用户名: 密码: 验证码:
新疆某地衰竭气藏地下储气库地应力特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
储气库的建库、运行是一个综合诸多高新技术的领域。本文在常规地质研究的基础上,开展了影响储气库建库运行的包括应力、渗流特征等地质特征研究。利用成像测井资料,定量评价了地应力大小和方向,构建了储层的孔隙压力、坍塌压力和破裂压力等三压力剖面。在测井解释进行物性分析的基础上,利用试井分析成果开展了储气库衰竭开采后物性随孔隙压力的变化特征,定量确定了渗透率变化对储气库运行时对单井注采能力的影响。
     本次研究还作为储气库研究的国内先例引进了将储层、单井和地面集输一体化研究的数值模拟技术,利用该技术将储气库的气藏工程问题和开发过程中的应力与应变关系等复杂物理问题耦合在一起,开展储气库的各项指标的模拟和预测,本文侧重分析了储气库运行时的孔隙压力变化、裂缝、水体入侵情况、储气库的注采调峰能力以及库容等储气库运行的关键指标。
     主要结论:长期衰竭式开采对储层的物性有所影响,渗透能力略有下降。对单井产能有一定影响;目前储层段最大水平主地应力方向为N23°,孔隙压力13.7MPa,储层段的破裂压力为57MPa。为了防止突破两个主要断裂带及盖层,储层最高压力应低于69.16MPa,盖层的突破压力为49MPa。推荐方案可以在满足储气库调峰要求的前提下,确保储层的地应力在安全范围内,储气库运行过程中不会出现应力导致的裂缝。
     气藏工作气量达到45.1×10~8m~3时,库容为127.7×10~8m~3,大于设计库容107×10~8m~3,气藏压力为30.38MPa,小于设计压力34MPa,进一步的模拟结果表明在气藏压力上升至上限压力34MPa时的库容为145×10~8m~3。储气库目前控制边底水效果较好。水侵对储气库建库运行影响较大,因此,业内常会使用的压边底水扩容的做法在本地区不适用;
     数值模拟预测系统最大产气量为2535×10~4m~3/d,最小产气量为252×10~4m~3/d。单井最大注入量范围为35~314×10~4m~3/d。
     本次研究为储气库建库运行实施方案的编制提供了强有力的技术支撑,利用一体化模型跟踪模拟可以作为储气库的运行监测手段指导生产。
The building and operation of underground gas storage after reservoir depletionis a comprehensive technique. In this paper, on the basis of conventional geologicalresearch, the study including stress-strain characteristics and seepage characteristicswhich effect gas storage rebuilt is carried out. Using FMI well logging data, in-situstress of the work area has quantitative evaluated, pore pressure, collapse pressure,and fracture pressure profile of reservoir has constructed. On the basis of physicalproperty analysis in well logging interpretation, using the well test analysis wascarried out in order to understand the physical characteristics changes alongdevelopment with the change of pore pressure, and further quantitatively determinesthe permeability change, which effects the injection&production capacity while gasstorage operating. Using stress coupling numerical simulator to forecast the porepressure change according to the injection scheme, the stress change caused by porepressure will not damage the faults stability and crack also won't appear under thecondition of the recommend scheme.
     This research also introduce a new simulation technology which integratedreservoir model, well model, and surface gathering model together to predict theproduction performance for gas storage. This integrated application is the domesticfirst time for gas storage. This integrated model coupling the gas reservoirengineering problems and the physical problems such as stress and strain relationscaused by development process together to carry out simulation and forecast of theKPI of gas storage, this paper focuses on analyzing the variation of pore pressure ingas storage operation, crack, water invasion, load of gas storage capacity and theKPI of gas storage operation.
     Main conclusion:
     Long-term depletion influence physical properties of researvoir and reduce wellproductivity because of permeability decreased. SH_(MAX)of in-situ stress direction isN23°. The gas bearing layer’s pore pressure is lower to13.7MPa, the fracturepressure is57MPa. In order to prevent break through two main fault zone and cap,the critical reservoir pressure should be less than69.16MPa, the cap breakthrough pressure is49MPa. Recommendations can be on the premise of meet therequirements of gas storage load regulation, to ensure the safety of the reservoirin-situ stress during operation and no cracks appearence.
     This Gas storage is in better control of edge-bottom water effect on the current.Water influx cause reservoir damage in this area therefore, gas injection to drive theedge-bottom water to expand the capacity of gas storage shall not apply in this area.
     When work volume of the gas storage is45.1×10~8m~3, reservoir capacity is upto127.7×10~8m~3, which greater than the design capacity of107×10~8m~3. Gasreservoir pressure is up to30.38MPa, which less than the design pressure of34MPa.Further simulation results show that when gas reservoir pressure rise to34MPa, theupper limit storage capacity will be145×10~8m~3.
     The upper productivity is2535×10~4m~3/d, the lower gas production is252×10~4m~3/d. The upper productivity of each well is from35×10~4m~3/d to314×10~4m~3/d。
     Through this study, the stress numerical model of the work area is established;the quantitative research of reservoir physical properties change and its impact onproduction capacity of gas storage is researched.
     The integration of numerical simulation methods has been introduced forsimulate the key production index of gas storage operation. The study also providesa strong technical support for gas storage operation scheduling research. Theintegrated model also can be a monitor for safe operation to ensure the long-termoperation of the gas storage.
引文
[1] Europe Technology Trends in Underground Gas Storage,Pipe Line&Gas Lndustry,1997,80(5).
    [2] Bolellt V. Advances in Underground Natural Gas Storage. In:13th World Petrol. Congr. Proc.,1992,3:405-408
    [3] Laszlo Tihanyi. Planning method for gas storage developed. OGJ,1994,19:109-111
    [4] Buzer F. Carbon isotope study of gas migration in underground gas storage reservoirs,Czechoslovakia. Appl. Geochem.,1992,7(5):471-480
    [5] Mamdouh M. Salama, SPE, Conoco Inc.An Alternative to API14E Erosional Velocity Limitsfor Sand Laden Fluids. OTC8898
    [6]"Use of Short Term Multiple Rate Flow Tests To Predict Performance of Wells HavingTurbulence
    [7] Lloyd G. Jones and E. M. Blount, Mobil Research and Development Corp., andO.!i.,Glaze,Mobi1Oil Corp.,SPE6133"
    [8] R.G.Turner, SPE-AIME,Baker Oil Tools,Inc., M.G.Hubbard,SPE-AIME,U.of Houston,A.E.DUKLER,U.of Houston.Analysis and Prediction of Minimum Flow Rate for theContinuous Removel of Liquids from Gas Wells
    [9] Ian Palmer,SPE,and John Mansoori, Amoco Production Co.,How Permeability Depends onStress and Pore Pressure in Coalbeds:A New Model. SPE52607
    [10] Donald L Katz,Tek M.Overview on underground storage of nature gas. SPE9330
    [11] Cavaheros. P. Europe technology trends in underground gas storage. Pipe Line&Gas Industry.1997.80(5)
    [12] Jean-Eric Mollnard, Practical Model for Predicting Pressure in Gas-Storage Reservoirs, SPEReservoir Engineering1990,No11
    [13] Mc.D A.Vay,Optimizing as Storage Reservoir Performance[R],SPE28639
    [14] Tek,R.Deliverability in Gas Storage,CEEC Summer conference,University of Michigan,AnnArbor,Oil and Gas Journal,1984,93(3):57-62
    [15] API RP1114. Recommended pratices for the design of solution-mined underground storagefacilities[S].American Petroleum Institute,1994
    [16]美国能源信息署(EIA). The Basics of Underground Natural Gas Storage [EB].http://www.eia.doe.gov/pub/oil_gas/natural_gas/feature_articles/2005/ngimpexp/ngimpexp.pdf.
    [17] William R Greene. Analyzing the performance of gaswells[J].Journal of PetroleumTechnology,1983,35(8):1378-1384.
    [18] Misra.B.R:"The Use of Inert Base Gas in Underground Natural Gas Storage", SPE17741
    [19] Mayfield J F.“Inventory verification of gas storage fields”[C].SPE9391,1980
    [20] Pierre Cavalieros:"Technology trends in underground gas storage”《Pipeline&Gas Industry》,1994(12)
    [21] EVANS D J. An appraisal of underground gas storage technologies and incidents forthe development of risk assessment methodology[R」. Nottingham, UK:British GeologicalSurvey,2007.
    [22] Van Everdingen A.F.,Hurst W., The Application of the Laplace Transformation to FlowProblems, Trans. AIME158,1949.
    [23] Carter R.D.,Tracy G.W.,An Improved Method for Calculating Water influx, SPE1626-G,1960,
    [24] Geertsma J.,deKlerk F., A Rapid Method of Predicting Width and Extent of HydraulicalyInduced Fractures, SPE2458,1969.
    [25] Wiliams B.B., Fluid Loss from Hydraulically Induced Fractures, SPE2769,1970.
    [26] Todd M.R., Longstaff W.J., The Development, Testing and Application of a NumericalSimulator for Predicting Miscible Flood Performance, SPE3484,1972.
    [27] Cinco-Ley H.,Ramey H.J., Miller F.G.,Pseudo-skin Factors for Partially-PenetratingDirectional-Drilled Wells, SPE5589,1975.
    [28] Peaceman D.W., Interpretation of Well-Block Pressures in Numerical Reservoir Simulation,SPE6893,1978.
    [29] Clifton R.J., Abou-Sayed A.S., On the Computation of the Three-Dimensional Geometry ofHydraulic Fractures, SPE7943,1979.
    [30] Zolotukhin A.B.,Analytical Definition of the Overall Heat Transfer Cvefhcient, SPE7964,1979.
    [31] Vinsome P.K.,Westerveld J.,A Simple Method for Predicting Cap and Base Rock Heat Lossesin Thermal Reservoir Simulators, J.Can. Pet. Tech.,1980.
    [32] Cliftn R.J., Abou-Sayed A.S., A Variational Approach to the Prediction of theThree-Dimensional Geometry of Hydraulic Fractures, SPE9879,1981.
    [33] Perkins T.K.,Gonzalez J.A.,Changes in Earth Stress Around a Wellbore Caused by RadiallySymmetrical Pressure and Temperature Gradients, SPE10080,1984.
    [34] Peaceman D.W., Interpretation of Well-Block Pressures In Numerical Reservoir Simulationwith Nonsquare Grid Blocks and Anisotropic Permeability,SPE10528,1983.
    [35] Perkins T.K., Gonzalez J.A., The Effect of Thermoelastic Stresses on Injection Well Fracturing,SPE11332,1985.
    [36] Prouvost L.P., Pope G.A., Rouse B., Micraemulsion Phase Behaviour. A ThermodynamicModeling of the Phase Partitioning of Amphiphilic Species, SPE12588,1985.
    [37] Prouvast L.P.,Satoh T., Sepehrnoori T., Pope G.A., A new Micellar Phase-Behaviour Modelfor Simulating Systems with up to Three Amphiphilic Species, SPE13031,1984.
    [38] Christie M.A., Band D.J., Multidimensional Flux-Corrected Transport for ReservoirSimulation, SPE13505,1985.
    [39] Koning E.J.L., Fractured Water Injection Wells-Analytical Modelling of Fracture Propagation,SPE14884,1985.
    [40] Vandamme L., Jeffrey R.G., Curran J.H., Pressure Distribution a Three-DimensionalHydraulic Fractures, SPE152E5,1986.
    [41] Meyer B.R., Heat Transfer in Hydraulic Fracturing, SPE17041,1989.
    [42] Clifton R.J., Wang J-J., Multiple Fluids, proppanf Transport, and Thermal Effects inThree-Dimensional Simulation of Hydraulic Fracturing, SPE18198,1988.
    [43] Detienne, J-L., Creusot M., Kessler N., Sahuquet B.,Bergerot-L., Thermally InducedFractures:A Field Proven Analytical Model, SPE30777,1995.
    [44] Parkhurst D.L., User's Guide to PHREEQC-a Computer Program for Speciation,Reaction-Path, Advective-Transport, and inverse Geochemical Calculations, US GeologicalSurvey,1995.
    [45] Ohen A.H., Cirvan F, Simulation of Formation Damage in Petroleum Reservoirs, SPE19420.
    [46] Pope G.A., Lake L.W., Cation Exchange in Chemical Flooding, SPE6771,1978.
    [47] Chan A.W., Production-induced reservoir compaction, permeability and land surfacesubsidence, Stanford University Dissertation,2004.
    [48] Gutierrez M., Lewis R.W.,Masters L, Petroleum Reservoir Simulation Coupling Fluid Flowand Geomechanics, SPE72095,2001
    [49]杨伟,王雪亮等,国内外地下储气库现状及发展趋势,油气储运,2007,26(6)15~19
    [50]李伟,杨宇等,美国地下储气库建设及其思考[J],天然气技术,2010,6:3-5
    [51]丁国生,李文阳,国内外地下储气库现状与发展趋势[J],国际石油经济,2002,10(8):23-26
    [52]宋杰,刘双双等,国外地下储气库技术[J],内蒙古石油化工,2007,8:209-212
    [53]胥洪成,李娟等,大港储气库群达容的主要影响因素,科技导报2011,29(16):58-61
    [54]苏欣,张琳等,国内外地下储气库现状与发展趋势[J],天然气与石油,2007,8(25):1-7
    [55]谭羽非,廉乐明等,国外天然气地下储气库的数值模拟研究[J],天然气工业,1998.11:93-94
    [56]丁国生,王皆明.枯竭气藏改建储气库需要关注的几个关键问题[J].天然气工业,2011,05:87-89+123
    [57]丁国生,赵晓飞,谢萍.中低渗枯竭气藏改建地下储气库难点及对策[J].天然气工业,2009,02:105-107+144-145
    [58]马小明,余贝贝,马东博,张顺慈,成亚斌,王可心,杨玉生.砂岩枯竭型气藏改建地下储气库方案设计配套技术[J].天然气工业,2010,08:67-71+118.
    [59]阳小平,王起京,张雄君,张永钟.大张坨气藏改建地下储气库配套技术研究[J].天然气技术,2008,02:45-47+94.
    [60]张海琴,李萍,袁进平,刘卫东,乔木.安全稳定供气中的调峰问题探讨[J].天然气工业,2006,02:152-154+182.
    [61]张幸福,谢广禄,曾杰,张延波.大张坨地下储气库运行模式分析[J].天然气地球科学,2003,04:240-244.
    [62]曹育军,于力,刘燕,王会师.基于模糊数学理论的储气方案的选择[J].城市燃气,2007,11:12-17.
    [63]陈家新,谭羽非.水驱气藏型地下储气库注气过程优化方案[J].油气储运,2002,06:7-10+3-4.
    [64]陈剑文,蒋卫东,杨春和,尹雪英,傅四乌,余克井.储气库注、采气过程热工分析研究[J].岩石力学与工程学报,2007,S1:2887-2893.
    [65]陈元千.气井垂直管流计算方法的推导与应用[J].断块油气田,2010,04:443-447.
    [66]崔立宏,疏壮志,杨树合,曾顺鹏,潭光天.大张坨地下储气库建设方案[J].西南石油学院学报,2003,02:76-79+0.
    [67]丁国生,梁婧,任永胜,赵晓飞,冉莉娜.建设中国天然气调峰储备与应急系统的建议[J].天然气工业,2009,05:98-100+144.
    [68]梁光川,甘霞,郑云萍,陈泽.天然气地下储气库设计方案比较法[J].天然气工业,2004,09:166-169+21.
    [69]梁光川,蒲宏斌,郑云萍,陈泽,贾兵兵,樊洪.地下储气库优化设计的灰色关联分析法[J].天然气工业,2004,09:142-144+18-19.
    [70]苏欣,袁宗明,范小霞.模糊变权法在地下储气库方案优选中的应用[J].油气储运,2006,03:23-28+9-10.
    [71]苏欣,赵宏涛,袁宗明,臧国军,胡安鑫,张琳.基于模糊综合评判法的地下储气库方案优选[J].石油学报,2006,02:125-128.
    [72]杨毅,李长俊,张红兵,刘恩斌.模糊综合评判法优选地下储气库方案设计研究[J].天然气工业,2005,08:112-114+16.
    [73]谭羽非,陈家新,余其铮.水驱气藏型储气库注采井的动态运行分析[J].天然气工业,2001,03:59-61+5-4.
    [74]谭羽非,陈家新.夏季天然气地下储气库的优化运行分析[J].哈尔滨工业大学学报,2002,04:525-528.
    [75]谭羽非,陈泉新.天然气地下储气库优化管理的仿真研究[J].计算机仿真,2003,05:82-85.
    [76]陶卫方,王永发,岳克敬,金连善,王思耀,胡志远.水淹油气藏改建储气库注采工艺联合运行技术[J].天然气工业,2011,05:93-95+124.
    [77]王皆明,朱亚东,王莉,赫恩杰,王虹.北京地区地下储气库方案研究[J].石油学报,2000,03:100-104+112.
    [78]周昊,段善宁,文涛.地下储气库设计方案优选方法研究[J].江苏工业学院学报,2007,03:19-21.
    [79]王世艳.地下储气库设计模式及配套技术[J].天然气工业,2006,10:130-132+186-187.
    [80]杨树合,何书梅,季静,杨丽蓉.地下储气库评价设计方法及应用[J].新疆地质,2002,03:271-273.
    [81]付玉,郭肖,杜志敏,刘浪.考虑裂缝变形的地下储气库数值模拟研究[J].西南石油大学学报,2007,04:92-94+194-195.
    [82]何旭明,王勇.用于地下储气库规划中的数字化技术[J].科技资讯,2007,06:21-22.
    [83]何顺利,门成全,周家胜,吴志均.大张坨储气库储层注采渗流特征研究[J].天然气工业,2006,05:90-92+9+8.
    [84]石磊,廖广志,熊伟,高树生,耿彤.水驱砂岩气藏型地下储气库气水二相渗流机理[J].天然气工业,2012,09:85-86-87.
    [85]胥洪成,梁芹.丘东气田循环注气机理研究[J].吐哈油气,2002,01:32-35+97.
    [86]谭羽飞,陈家新,廉乐明,严铭卿,余其铮.底水驱枯竭气藏型天然气地下储气库注采动态的数值模拟[J].哈尔滨建筑大学学报,2000,02:70-74.
    [87]谭羽飞,廉乐明,严铭卿.枯竭气藏型储气库注采动态模拟的优化分析[J].油气储运,1998,09:3-5+62-3.
    [88]谭羽飞,廉乐明,严铭卿.天然气枯竭气藏地下储气库注采动态数值模拟[J].煤气与热力,1999,03:18-22.
    [89]谭羽非.天然气地下储气库混气问题的数值求解方法[J].天然气工业,2003,02:102-105+99-2+1.
    [90]王保辉,闫相祯,杨秀娟,冯耀荣.地下储气库天然气运移的等效渗流模型[J].中国石油大学学报(自然科学版),2011,06:127-130+134.
    [91]王保辉,闫相祯,杨秀娟,冯耀荣.衰竭气藏型地下储气库库存量动态预测研究[J].科学技术与工程,2012,10:2286-2289.
    [92]王皆明,朱亚东.确定地下储气库工作气量的优化方法[J].天然气工业,2005,12:103-104+130+5+4.
    [93]王起京,张余,刘旭.大张坨地下储气库地质动态及运行效果分析[J].天然气工业,2003,02:89-92+3.
    [94]赵斌,李云鹏,田静,王芝银.含水层储气库注采效应的数值模拟[J].油气储运,2012,03:211-214+218+247.
    [95]许珍萍,蒋建勋,葛静涛,张立勤,陈堃.枯竭气藏型地下储气库的注采动态数值模拟[J].天然气勘探与开发,2011,04:53-55+59+99-100.
    [96]严铭卿,廉乐明,谭羽飞,黎光华.枯竭油气田天然气地下储气库模拟研究导论[J].城市煤气,1997,01:5-10+14.
    [97]展长虹,严铭卿,廉乐明.含水层型天然气地下储气库的有限元数值模拟[J].煤气与热力,2001,04:294-298.
    [98]朱亚东等.地下储气库运行指标预测方法〔A〕.渗流力学进展〔C〕.北京:石油工业出版社,1996:118一121.
    [99]方亮,高松,沙宗伦.地下储气库注气系统节点分析方法研究[J].大庆石油地质与开发,2000,02:27-29+53.
    [100]李明川,黄全华,孙雷.节点分析在地下储气库注气动态分析中的应用[J].油气储运,2011,06:431-434+392.
    [101]李建中,徐定宇,李春.利用枯竭油气藏建设地下储气库工程的配套技术[J].天然气工业,2009,09:97-99+143-144.
    [102]罗天雨,吕毓刚,刘元爽,麻慧博. H储气库气井冲蚀规律初探[J].中外能源,2011,11:68-71.
    [103]罗天雨,麻慧博,艾尼瓦尔,吕毓刚. H储气库合理生产压差数值分析[J].中外能源,2011,06:43-46.
    [104]谭羽非,陈家新,余其铮.底水驱天然气地下储气库单井运行动态的模拟分析[J].哈尔滨建筑大学学报,2001,01:67-70.
    [105]谭羽非,林涛.凝析气藏地下储气库单井注采能力分析[J].油气储运,2008,03:27-29+62+67.
    [106]王皆明,姜凤光.砂岩油藏改建地下储气库注气能力预测方法[J].天然气地球科学,2008,05:727-729.
    [107]熊伟,石磊,廖广志,高树生.水驱气藏型储气库运行动态产能评价[J].石油钻采工艺,2012,03:57-60.
    [108]王嘉淮,罗天雨,吕毓刚,薛承文,赵丽萍. H地下储气库气井冲蚀产量模型及其应用[J].天然气工业,2012,02:57-59+117.
    [109]王嘉淮,罗天雨,吕毓刚,薛承文.气井冲蚀产量模型在储气库的应用[J].特种油气藏,2012,01:110-112+141.
    [110]项勇,薛婷,隋蕾,王伟,闫学峰,高档,李强.储气库气井管柱受力分析设计软件的研制和应用[J].中国石油和化工,2011,11:69-71.
    [111]赵春林,温庆和,宋桂华,柴希军.枯竭气藏新钻储气库注采井完井工艺[J].天然气工业,2003,02:93-95+3-2.
    [112]杨再葆,张香云,邓德鲜,王建国,刘文英,宫洪志.天然气地下储气库注采完井工艺[J].油气井测试,2008,01:62-65+68+78.
    [113]尹双江,陈军,梁光川,蒲海东,易俊,杨浩珑.水平井在枯竭油气藏型地下储气库的应用[J].重庆科技学院学报(自然科学版),2011,06:66-68.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700