the composite coating prepared by embedding method enhanced the anti-oxidation property of the materials obviously. The coating could protect graphite materials from oxidation at1400℃in air for10h and the corresponding weight loss was below1%.
引文
[1]时虎,胡源.可膨胀石墨的合成及其阻燃应用[J].阻燃材料与技术,2002,(3):6-15.
    [2]杨旭,谷小虎,王育红.等静压各向同性石墨应用与研究[J].炭素,2012,149(1):24-26.
    [3]李贺军.炭/炭复合材料[J].新型炭材料,2001,16(2):7-8.
    [4]Hai-Tao Fang, Zhong-Da Yin, Jing-Chuan Zhu, Jae-Ho Jeon, Yoo-Dong Hahn. Effect of Al additive in Si slurry coating on liquid Si infiltration into carbon-carbon composites[J]. Carbon,2001,39(13):2035-2041.
    [5]侯党社,李克智,李贺军,付前刚,魏剑,和永岗.C/C复合材料SiC-TaSi2/MoSi2抗氧化复合涂层研究[J].金属学报,2008,44(3):331-335.
    [6]Y.-C. Zhu, S. Ohtani, Y. Sato, N. Iwamoto. Influence of boron ion implantation on the oxidation behavior of CVD-SiC coated carbon-carbon composites[J]. Carbon, 2000,38(4):501-507.
    [7]Joachim Roth. Chemical erosion of carbon based materials in fusion devices[J]. Journal of Nuclear Materials,1999,266-269(2):51-57.
    [8]Wei-Ming Lu, D.D.L. Chung. Oxidation protection of carbon materials by acid phosphate impregnation[J]. Carbon,2002,40(8):1249-1254.
    [9]黄剑锋,李贺军,熊信柏,曾燮榕,李克智,付业伟,黄敏.炭/炭复合材料高温抗氧化涂层的研究进展[J].新型炭材料,2005,20(4):373-379.
    [10]黄希沽.钢铁冶金过程理论[M].北京:冶金工业出版社,1993.
    [11]John D. Buckley, Dan D. Edie. Carbon-carbon materials and composites[M]. USA:Noyes Publications,1993:121.
    [12]P. L. Walker, R. L. Taylor. An update on the carbon-oxygen reaction[J]. Carbon, 1991,29(3):411-421.
    [13]赵伟.直拉单晶硅炉用炭素材料防护涂层的制备与性能研究[D].济南:山东大学,2013.
    [14]李贺军,曾燮榕,朱小旗,徐志淮.炭/炭复合材料抗氧化研究[J].炭素,1999,(3):2-7.
    [15]S Lavruquere, H Blanchard, R Pailler, R Naslain. Enhancement of the oxidation resistance of interfacial area in C/C composites. Part II:oxidation resistance of B-C, Si-B-C and Si-C coated carbon preforms densified with carbon [J]. Journal of the European Ceramic Society, 2002,22(7):1001-1009.
    [16]崔红,闫联生,刘勇琼,张强,孟祥利.掺杂改性C/C复合材料研究进展[J].中国材料进展,2011,30(11):13-17.
    [17]刘文川,邓景屹,杜海峰,魏永良.C/C,C/C-SiC梯度基、纳米基、双元基复合材料微观结构特征[J].中国科学(B辑),1998,28(5):471-476.
    [18]余惠琴,陈长乐,邹武,闰联生.C/C-SiC复合材料的制备与性能[J].宇航材料工艺,2001,(2):28-32.
    [19]韩立军,李铁虎,郭恩明,刘方军,武洪臣,邱海鹏.C/C复合材料抗氧化方法及发展趋势[J].航空制造技术,2003,(12):26-30.
    [20]Rodolphe Delaval, Gerard Palavit, Jacques Rey, Michel Laxague, Jacques Thebault. Method for protecting a porous carbon containing material from oxidation, and material obtained thereby[P]. US Patent:5714244,1998.02.03.
    [21]Jacques Thebault, Michel Laxague, Jacques Rey, Rodolphe Delaval, Gerard Palavit. Method for applying an anti-oxidative coating on brake disks of a carbon-containing composite material[P]. US Patent:5686144,1997.11.11.
    [22]来忠红,朱景川,全在昊,尹钟大.C/C复合材料Mo-Si-N抗氧化涂层的制备[J].稀有金属材料与工程,2005,34(11):1794-1797.
    [23]Valentina Sergeevna Terentieva, Olga Petrovna Bogachkova, Elena Valentinovna Goriatcheva. Method for protecting productsmade of a refractory material against oxidation, and resulting products[P]. US Patent:5677060,1997.10.14.
    [24]M. R. Mucalo, N. B. Milestone. Preparation of ceramic coatings from pre-ceramic precursors[J]. Journal of Materials Science,1994,29(22):5934-5946.
    [25]Chun-He Tang, Jie Guan. Improvement in oxidation resistance of the nuclear graphite by reaction-coated SiC coating[J]. Journal of Nuclear Materials,1995, 224(1):103-108.
    [26]W. Kowbel, J. C. Withers, P. O. Ransone. CVD and CVR silicon-based functionally gradient coatings on C/C composites [J]. Carbon,1995,33(4): 415-426.
    [27]Yao-Can Zhu, S. Ohtani, Y. Sato. Formation of a functionally gradient (Si3N4+SiC)/C layer for the oxidation protection of carbon-canbon composites[J]. Carbon,1999,37(4):1417-1428.
    [28]Hai-Tao Fang, Jing-Chuan Zhu, Zhong-Da Yin, Jae-Ho Jeon, Yoo-Dong Hahn. A Si-Mo fused slurry coating for oxidation protection of carbon-carbon composites[J]. Journal of Materials Science Letters,2001,20(2):175-177.
    [29]Juan Zhao, Gui Wang, Quangui Guo, Lang Liu. Microstructure and property of SiC coating for carbon materials[J]. Fusion Engineering and Design,2007,82(4): 363-368.
    [30]Federico Smeacetto, Monica Ferraris, Milena Salvo. Multilayer coating with self-sealing properties for carbon-carbon composites[J]. Carbon,2003,41(11): 2105-2111.
    [31]张伟儒,孙峰,田庭燕,武七德,陈波,吉晓莉,陈文.碳化硅基材料抗氧化涂层的研究进展[J].硅酸盐通报,2007,26(4):778-783.
    [32]Takuya Aoki, Hiroshi Hatta, Taku Hitomi, Hiroshi Fukuda, Ichiro Shiota. SiC/C multi-layered coating contributing to the antioxidation of C/C composites and the suppression of through-thickness cracks in the layer[J]. Carbon,2001,39(10): 1477-1483.
    [33]黄浩,陈大明,仝建峰,李宝伟.石墨表面CVD SiC涂层微观结构研究[J].航空材料学报,2008,28(2):50-54.
    [34]Lei-Lei Zhang, He-Jun Li, Jin-Hua Lu, Ke-Zhi Li, Sheng Cao, Xue-Ni Zhao, Zi-Bo He. Surface characteristic and cell response of CVD SiC coating for carbon/carbon composites used for hip arthroplasty[J]. Surface and Interface Analysis,2012, 44(10):1319-1323.
    [35]G. Bolelli, V. Cannillo, C. Lugli, L. Lusvarghi, T. Manfredini. Plasma-sprayed graded ceramic coatings on refractory materials[J]. Journal of the European Ceramic Society,2006,26(13):2561-2579.
    [36]胡海峰,李彦武,陈朝辉,冯春祥,张长瑞,宋永才.先驱体转化法制备陶瓷涂层[J].材料工程,1997,(3):7-9.
    [37]Zhi-Qiang Fu, Chun-He Tang, Tong-Xiang Liang. Structure of SiC coatings from polycarbosilane on graphite for fuel element matrix of high temperature gas-cooled reactor[J]. Surface & Coatings Technology, 2006,200(12-13): 3950-3954.
    [38]李春华,黄可龙,李效东,曹峰,余煌玺.聚碳硅烷先驱体转化法制备SiC涂层研究[J].材料科学与工艺,2005,13(2):222-224.
    [39]李永清,陈朝辉,张长瑞,周安郴.有机硅先驱体在陶瓷成型中的应用[J].现代技术陶瓷,1996,70(4):32-34.
    [40]余煜玺,李效东,曹峰,邢欣,冯春祥.近化学计量比SiC陶瓷纤维先驱体制备方法[J].高科技纤维与应用,2003,28(2):21-25.
    [41]谢征芳,陈朝辉,李永清,周长江.活性填料在先驱体转化制备陶瓷材料中的应用[J].无机材料学报,2000,15(2):200-208.
    [42]曹淑伟,谢征芳,王军,王浩,唐云,李文华.含异质元素SiC陶瓷先驱体的研究进展[J].高分子材料科学与工程,2007,23(3):1-5.
    [43]谢征芳,陈朝辉,李永清,郑文伟,胡海峰,肖加余.活性填料钼在聚碳硅烷转化陶瓷中的应用[J].高技术通讯,2000,12:67-70.
    [44]谢征芳,陈朝辉,李永清,郑文伟,胡海峰,肖加余.活性填料钽在聚碳硅烷转化陶瓷中的应用[J].材料工程,2000,(9):7-10.
    [45]谢征芳,陈朝辉,李永清,郑文伟,胡海峰,肖加余.活性填料铝在聚碳硅烷裂解陶瓷中的应用[J].硅酸盐学报,2000,28(3):240-244.
    [46]T. ishikawa, Y. kohtoku, K. kumagawa. Production mechanism of polyzirconocarbo-silane using zirconium (IV) acetylacetonate and its conversion of the polymer into inorganic materials[J]. Journal of Materials Science,1998, 33(1):161-166.
    [47]谢征芳,陈朝辉.活性填料控制的先驱体裂解陶瓷的尺寸变化[J].金属学报,2002,38(4):443-448.
    [48]Zhan-Jun Liu, Quan-Gui Guo, Lang Liu, Jing-Li Shi, Geng-Tai Zhai. Effect of sintering temperature on microstructure and properties of SiC coatings for carbon materials[J]. Surface & Coatings Technology, 2008,202(13):3094-3099.
    [49]黄敏,李克智,李贺军,付前刚,王宇,雒设计.两步包埋法制备C/C复合材料SiC/Cr/Al/Si涂层研究[J].西安石油大学学报(自然科学版),2009,24(2):89-92.
    [50]Hai-Jun Zhou, Le Gao, Zhen Wang, Shao-Ming Dong. ZrB2-SiC oxidation protective coating on C/C composites prepared by vapor silicon infiltration process[J]. Journal of the American Ceramic Society,2010,93(4):915-919.
    [51]赵娟,王贵,刘朗,郭全贵.SiC涂层性能与石墨基体结构的关系[J].原子能科学技术,2008,42(4):353-357.
    [52]Juan Zhao, Gui Wang, Quan-Gui Guo, Lang Liu. Microstructure and property of SiC coating for carbon materials[J]. Fusion Engineering and Design,2007,82(4): 363-368.
    [53]Ying Peng, Zhi-Jian Peng, Xiao-Yong Ren, Hui-Yong Rong, Cheng-Biao Wang, Zhi-Qiang Fu, Long-Hao Qi, He-Zhuo Miao. Effect of SiC nano-whisker addition on TiCN-based cermets prepared by spark plasma sintering[J]. International Journal of Refractory Metals and Hard Materials,2012,34:36-40.
    [54]Jia Lin, Xing-Hong Zhang, Wen-Bo Han, Hua Jin. The hybrid effect of SiC whisker coupled with ZrO2 fiber on microstructure and mechanical properties of ZrB2-based ceramics[J]. Materials Science and Engineering:A,2012,551(15): 187-191.
    [55]Peng Wu, Yong Zheng, Yong-Le Zhao, Hai-Zhou Yu. Effect of SiC whisker addition on the microstructures and mechanical properties of Ti(C,N)-based cermets [J]. Materials & Design,2011,32(2):951-956.
    [56]Xin-Bo He. Effect of sintering additives on mechanical properties of Cf/SiC composites [J]. Materials Chemistry and Physics,2002,74(3):300-305.
    [57]付志强,唐春和,梁彤祥,李自强,SiC涂层对高温气冷堆用石墨摩擦磨损性能的影响[J].金属热处理,2005,30(9):13-16.
    [58]Fei Chen, Hai Zhou, Bin Yao, Zhen Qin, Qing-Feng Zhang. Corrosion resistance property of the ceramic coating obtained through microarc oxidation on the AZ31 magnesium alloy surfaces[J]. Surface & Coatings Technology,2007,201(9-11): 4905-4908.
    [59]李贺军,薛晖,付前刚,张雨雷,史小红,李克智.C/C复合材料高温抗氧化涂层的研究现状与展望[J].无机材料学报,2010,25(4):337-343.
    [60]Qian-Gang Fu, He-Jun Li, Xiao-Hong Shi, Ke-Zhi Li, Guo-Dong Sun. Silicon carbide coating to protect carbon carbon composites against oxidation[J]. Scripta Materialia,2005,52(9):923-927.
    [61]Qian-Gang Fu, He-Jun Li, Xiao-Hong Shi, Ke-Zhi Li, Chuang Wang, Min Huang. Double-layer oxidation protective SiC glass coatings for carbon carbon composites[J]. Surface & Coatings Technology,2006,200(11):3473-3477.
    [62]Federico Smeacetto, Monica Ferraris, Milena Salvo. Multilayer coating with self-sealing properties for carbon-carbon composites[J]. Carbon,2003,41(11): 2105-2111.
    [63]Jian-Feng Huang, He-Jun Li, Xie-Rong Zeng, Ke-Zhi Li. Preparation and oxidation kinetics mechnism of three-layer multi-layer-coatings-coated carbon-carbon composites[J]. Surface & Coatings Technology,2006,200(18/19): 5379-5385.
    [64]J. Huang, F. Deng, L. Cao, J. Wu, H. He, H. Luo, G. Zhang. Novel hydrothermale electrodeposition technology for preparation of yttriun silicates coating on carbon/carbon composites[J]. Materials Technology:Advanced Performance Materials,2006,21(1):15-17.
    [65]Lai-Fei Cheng, Yong-Dong Xu, Li-Tong Zhang, Xiao-Wei Yin. Oxidation behavior of carbon-carbon composites with a three-layer coating from room temperature to 1700℃[J]. Carbon,1999,37(6):977-981.
    [66]黄剑锋,张玉涛,李贺军,曾燮榕,曹丽云.国内C/C复合材料高温抗氧化涂层研究新进展[J].航空材料学报,2007,27(2):74-78.
    [67]Jian-Feng Huang, Xie-Rong Zeng, He-Jun Li, Xin-Bo Xiong, Min Huang. Mullite-Al2O3-SiC oxidation protective coating for carbon/carbon composites[J]. Carbon,2003,41(14):2852-2829.
    [68]Jian-Feng Huang, Xie-Rong Zeng, He-Jun Li, Xin-Bo Xiong, Min Huang. Al2O3-mullite-SiC-Al4SiC4 multi-composition coating for carbon/carbon composites[J]. Materials Letters,2004,58(21):2627-2630.
    [69]Jian-Feng Huang, He-Jun Li, Xie-Rong Zeng, Xin-Bo Xiong, Ke-Zhi Li. Influence of preparation technology on the microstructure and anti-oxidation property of SiC-Al2O3-mullite multi-coatings for carbon/carbon composites[J]. Applied Surface Science,2006,252(12):4244-4249.
    [70]Guo-Zhen Shen, Yoshio Bando, Chang-Hui Ye, Bao-Dan Liu, Dmitri Golberg. Synthesis, characterization and field-emission properties of bamboo-like β-SiC nanowires[J]. Nanotechnology,2006,17(14):3468-3472.
    [71]付志强,唐春和,梁彤翔,李自强.SiC涂层对高温气冷堆用石墨摩擦磨损性能的影响[J].金属热处理,2005,30(9):13-16.
    [72]N. J. Parratt. Fibre Reinforce Matrrial Technology[M]. London:Van Nostrand Reinolod,1972.
    [73]谭周建,李军,张翔,李丙菊,褚胜林,廖寄乔.碳化硅晶须对C/C复合材料表面SiC涂层的影响[J].粉末冶金材料科学与工程,2012,17(5):664-668.
    [74]Xing-Hong Zhang, Lin Xu, Wen-Bo Han, Ling Weng, Jie-Cai Han, Shan-Yi Du. Microstructure and properties of silicon carbide whisker reinforced zirconium diboride ultra-high temperature ceramics[J]. Solid State Sciences,2009,11(1): 156-161.
    [75]中国硅酸盐学会.硅酸盐词典[M].北京:中国建筑工业出版社,1986.
    [76]徐东明.MoSi2的强韧化及氧化烧蚀性能研究[D].哈尔滨:哈尔滨工业大学,2007.
    [77]Laura Silvestroni, Diletta Sciti, Cesare Melandri, Stefano Guicciardi. Toughened ZrB2-based ceramics through SiC whisker or SiC chopped fiber additions[J]. Journal of the European Ceramic Society,2010,30(11):2155-2164.
    [78]Stefano Guicciardi, Laura Silvestroni, Mats Nygren, Diletta Sciti. Microstructure and toughening mechanisms in spark plasma-sintered ZrB2 ceramics reinforced by SiC whiskers or SiC-chopped fibers[J]. Journal of the American Ceramic Society, 2010,93(8):2384-2391.
    [79]Clara Musa, Roberto Orru, Diletta Sciti, Laura Silvestroni, Giacomo Cao. Synthesis, consolidation and characterization of monolithic and SiC whiskers reinforced HfB2 ceramics[J]. Journal of the European Ceramic Society,2013, 33(3):603-614.
    [80]E. Karamian, A. Monshi, A. Bataille, A. Zadhoush. Formation of nano SiC whiskers in bauxite-carbon composite materials and their consequences on strength and density[J]. Journal of the European Ceramic Society,2011,31(14): 2677-2685.
    [81]Akio Yonezu, Keishi Yoneda, Hiroyuki Hirakata, Masayuki Sakihara, Kohji Minoshima. A simple method to evaluate anisotropic plastic properties based on dimensionless function of single spherical indentation-Application to SiC whisker-reinforced aluminum alloy[J]. Materials Science and Engineering:A, 2010,527(29-30):7646-7657.
    [82]林莉.碳化硅纤维的生产及市场[J].化工新型材料,1998,26(9):28-30.
    [83]Yan-Hui Chu, Hc-Jun Li, Qian-Gang Fu, Ilai-Peng Wang, Xiang-Hui Hou, Xu Zou, Gu-Nan Shang. Oxidation protection of C/C composites with a multilayer coating of SiC and Si+SiC+SiC nanowires[J]. Carbon, 2012,50(3):1280-1288.
    [84]Qian-Gang Fu, He-Jun Li, Zheng-Zhong Zhang, Xie-rong Zeng, Ke-Zhi Li. SiC nanowire-toughened MoSi2-SiC coating to protect carbon/carbon composites against oxidation[J]. Corrosion Science,2010,52(5):1879-1882.
    [85]Yan-Hui Chu, Qian-Gang Fu, Cui-Wei Cao, He-Jun Li, Ke-Zhi Li, Qin Lei. SiC nanowire-toughened SiC-MoSi2-CrSi2 oxidation protective coating for carbon carbon composites[J]. Surface & Coatings Technology,2010,205(2):413-418.
    [86]付前刚.SiC晶须增韧硅化物及siC/玻璃高温防氧化涂层的研究[D].西安:西北工业大学,2007.
    [87]G. A. Bootsma, W. F. Knippenberg, G. Verspui. Growth of SiC whiskers in the system SiO2-C-H2 nucleated by iron[J]. Journal of Crystal Growth,1971,11(3): 297-309.
    [88]Seo Won-Seon, Kunihito koumoto, Shigeo Arai. Effects of boron, carbon, and iron content on the stacking fault formatting during synthesis of β-SiC particles in the system SiO2-C-H2[J]. Journal of the American Ceramic,1998,81(5):1255-1261.
    [89]马峻峰,沈君权.碳热还原法制备β-SiC晶须的结晶特征及内部缺陷[J].硅酸盐通报,1993,12(2):33-42.
    [90]韩敏芳,李伯涛,郭梦照.固相原料反应生成碳化硅晶须的实验研究[J].材料科学与工程,1997,15(4):64-68.
    [91]Dan Zhou, Supapan Seraphin. Production of silicon carbide whiskers from carbon nanoclusters[J]. Chemical Physics Letters,1994,222(3):233-238.
    [92]韩伟强.SiC纳米晶须生长和显微结构[J].材料研究学报,1998,12(3):335-336.
    [93]孟凡涛,杜善义,张宇民.化学气相沉积工艺制备碳化硅晶须的研究[J].人工 晶体学报,2010,39(3):131-138.
    [94]Shinji Otoishi, Yoshihiro Tange. Effects of a catalyst on the formation of SiC whiskers from polycarbosilane, nickel ferrite as a catalyst[J]. Bulletin Chemical Society of Japan,1999,72(7):1607-1613.
    [1]V. B. Gupta, Satish Kumar. The effect of heat setting on the structure and mechanical-properties of poly (ethylene-terephthalate) fiber. I:Structure changes[J]. Journal of Applied Polymer Science,1981,26(6):1865-1876.
    [2]E Asari. An effect of the extended cascade on the Raman spectra of ion-irradiated graphite[J]. Carbon,2000,38(13):1857-1861.
    [3]P. Musumeci, R. Reitano, L. Calcagno, F. Roccaforte, A. Makhtari, M. G. Grimaldi. Relaxation and crystallization of amorphous silicon carbide probed by optical measurements[J]. Philosophical Magazine Part B,2006,76(3):323-333.
    [4]Xiao-Wei Luo, Jean-Charles Robin, Su-Yuan Yu. Effect of temperature on graphite oxidation behavior[J]. Nuclear Engineering and Design,2004,227(3):273-280.
    [1]黄剑锋,李贺军,熊信柏,曾燮榕,李克智,付业伟,黄敏.炭/炭复合材料高温抗氧化涂层的研究进展[J].新型炭材料,2005,20(4):373-379.
    [2]Joachim Roth. Chemical erosion of carbon based materials in fusion devices[J]. Journal of Nuclear Materials,1999,266-269(2):51-57.
    [3]Wei-Ming Lu, D. D. L. Chung. Oxidation protection of carbon materials by acid phosphate impregnation[J]. Carbon,2002,40(8):1249-1254.
    [4]Guo-Zhen Shen, Yoshio Bando, Chang-Hui Ye, Bao-Dan Liu, Dmitri Golberg. Synthesis, characterization and field-emission properties of bamboo-like β-SiC nanowires[J]. Nanotechnology,2006,17(14):3468-3472.
    [5]Fei Chen, Hai Zhou, Bin Yao, Zhen Qin, Qing-Feng Zhang. Corrosion resistance property of the ceramic coating obtained through microarc oxidation on the AZ31 magnesium alloy surfaces[J]. Surface & Coatings Technology,2007,201(9-11): 4905-4908.
    [6]Xin-Bo He. Effect of sintering additives on mechanical properties of Cf/SiC composites[J]. Materials Chemistry and Physics,2002,74(3):300-305.
    [7]Kunihito Koumoto, Shunji Takeda, Chul Hoon Pai, Takayori Sato, Hiroaki Yanagida. High-resolution electron microscopy observations of stacking faults in β-SiC[J]. Journal of the American Ceramic Society,1989,72(10):1985-1987.
    [8]Won-Seon Seo, Kunihito Koumoto, Shigeo Arai. Effects of boron, carbon, and iron content on the stacking fault formation during synthesis of β-SiC particles in the system SiO2-C-H2[J]. Journal of the American Ceramic Society,1998,81(5): 1255-1261.
    [9]刘兴防,黄启忠,苏哲安,蒋建献.化学气相反应法制备SiC涂层[J].硅酸盐学报,2004,32(7):906-910.
    [10]Prasert Sangsuwan, Joaquin A. Orejas, Jorge E. Gatica, Surendra N. Tewari, Mrityunjay Singh. Reaction-bonded silicon carbide by reactive infiltration[J]. Industrial and Engineering Chemistry Research,2001,40(23):5191-5198.
    [11]孙国栋,李贺军,付前刚,张雨雷,李克智.带有SiC涂层的C/C复合材料的氧化行为[J].固体火箭技术,2010,33(1):91-94.
    [12]赵伟.直拉单晶硅炉用炭素材料防护涂层的制备与性能研究[D].济南:山东大学,2013.
    [13]P. L. Walker, R. L. Taylor, J. M. Ranish. An update on the carbon-oxygen reaction [J]. Carbon,1991,29(3):411-421.
    [14]韩立军,李铁虎,郭恩明,刘方军,武洪臣,邱海鹏.C/C复合材料抗氧化方法及发展趋势[J].航空制造技术,2003,(12):26-30.
    [15]张维平,刘硕.激光熔覆Ni基金属陶瓷复合涂层的裂纹研究[J].复合材料学报,2005,22(3):98-102.
    [16]奚同庚.无机材料热物性学[M].上海:上海科学技术出版社,1981.
    [17]岳珠峰,吕震宙,彭知平,陶仙德.热障涂层的失效机理和力学模型[J].燃气涡轮试验与研究,1998,11(4):40-44.
    [18]魏洪亮,杨晓光,齐红宇,韩增祥.等离子涂层热疲劳失效模式及失效机理研究[J].航空动力学报,2008,23(2):270-275.
    [1]Qing-Shan Zhu, Xue-Liang Qiu, Chang-Wen Ma. Oxidation resistant SiC coating for graphite materials[J]. Carbon,1999,37(9):1475-1484.
    [2]Juan Zhao, Lang Liu, Quan-Qui Guo, Jing-Li Shi, Geng-Tai Zhai. Oxidation protective behavior of SiC/Si-MoSi2 coating for different graphite matrix[J]. Materials Letters,2006,60(16):1964-1967.
    [3]S. Goujard, L. Vandenbulcke, H. Tawil. Oxidation behaviour of 2D and 3D carbon/carbon thermostructural materials protected by CVD polylayer coatings[J]. Thin Solid Films,1994,252(2):120-130.
    [4]H. T. Tsou, W. Kowbel. Design of multilayer plasma-assisted CVD coatings for the oxidation protection of composite materials[J]. Surface & Coatings Technology,1996,79(1-3):139-150.
    [5]LD Bentson, RJ Price, MJ Purdy, ER Stover. Moisture and oxidation resistant carbon/carbon composites[P]. US patent,5298311,1994.
    [6]V. Wunder, N. Popovska, A. Wegner, G. Emig, W. Arnold. Multilayer coatings on CFC composites for high-temperature applications[J]. Surface and Coatings Technology,1998,100-101:329-332.
    [7]David M. Shuford. Carbon-carbon substrates having protective coating and their preparation[J]. US patent,5453324,1995.
    [8]Mei-Li Guo, Kui Shen, Yu-Dong Zheng. Multilayered coatings for protecting carbon-carbon composites from oxidation[J]. Carbon,1995,33(4):449-453.
    [9]Zhong-Lin Wang, Z.R. Dai, Rui Ping Gao, Z.G. Bai, James Gole. Side-by-side silicon carbide-silica biaxial nanowires:Synthesis, structure, and mechanical properties[J]. Applied Physics Letters,2000,77(21):3349-3351.
    [10]Won-Seon Seo, Kunihito Koumoto, Shigeo Arai. Effects of boron, carbon, and iron content on the stacking fault formation during synthesis of b-SiC particles in the system SiO2-C-H2[J]. Journal of American Ceramic Society,1998,81(5): 1255-1261.
    [11]Dan Zhou, Supapan Seraphin. Production of silicon carbide whiskers from carbon nanoclusters[J]. Chemical Physics Letters,1994,222(3):233-238.
    [12]Shinji Otoishi, Yoshihiro Tange. Effects of a catalyst on the formation of SiC whiskers from polycarbosilane, nickel ferrite as a catalyst[J]. Bulletin Chemical Society of Japan,1999,72(7):1607-1613.
    [13]Quan-Li Hu, Hiroshi Suzuki, Hong Gao, Hiroshi Araki, Wen Yang, Tetsuji Noda. High-frequency FT1R absorption of SiO2/Si nanowires[J]. Chemical Physics Letters,2003,378(3-4):299-304.
    [14]A. Grill, V. Patel. Low dielectric constant films prepared by plasma-enhanced chemical vapor deposition from tetramethylsilane[J]. Journal of Applied Physics, 1999,85(6):3314-3318.
    [15]M.T. Kim, J. Lee. Characterization of amorphous SiC H films deposited from hexamethyldisilazane[J]. Thin Solid Films,1997,303(1-2):173-179.
    [16]Wei-Min Zhou, Bin-Yang, Zhong-Xue Yang, Feng Zhu, Li-Jun Yan, Ya-Fei Zhang. Large-scale synthesis and characterization of SiC nanowires by high-frequency induction heating[J]. Applied Physics Letters,2006,252(14):5143-5148.
    [17]Wei-You Yang, He-Zhuo Miao, Zhi-Peng Xie, Li-Gong Zhang, Li-Nan An. Synthesis of silicon carbide nanorods by catalyst-assisted pyrolysis of polymeric precursor》J]. Chemical Physics Letter,2004,383(5/6):441-444.
    [18]Kunihito Koumoto, Shunji Takeda, Chul Hoon Pai, Takayori Sato, Hiroaki Yanagida. High-resolution electron microscopy observations of stacking faults in β-SiC[J]. Journal of American Ceramic Society,1989,72(10):1985-1987.
    [19]V. Raman, O. P. Bahl, U. Dhawan. Synthesis of silicon carbide through the sol-gel process from different precursors[J]. Journal of Materials Science,1995,30(10): 2686-2693.
    [20]Djamila Bahloul-Hourlier, Jerome Latournerie, Phillip Dempsey. Reaction pathways during the thermal conversion of polysiloxane precursors into oxycarbide ceramics[J]. Journal of the European Ceramic Society,2005,25(7): 979-985.
    [21]马青松,陈朝辉,郑文伟,胡海峰.聚硅氧烷/二乙烯基苯的交联与裂解[J].国防科技大学学报,2001,23(5):40-44.
    [22]Heon-Jin Choi, June-Gunn Lee. Continuous synthesis of silicon carbide whiskers[J]. Journal of Materials Science,1995,30(8):1982-1986.
    [23]赵娟,王贵,刘朗,郭全贵.SiC涂层性能与石墨基体结构的关系[J].原子能科学技术,2008,42(4):353-357.
    [1]徐东明MoSi2的强韧化及氧化烧蚀性能研究[D].哈尔滨:哈尔滨工业大学,2007.
    [2]方开泰.均匀设计与均匀设计表[M].北京:科学出版社,1994.
    [3]方开泰,马长兴.正交与均匀实验设计[M].北京:科学出版社,2001.
    [4]赵伟.直拉单晶硅炉用炭素材料防护涂层的制备与性能研究[D].济南:山东大学,2013.
    [5]曹伟伟,朱波,井敏,王成国.PAN基碳纤维在表面处理中的拉曼光谱研究[J].光谱与光谱学分析,2008,28(12):2885-2889.
    [6]M. H. Hon, R. F. Davis, D. E. Newbury. Self-diffusion of 30Si in polycarystalline β-SiC[J]. Journal of Materials Science,1980,15(8): 2073-2080.
    [7]F.J.J Van Loo, G.F. Bastin. On the diffusion of carbon in titanium carbide[J]. Metallurqical Transactions A,1989,20(3):403-411.
    [8]S. Klein, L. Houben, R. Carius, F. Finger, W. Fischer. Structural properties of microcrystalline SiC deposited at low substrate temperatures by HWCVD[J]. Journal of Non-Crystalline Solids,2006,352(9-20):1376-1379.
    [9]M. H. Hon, R. F. Davis. Self-diffusion of 14C in polycrystalline β-SiC[J]. Journal of Materials Science,1979,14(10):2411-2421.
    [10]A. Favre, H. Fuzellier, J. Suptil. An original way to investigate the siliconizing of carbon materials[J]. Ceramics International,2003,29(3):235-243.
    [11]Dipankar Ghosh, Ghatu Subhash, Nina Orlovskaya. Measurement of scratch-induced residual stress within SiC grains in ZrB2-SiC composite using micro-Raman spectroscopy[J]. Acta Materialia,2008,56(18):5345-5354.
    [12]H. Mukaida. Raman scattering of SiC:Estimation of the internal stress in 3C-SiC on Si[J]. Journal of Applied Physics,1987,62(1):254-257.
    [1]Koumoto Kunihito, Takeda Shunji, Pai Chul Hoon, Sato Takayori, Yanagida Hiroaki. High-resolution electron microscopy observations of stacking faults in β-SiC[J]. Journal of the American Ceramic Society,1989,72 (10):1985-1987.
    [2]Seo Won-Seon, Koumoto Kunihito, Arai Shigeo. Effects of boron, carbon, and iron content on the stacking fault formation during synthesis of β-SiC particles in the system SiO2-C-H2[J]. Journal of the American Ceramic Society,1998,81(5): 1255-1261.
    [3]Yang Chen, Chengguo Wang, Wei Zhao. Influence of SiC whisker on formation and oxidation resistance of coating for C/C composite[J]. Advanced Material Research,2012,430-432:373-377.
    [4]Juan Zhao, Quan-Gui Guo, Jing-Li Shi, Geng-Tai Zhai, Lang Liu, SiC/Si-MoSi2 oxidation protective coatings for carbon materials[J]. Surface and Coatings Technology,2006,201(3-4):1861-1865.
    [5]陈旸,王成国,赵伟,王雯,袁华,卢文博.不同增强体对SiC涂层性能的影响[J].功能材料,2012,5(43):582-586.
    [6]Zhan-Jun Liu, Quan-Gui Guo, Lang Liu, Jing-Li Shi, Geng-Tai Zhai. Effect of sintering temperature on microstructure and properties of SiC coatings for carbon materials[J]. Surface and Coatings Technology,2008,202(13):3094-3099.
    [7]Yang Chen, Chengguo Wang, Wei Zhao. Fabrication of a SiC/Si/MoSi2 multi-coating on graphite materials by a two-step technique[J]. Ceramics International,2012,38(3):2165-2170.
    [8]Chun-He Tang, Jie Guan. Improvement in oxidation resistance of the nuclear graphite by reaction-coated SiC coating[J]. Journal of Nuclear Materials,1995, 224(1):103-108.
    [9]D. A. Berztiss, R. R. Cerchiara, E. A. Gulbransen, F. S. Pettit, G. H. Meier, Oxidation of MoSi2 and comparison with other silicide materials[J]. Materials Science and Engineering:A,1992,155(1-2):165-181.
    [10]Takayuki Narushima, Takashi Goto, Toshio Hirai. High-temperature passive oxidation of chemically vapor deposited silicon carbide[J]. Journal of the American Ceramic Society,1989,72(8):1386-1390.
    [11]Takayuki Narushima, Takashi Goto, Toshio Hirai, Yuichiro Iguchi. High-temperature oxidation of silicon carbide and silicon nitride[J]. Materials Transactions,1997,38(10):821-835.
    [12]赵娟,王贵,刘朗,郭全贵SiC涂层性能与石墨基体结构的关系[J].原子能科学技术,2008,42(4):353-357.
    [13]刘心宇,成钧.硅钼混合粉末反应烧结合成MoSi2[J].桂林工学院学报,2006,26(1):73-76.
    [14]Qing Ma, Gui-Xia Wang, Qun-Ji Xue. Structure development during mechanical alloying of Mo and Si powders[J], Rare Metal Materials and Engineering,2003, 32(3):170-172.
    [15]王浩伟,商宝禄,周尧和.纤维多功能梯度涂层及其应用[J].金属学报,1993,29(11):521-526.
    [16]Qing-Shan Zhu, Xue-Liang Qiu, Chang-Wen Ma. Oxidation resistant SiC coating for graphite materials[J]. Carbon,1999,37(9):1475-1484.
    [17]Juan Zhao, Lang Liu, Quan-Gang Guo, Jing Li Shi, Geng Tai Zhai. Oxidation protective behavior of SiC/Si-MoSi2 coating for different graphite matrix[J]. Materials Letters,2006,60(16):1964-1967.
    [18]Yang Chen, Cheng-Guo Wang, Wei Zhao. Fabrication of self-healing pure SiC coating by a two-step technique[J]. Acta Physico-Chimica Sinica,2012,28(01): 239-244.
    [19]F. Smeacetto, M. Salvo, M. Ferraris. Oxidation protective multilayer coatings for carbon-carbon composites[J]. Carbon,2002,40(4):583-587.
    [20]Qian-Gang Fu, He-Jun Li, Xiao-Hong Shi, Ke-Zhi Li, Chuang Wang, Min Huang. Double-layer oxidation protective SiC/glass coatings for carbon/carbon composites[J]. Surface and Coatings Technology,2006,200(11):3473-3477.
    [21]张厚安,胡小平,王军,唐果宁,刘心宇MoSi2 i低温氧化生成相的热力学分析[J].滞潭矿业学院学报,2000,15(3):29-32.
    [22]颜建辉,张厚安,李益民.不同致密度MOSi,材料在700℃-1200℃的氧化行为[J].稀有金属,2007,31(1):18-21.
    [23]张厚安,李颂文,彭成章,梁洁萍,唐果宁.SiC对MoSi2氏温氧化行为的影响[J].材料导报,1999,13(3):72-73.
    [1]Qian-Gang Fu, He-Jun Lu, Zheng-Zhong Zhang, Xie-Rong Zeng, Ke-Zhi Li. SiC nanowire-toughened MoSi2-SiC coating to protect carbon/carbon composites against oxidation[J]. Corrosion Science,2010,52(5):1879-1882.
    [2]Yang Chen, Chengguo Wang, Wei Zhao. Fabrication of self-healing pure SiC coating by a two-step technique[J]. Acta Physico-Chimica Sinica,2012,28(01): 239-244.
    [3]Yang Chen, Chengguo Wang, Wei Zhao. Fabrication of a SiC/Si/MoSi2 multi-coating on graphite materials by a two-step technique[J]. Ceramics International,2012,38(3):2165-2170.
    [4]Yongsoon Shin, Chongmin Wang, William D. Samuels, Greg J. Exarhos. Synthesis of SiC nanorods from bleached wood pulp[J]. Materials Letters,2007,61(13): 2814-2817.
    [5]R.V. Krishnarao, J. Subrahmanyam. Formation of SiC from rice husk silica-carbon black mixture:effect of rapid heating[J]. Ceramics International,1996,22(6): 489-492.
    [6]Rajnish Dhiman, Erik Johnson, Per Morgen. Growth of SiC nanowhiskers from wooden precursors, separation, and characterization[J]. Ceramics International, 2011,37(8):3759-3764.
    [7]R.V. Krishnarao, M.M. Godkhindi, M. Chakraborty, P. G. Mukunda. Formation of SiC whiskers from compacts of raw rice husks[J]. Journal Materials Science,1994, 29(10):2741-2744.
    [8]Sanjay Dhage, Hyun-Choel Lee, M. Shamshi Hassan, M. Shaheer Akhtar, Chong-Yeal Kim, Jung Min Sohn, Ki-Ju Kim, Ki-Ju Kim, O-Bong Yang. Formation of SiC nanowhiskers by carbothermic reduction of silica with activated carbon[J]. Materials Letters,2009,63(2):174-176.
    [9]Nhut J.M., Vieira R., Pesant L., Tessonnier J.P., Keller N., Ehret G., Pham-Huu C., Ledoux M.J.. Synthesis and catalytic uses of carbon and silicon carbide nanostructures[J]. Catalysis Today,2002,76(1):11-32.
    [10]S.K. Panda, J. Sengupta, C. Jacob. Synthesis of β-SiC/SiO2 core-sheath nanowires by CVD technique using Ni as catalyst[J]. Journal of Nanoscience and Nanotechnology,2010,10(5):3046-3052.
    [11]C.C. Tang, S.S. FAN, H.Y. Dang, J.H. Zhao, C. Zhang, P. Li, Q. Gu. Growth of SiC nanorods prepared by carbon nanotubes-confined reaction[J]. Journal of Crystal Growth,2000,210(4):595-599.
    [12]A. Grill, V. Patel. Low dielectric constant films prepared by plasma-enhanced chemical vapor deposition from tetramethylsilane[J]. Journal of Applied Physics, 1999,85(6):3314-3318.
    [13]M.T. Kim, J. Lee. Characterization of amorphous SiC H films deposited from hexamethyldisilazane[J]. Thin Solid Films,1997,303(1-2):173-179.
    [14]Quan-Li Hu, Hiroshi Suzuki, Hong Gao, Hiroshi Araki, Wen Yang, Tetsuji Noda. High-frequency FTIR absorption of SiO2/Si nanowires[J]. Chemical Physics Letters,2003,378(3-4):299-304.
    [15]P. Musumeci, R. Reitano, L. Calcagno, F. Roccaforte, A. Makhtari, M.G. Grimaldi. Relaxation and crystallization of amorphous silicon carbide probed by optical measurements[J]. Philosophical Magazine Part B,2006,76(3):323-333.
    [16]Koumoto Kunihito, Takeda Shunji, Pai Chul Hoon, Sato Takayori, Yanagida Hiroaki. High-resolution electron microscopy observations of stacking faults in β-SiC[J]. Journal of the American Ceramic Society,1989,72(10):1985-1987.
    [17]Seo Won-Seon, Kunihito koumoto, Shigeo Arai. Effects of boron, carbon, and iron content on the stacking fault formatting during synthesis of β-SiC particles in the system SiO2-C-H2[J]. Journal of the American Ceramic,1998,81(5):1255-1261.
    [18]S. Klein, L. Houben, R. Carius, F. Finger, W. Fischer. Structural properties of microcrystalline SiC deposited at low substrate temperatures by HWCVD[J]. Journal of Non-Crystalline Solids,2006,352(9-20):1376-1379.
    [19]Wen Yang, Araki Hiroshi, Quan-Li Hu, Nobuhiro Ishikawa, Hiroshi Suzuki, Tetsuji Noda. In situ growth of SiC nanowires on RS-SiC substrate[J]. Journal of Crystal Growth,2004,264(1-3):278-283.
    [20]Yang Chen, Cheng Guo Wang, Bo Zhu, Yan Xiang Wang, Yu Zhen. Liu, Ting Ting Tan, Ran Ran Gao, Xue Lin, Fei Meng. Growth of SiC whiskers from hydrogen silicone oil[J]. Journal of Crystal Growth,2012,357(15):42-47.
    [21]黄浩,陈大明,仝建峰,李宝伟.石墨表面CVD SiC涂层微观结构研究[J].航空材料学报,2008,28(2):50-54.
    [22]Rajnish Dhiman, Erik Johnson, Per Morgen. Growth of SiC nanowhiskers from wooden precursors, separation, and characterization[J]. Ceramics International, 2011,37(8):3759-3764.
    [23]马青松,陈朝辉,郑文伟,胡海峰.聚硅氧烷/二乙烯基苯的交联与裂解[J].国防科技大学学报,2001,23(5):40-44.
    [24]S. Kerdiles, A. Berthelot, F. Gourbilleau, R. Rizk. Low temperature deposition of nanocrystalline silicon carbide thin films[J]. Applied Physics Letters,2000,76(17): 2373-2375.
    [25]T. Rajagopalan, X. Wang, B. Lahlouh, C. Ramkumar, P. Dutta, S. Gangopadhyay. Low temperature deposition of nanocrystalline silicon carbide films by plasma enhanced chemical vapor deposition and their structural and optical characterization[J]. Applied Physics Letters,2003,94(8):5252-5260.
    [26]N. Klinger, E.L. Strauss, K.L. Komarek. Reactions between silica and graphite[J]. Journal of the American Ceramic Society,1966,49(7):369-375.
    [27]A. Lotnyk, J. Bauer, O. Breitenstein, H. Blumtritt. A TEM study of SiC particles and filaments precipitated in multicrystalline Si for solar cells[J]. Solar Energy Materials and Solar Cells,2008,92(10):1236-1240.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700