用户名: 密码: 验证码:
精细控压钻井井筒压力控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
川西地区天然气资源丰富,是中国石化天然气增储上产的主要阵地,但近期在该地区所钻的一批深井中出现了较多的井下复杂和工程事故,严重影响了该地区油气勘探开发进程。主要原因是须家河地层不仅地层坚硬、研磨性强,机械钻速低,而且存在多套压力系统,泥浆安全密度窗口窄,钻井中常出现上喷下漏、卡钻和其它复杂情况,大大增加了非生产作业时间。为此,开展了川西地区控压钻井技术研究,以期解决上述问题,为四川盆地深层致密气藏的有效开发提供支撑。
     单相流水力学模型研究。对牛顿模式、宾汉模式、幂律模式、卡森模式以及赫谢尔—巴尔克莱模式模式进行了评价,根据理论分析及现场实际数据对比得出赫谢尔—巴尔克莱模式是最适合钻井液流体的流变模式,能准确的表征各种无时间依赖性的钻井流体。并给出了赫巴模式全流态下的压降计算模型。实例计算结果表明,压降公式计算精度满足工程应用需求。
     环空压力影响因素研究。根据实际情况对现有井筒温度场计算模型进行了修正,实例表明测量点计算的平均温度与测量的平均温度相差不到1℃,最大误差不超过3℃。分析了温度和压力对钻井液参数的影响,给出了钻井液视粘度和密度随温度和压力变化的计算公式。建立了突扩、突缩流动的理论分析模型,并分析了不同雷诺数下各因素的影响作用。通过引入Gibson中的实验公式,建立了渐扩管和渐缩管的局部阻力损失计算公式。按当量直径法给出了接头部分的摩擦阻力损失,结合局部阻力损失计算公式建立了较为准确的钻杆接头损失计算模型。考虑了影响井筒压力计算的其他影响因素,包括钻柱旋转、环空偏心、井下设备和环空岩屑等。给出了计算这些影响因素下的实用计算公式,并根据实例分析了这些影响因素的相互作用。
     两相流水力学模型研究。以井筒多相流流型判别公式及流型判别图为基础,结合四川地区的井筒数据进行综合分析,建立了四川区块的多相流流型判别图,并给出了井口套压变化对井筒流型判别的影响。结合储层渗流流动模型,从考虑气液两相流的流动特点出发,建立了两相流动数学模型。根据泰勒级数展开法,采用有限差分方法对两相流的数学模型进行了离散推导,建立了数值计算模型。以一口井进行了示例验证,验证了井筒气侵后的多相流计算模型,计算结果能够较好地符合实际钻井数据,压力计算误差一般小于5%。进行了多相流条件下的井底压力敏感性分析,分析了回压、排量、密度、井斜角等参数的井底压力波动的影响情况,为精确控制井底压力提供了理论依据。
     井筒压力控制技术研究。依据井底压力控制的基本原理,分析了不同钻井参数、井口设备等限制条件下的井筒压力控制范围,并给出了相应的控压钻井关键参数的设计方法。为了提高系统控制精度,在分析常规控制方法的基础上,将先进的模型预测控制方法引入到控压钻井的井底压力实时控制系统中,建立了先进的井底压力实时控制模型。实例分析表明,当井筒气体侵入时常规控制方法难以维持井底压力平衡,而模型预测控制方法可以快速、准确的通过对井口压力的控制建立起对井底压力的控制。
     在理论分析基础上,结合川西地区地质情况,进行了控压钻井设备的配套与计算、控制软件系统的开发,并在马蓬23-6HF井进行了现场试验。结果说明,随钻压力监测系统准确、可靠,压力控制速度快精度高,设备能在30s以内把压力控制到设定套压,趋于稳定后,压力误差在0.1MPa以内。没有出现钻井复杂情况,控压钻井作业井段较常规钻井相同井段缩短钻井周期7.2%,实现了安全钻井,达到了试验目的。
     通过本项目研究及现场试验,形成了一套适合川西地区的控压钻井配套技术,并实现了设备和工艺技术的国产化,解决了川西地区钻井过程中的诸多井下复杂问题,为川西地区天然气的高效开发提供了技术支撑。
Western Sichuan region is rich in natural gas resources, but recently a number of deepwells drilled in the area appear more underground complex and engineering accidents, bringserious impact on the region's oil and gas exploration and development process. The mainreason is the Xujiahe Formation is not only hard, grinding, drilling speed is low, and there areseveral sets of pressure systems, the mud safety density window is narrow, mud loss, stickingand other complex, greatly increasing the non-productive working time. The MPD technologyresearch has been carried out in western Sichuan, in order to solve the above problems, andprovide support for the effective development of gas reservoirs in Sichuan Basin.
     Single-phase flow hydraulic model. The Newton, Bingham, Power-law, Casson and H-BModels have been evaluated based on theoretical analysis and actual data,and concluded thatH-B model is the most suitable for drilling fluid, which can accurately characterize thedrilling fluid. And pressure drop calculation models were listed. The example shows that thepressure drop formula calculation accuracy can meet the demand for engineering applications.
     Influencing Factors on the annulus pressure. Modified according to the actual situationon the existing wellbore temperature field calculation model examples show that the averagecalculated temperature value and measuring values on certain points are quite close, theaverage offset is less than1°C, the maximum error does not exceed3°C. Analysis of theinfluence of the temperature and pressure on the drilling fluid parameters, the formula givesthe viscosity and density of the drilling fluid, as with the temperature and pressure changes.Established sudden expansion, sudden contraction flow analytical model and its influencewere analyzed under different Reynolds numbers. The other factors were considered whichaffect the wellbore pressure, including drill string rotation, eccentric annulus, downholeequipment and annular cuttings.
     Two-phase flow hydraulic model. Based on Wellbore Multiphase Flow decision formulasand and flow pattern identification chart, combined with the wellbore data of Sichuan region,established the Sichuan area multiphase flow diagrams. Combined with the reservoir seepageflow model, considering the gas-liquid two-phase flow characteristics, we made a mathematical model of two-phase flow. According to the Taylor method, discrete derivationwere carried out to the mathematical model of the two-phase flow, using the finite differencemethod. An example were taken to authenticate the calculation model of the multiphase flowin the wellbore after gas invasion, the calculation result is better able to meet the actualdrilling data, generally the error is less than5%. Bottomhole pressure sensitivity underdifferent back pressure, flow rate, mud weight, and the inclination of multiphase flow wereanalysed.
     Wellbore pressure control technology. Based on the basic principles of the bottomholepressure control, gives the corresponding MPD key parameters design method. In order toimprove control precision, on the basis of the analysis of the conventional control method, thestate-of-the-art model predictive control method was introduced to MPD bottomhole pressurecontrol system in real time, an advanced bottom hole pressure real-time control model wasestablished. The case study shows that when the conventional control method is difficult tomaintain the balance of bottom-hole pressure as gas invades into the wellbore, the predictivemodel control method can quickly and accurately establish the balance by controlling thewellhead pressure.
     On the basis of theoretical analysis, combined with the geological conditions of thewestern Sichuan region, the MPD equipment was equipped and the computation and controlsoftware system was developed, and field test was carried out in Mapeng23-6HF well. Theresults show that, the drilling pressure monitoring system is accurate, reliable, and thepressure control is quick with high precision. The system can control the casing pressure todesignated value within30s, and the pressure error is less than0.1MPa.
     Through research and field test, a set of MPD equipment and technology for theformation of western Sichuan region was formed, which can solve many drilling problems,and provided technical support for the effective development of the western Sichuan regiongas reservoirs.
引文
[1] Hannegan D M, Wanzer G. Well Control Considerations-Offshore Applications of UnderbalancedDrilling Technology: SPE/IADC Drilling Conference, Amsterdam, Netherlands,2003[C].
    [2] Kenneth P. Malloy. Managed pressure drilling—What is it anyway?[J].World Oil, March2007:1-11.
    [3] Don M. Hannegan, P.E. Managed Pressure Drilling in Marine Environments–CaseStudies[J].SPE92600,23-25February2005:1-5.
    [4] R. Soto, J. Malavé, M. Medina, C. Díaz, PDVSA. Managed Pressure Drilling (MPD): Planning aSolution for San Joaquin Field, Venezuela[J].SPE99116,21-23February2006:1-9.
    [5] Vincent Roes. Managed Pressure Drilling in a Deep Water Brown Field Environment[J]. AmericanAssociation of Drilling Engineers, April12,2005:1-16.
    [6] Hannegan Don, Todd Richard J,et al. MPD-Uniquely Applicable to Methane Hydrate Drilling[J].SPE91560,2004:1-6.
    [7] J. Saponja, A. Adeleye, B. Hucik. Managed-Pressure Drilling (MPD) Field Trials DemonstrateTechnology Value[J].SPE98787,21-23February2006:1-18.
    [8] John Kozicz,“Managed-Pressure Drilling—Recent Experience, Potential Efficiency Gains, andFutureOpportunities”, SPE103753, Nov.2006:1~5
    [9] S.A. Solvang, C. Leuchtenberg, I.C.Gil, etc “Managed Pressure Drilling Resolves Pressure DepletionRelated Problems in the Development of th HPHT Kristin Field”, SPE113672, Jan.2008:1~9
    [10] P.Vieira, M. Arnone, B.Russel, etc “Constant Bottomhole Pressure: Mangaged-Pressure DrillingTechnique Applied in an Exploratory Well in Saudi Arabia”, SPE113679, Jan.2008:1~14
    [11] Paul Spriggs, Philip J. Frink “MPD Planning: How Much Is Enough?”,SPE113682,Jan.2008:1~8
    [12] George H. Medley, Dennis Moore, Sagar Nauduri,“Simplifying MPD: Lessons Learned”, SPE113689, Jan.2008:1~6
    [13] Svein Syltфy, Steinar Torvund, Per Cato Berg, etc,“Highly Advanced Multitechnical MPD ConceptExtends Achievable HPHT Targets in the North Sea”, SPE114484, Jan.2008:1~11
    [14] Charles R.“Rick” Stone, Shifeng Tian,,“Sometimes Neglected Hydraulic Parameters ofUnderbalanced and Managed-Pressure Drilling”, SPE114667, Jan.2008:1~7
    [15] Nyoman Dharma, J.S.S. Toralde,“Managed-Pressure Drilling and Downhole Isolation TechnologiesDeliver High Rate Gas Wells”, SPE114703, Jan.2008:1~11
    [16] Mark J. Chustz, Larry D. Smith, Dwayne Dell,“Managed Pressure Drilling Success Continues onAuger TLP”, SPE112662, Mar.2008:1~10
    [17] Paul Fredericks, Don Reitsma, Tom Runggai, Neil Hudson, etc,“Successful Implementation of FirstClosed Loop, Multiservice Control System for Automated Pressure Management in a Shallow GasWell Offshore Myanmar”, SPE112651, Mar.2008:1~18
    [18] Knut Steinar Bjфrkevoll, Dag Ove Molde, Helge Fjeldberg,“Utilize Managed Pressure DrillingEquipment and Technique to Cement a Severely depleted HPHT reservoir in the North Sear”, SPE115118, Oct.2008:1~11
    [19] Egil Ron s, Ole lacob Prebensen, Renate Mikalsen, etc,“An Innovative Fluid Pressure TransmissionPill Successfully Used During Managed-Pressure Drilling Operations in an HTHP Environment”,SPE112528, Mar.2008:1~9
    [20] Rolv Rommetveit, Knut S. Bj¢kevoll, Sven Inge degard, etc,“Automatic Real-Time DrillingSupervision, Simulation,3D Visualization, and Diagnosis on Ekofisk”, SPE112533, Mar2008:1~11
    [21] Knut S. Bj¢rkevoll, Dag Ove Molde, Rolv Rommetveit, etc,“MPD Operation Solved DrillingChallenges in a Severely Depleted HP/HT Reservoir”, SPE112739, Mar.2008:1~12
    [22] Johnny Petersen, Knut S. Bjorkevoll, Rolv Rommetveit,“Dynamic Pre-Modelling of MPD OperationsEnabled Optimal Procedures and Operations”, SPE115291, Aug.2008:1~12
    [23] Geir Hareland, Ivan Olea, Farid Shirkavand, etc,“Advanced Drilling Simulation ProvesManaged-Pressure Drilling (MPD) Economical in Gasfield Developments in Western Canada”, SPE114797,Jun.2008:1~10
    [24]严新新,陈永明,燕修良.MPD技术及其在钻井中的应用[J].天然气勘探与开发,2007,30(2):62-66.
    [25]辜志宏,王庆群,刘峰等.控制压力钻井新技术及其应用[J].石油机械,2007,35(11):68-72.
    [26]许亮斌,蒋世全,殷志明等.双梯度钻井技术原理研究[J].中国海上油气,2005,17(4):260-264.
    [27]殷志明.新型深水双梯度钻井系统原理、方法及应用研究[M].中国石油大学(华东),2007:1-156.
    [28] D. Reitsma, E. van Riet. an Automated Annular Pressure Control System for Managed PressureDrilling in Mature Offshore Oilfields[J].SPE96646,2005.
    [29] Bybee Karen.“Continuous Circulation Drilling”, Journal of Petroleum Technology, Feb.2003:46~48
    [30] J.W. Jenner, H.L. Elkins, F. Springett, et al “The Continuous Circulation System: An Advance inConstant Pressure Drilling”, SPE/IADC90702, Sep.2004:1~14
    [31] P.A. Bern, Dave Hosie, R.K.BanSal, et al “A New Downhole Tool for ECD Reduction”, SPE/IADC79821, Feb.2003:1~4
    [32] P.A. Bern, W.K. Armagost, R.K. Bansel,“Managed pressure drilling with the ECD reduction tool”,SPE89737, Feb.2004:1~7
    [33] Bфrre Fossil, Sigbjфrn Sangeslang,“Managed Pressure Drilling for Subsea Application; WellControl Challenges in Deep Waters”, SPE91633, Oct.2004:1~10
    [34]杨刚陈平郭昭学等,“连续循环钻井系统的发展与应用”,钻采工艺,2008,31(2):46~47
    [35]董逸仁,适用与钻井液的罗伯逊-斯蒂夫模式,西南石油学院学报1982年第二期
    [36]汪海阁,刘希圣,钻井液流变模式比较与优选,1996年,钻才工艺,第19卷第1期
    [37]周华安,高密度钻井液流变模式及其参数计算方法选择,钻采工艺,1995,第18卷,第1期
    [38]郭小阳,刘崇建,马思平,非牛顿液体流变模式的研究,天然气工业,1997年,第17卷第4期
    [39]周效全,确定卡森参数的新方法,石油学报,1994,第1期
    [40]陈廷蕤,卡森流变模式与泥浆,石油钻采工艺,1981,第1期
    [41]董逸仁,适用与钻井液的罗伯逊-斯蒂夫模式,西南石油学院学报1982年第二期
    [42]李华贵,罗伯逊-斯蒂夫模式液体得流变参数的最小二乘解,西南石油学院学报,1985,第4期
    [43]董法昌主编,钻井液水力学理论与应用,石油大学出版社,2003.8
    [44] Maril YN Vii Oria Ochoa:“Analysis of Drilling Fluid Rheology and Tool Joint Effect to ReduceErrors In Hydraulics Calculations”, August2006
    [45]袁恩熙,工程流体力学,北京:石油工业出版社,2005
    [46]西南石油学院固井科研组,适合钻井液及水泥浆的赫谢尔—巴尔莱克(Herschel—Bulkley)流变模式及其应用,西南石油学院学报,1983,第4期
    [47] G.W.戈威尔,K.阿济兹,复杂混合物在管道中的流动,北京:石油工业出版社,1984
    [48]宫敬,严大凡,非牛顿管流摩阻计算方法的比较,Petroleum Planning&Engineering Vol.5NO.31995
    [49] W. J. Bailey, and J. M. Penden:“A Generalized and Consistent Pressure Drop and Flow RegimeTransition Model for Drilling Hydraulics Suitable for Slimhole, Underbalanced and Horizontal Wells”,SPE/IADC39281,1997
    [50] T. D. Reed and A. A Pilehvari:“A New Model for Laminar, Transitional, and Turbulent Flow ofDrilling Muds”, SPE25456,1993
    [51] Gibson, A.H.: Hydraulics and its applications, Second Edition, Constable&C. Ltd. New York,(1922)
    [52]郭建华,李黔,高自力,高温高压井ECD计算,石油工程,2006.8
    [53]汪海阁,刘岩生,杨立平,高温高压井中温度和压力对钻井液密度的影响,油田化学,2000.1
    [54]吴允编,水力参数的优化设计和计算,钻采工艺,1997
    [55]刘希圣,樊洪海等,幂律流体在定向井偏心环空内流动规律的研究,石油大学学报1988年4-5期
    [56]张海桥,崔海清,一类带屈服应力粘性流体在钻柱的流动数学模型,大庆石油学院学报,1990年3月
    [57]李天太等编,实用钻井水力学计算与应用,北京:石油工业出版社,2002
    [58] Kytomaa, H. K., Brennen, C. E.. Small amplitude kinematic wave propagation in two-componentmedia. Int. J. Multiphase Flow.1991:13-26
    [59] Lammers, J. H., Biesheuvel, A.. Concentration waves and instability of bubbly flows. J. Fluid Mech.1996:67-93
    [60] Cheng, H., Hills J. H. and Azzopardi B. J.. A Study of the Bubble-to-Slug Transition in VerticalGas-Liquid Flow in Columns of Different Diameter, Int. J. Multiphase Flow,1998(3):431-452
    [61] Ohnuki A., Akimoto H. Experimental study on transition of flow pattern and phase distribution inupward air–water two-phase flow along a large vertical pipe. Int. J.Multiphase Flow.2000:267-286
    [62] Hibiki T., Ishii M.. Experimental study on hot-leg U-bend twophase natural circulation in a loop witha large diameter pipe. Nucl.Eng.Des.,2000:69–84
    [63] Shoukri M., Hassan I. and Gerges, I. E.. Two-phase bubbly flow structure in large-diameter verticalpipes. Can. J. Chem. Eng.2003:205-211
    [64] Zhu, W., Ching C. and Shoukri, M.. Phase distribution and flow regime transition of two-phase flowin large diameter pipes. In: Proceedings of the5th International Conference on MultiphaseFlow.2004,CD-ROM,#399
    [65] Leblanc J. L., Leuis R. L. A Mathematical Model of a Gas Kick[J]. Journal of Petroleum Technology,1968,20(4):888-898
    [66] Records, L. R. Mud system and Well Control[J]. Petroleum Engineering,1972,44(2):97-108
    [67] Hoberock L. L., Stanbery S. R.. Pressure Dynamics in Wells During Gas Kick: Part1—Fluid LinesDynamics[J]. Journal of Petroleum Technology,1981,33(6):1357-1366
    [68] Santos O. L. A. A mathematical model of a gas kick when drilling in deep waters [R]. MS Thesis,Colorado School of Mines1982
    [69] Ohara S.. Improved Method for Selecting Kick Tolerance During Deepwater Drilling Oerations[R].Baton Rouge: Louisiana State University,1995
    [70][Nunes J.. Mathematical Model of a Gas Kick in Deep Water Scenario[C], IADC/SPE77253,presented at the IADC/SPE Asia Pacific Drilling Technology held in Jakarta, Indonesia,9–11September2002
    [71]范军,王西安,韩松.油气层渗流与井筒多相流动的耦合及应用[J].重庆大学学报(自然科学版),2000,23(10):154-157
    [72]曾义金,樊洪海译,空气和气体钻井手册,中国石化出版社,2006
    [73]胥思平译,欠平衡钻井气体体积流量的计算,中国石化出版社,2006
    [74]陈家琅主编,石油气液两相流管流,石油工业出版社,1988
    [75]杨虎,欠平衡压力钻井环空气量对井内各流动参数的影响,石油钻探技术,2001
    [76]余晟,充气欠平衡钻井环空气液固三相流动力学分析,钻采工艺,2007
    [77]周开吉,欠平衡钻井多相流循环系统分析,钻采工艺与装备,1998
    [78]翟洪军,气体钻井计算模型及应用软件的编制,探矿工程,2007
    [79]郑永刚、郝俊芳,计算混气泥浆柱井底压力的新方法,西南石油学院报,1991
    [80]龙芝辉、汪志明、范军,欠平衡钻井多相流动理论与计算分析,石油勘探技术与开发,2006
    [81]康凤伟,双壁钻杆钻井井底压力的计算方法,石油天然气学报,2006
    [82]范军,王西安,韩松.油气层渗流与井筒多相流动的耦合及应用[J].重庆大学学报(自然科学版),2000,23(10):154-157
    [83]李相方,庄湘琦,隋秀香等.气侵期间环空气液两相流动研究[J].工热物理学报,2004,25(1):73-76.
    [84]李俊青.过流断面突然扩大局部阻力系数的的推导[J].内蒙古科技与经济,1999:131
    [85]孔珑.流体力学Ⅰ[M].北京:高等教育出版社,2000:140-146
    [86]张华.管道截面突变处的局部阻力系数[J].山西水利科技,1994,24(2):79-83
    [87]赵宝峰,金英子,卢玉邦等.对突然扩大局部水头损失的初探[J].东北农业大学学报,1997,28(2):175-178
    [88]赵宝峰,门宝辉.关于管路突然扩大局部阻力系数的研究[J].东北水利水电,2000,(3):25-26
    [89]门宝辉.管道突然扩大局部阻力系数初探[J].西北水资源与水工程,2000,11(1):13~16
    [90]杜秋平.管路截面突然扩大局部阻力计算的探讨[J].承德石油高等专科学校学报,1999,1(3):23-26
    [91]周爱平.过流截面突然扩大和突然缩小时局部阻力的测量与分析[J].焦作工学院学报,2000,19(1):45-49
    [92] Yeon-Tae Jeong, Subhash N. Shah. Analysis of Tool Joint Effects for Accurate Friction Pressure LossCalculations [R]. SPE87182,2004
    [93]王仲勋,郭永存.基于CFD的局部损失探讨[J].煤矿机械,2005,(2):33~35
    [94]赵国华,陈良勇,段钰峰.水煤浆在渐缩管中局部阻力特性的数值试验[J].洁净煤技术,2007,13(5):52-55
    [95] Polizelli M.A.,Menegalli F.C. Telis V.R.N., etc. Friction Losses in Valves and Fittings for Power-LawFluids[J]. Brazilian Journal of Chemical Engineering,2003,20(4):455-463
    [96] Sarita Simoes, Mengjiao Yu, Stefan Miska, etc. The Effect of Tool Joints on ECD While Drilling[R].SPE106647,2007
    [97]任远,陈良勇,赵国华等.水煤浆流经渐缩管段的局部阻力特性[J].动力工程,2008,28(4):651-656
    [98]刘猛,陈良勇,段钰峰等.水煤浆流经局部管件阻力特性的研究[J].中国电机工程学报,2008,28(26):40-45
    [99]席裕庚.预测控制[M].北京:国防工业出版社,1993,12-38.
    [100]梁春燕,谢剑英.预测控制中的若干问题研究[J].自动化与仪器仪表,1999,(4):15-19.
    [101]王献忠,杜维.模型预测控制发展概况[J].自动化与仪器仪表,1999,(4):25-28.
    [102]刘刚,杨忠峰,郑力会等,欠平衡钻井计算机伺服控制节控箱试验研究[J].石油机械,2001
    [103]刘刚,邢纪国,夏宏南,欠平衡钻井节流压力控制技术[J].江汉石油学院学报,2002
    [104]丁振龙,新型多级节流压力控制系统研究[M].西南石油大学,2006.
    [105]刘绘新孟英峰唐继平等,油气井多级节流压井系统研究[J].天然气工业,2007
    [106]梅大成,王德玉,谢冲等,多级节流计算机控制系统研究[J].计算机测量与控制,2007,15(9):1161-1162.
    [107]埃克特E.R.G.,德雷克R.M.传热与传质分析[M]北京:科学出版社,1983,06:3-29,257-375
    [108]赵镇南.传热学[M].北京:高等教育出版社,2002,07,:1-29,174-202,210-245
    [109]张天孙,卢改林.传热学[M].北京:中国电力出版社,2006,02,2-164
    [110]沈维道,蒋智民,童钧耕.工程热力学[M].北京:高等教育出版社,2001,06:392-431
    [111]唐林,冯文伟.井内及井壁瞬态温度的确定[J].钻井液与完井液,1998,15(5):29-33
    [112]易灿,闫振来.超深井水基钻井液高温高压流变性试验研究[J].2009,37(1):11-12
    [113]汪海阁,刘岩生.高温高压井中温度和压力对钻井液密度的影响[J].油田化学,2000,(1):56-60
    [114] Marshall,D.W., Bentsen,R.G. A Computer Model to Determine the TemperatureDistributions in aWellbore[J]. J.Cdn.Pet.Tech, Jan-Feb,1982:63-75
    [115] Ramey,H.J.Jr. Wellbore Heat Transmission[J]. JPT, April,1962:427-35
    [116] Hasan,A.R. Heat transfer during two‐phase flow in wellbores: partⅡ wellbore fluidtemperature[R]. SPE22948,1991
    [117]赵胜英,鄢捷年,舒勇等.油基钻井液高温高压流变参数预测模型[J].石油学报.2009,30(4):603‐606
    [118] Gibson,A.H. Hydraulics and Its Applications, New Edition, Revised and Enlarged[M]. Constable&C.Ltd, London,1912:82~94
    [119] Lahey,T.R., Moody,F.J. The thermal hydraulics of boiling water nuclear reactors[M]. AmericanNuclear Society, LaGrange Park, IL,1993
    [120]华绍曾,杨学宁译.实用流体阻力手册[M].北京:国防工业出版社,1985:141-177,390-425
    [121] White,W., Zamora,M. Downhole Measurements of Synthetic-Based Drilling Fluid in anDistributions[R]. SPE35057
    [122] Haciislamoglu,M. Non-Newtonian flow in eccentric annuli[J]. Energy Resources Technology,1990,112(2):63
    [123] Haciislamoglu,M., Cartalos,U. Practical pressure loss predictions in realistic annular geometries[R].SPE28304,1994

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700