用户名: 密码: 验证码:
条斑紫菜多糖提取及物理降解研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
紫菜是中国重要的经济藻类,其多糖具有多重药理活性,提取工艺及增值化技术是影响紫菜多糖利用的关键问题。本研究以条斑紫菜为原料,探讨了紫菜多糖(PSPY)的制备技术、理化性质、及其超声降解和微波降解技术。主要研究工作与结论如下:
     (1)对条斑紫菜中蛋白质、脂肪、总糖等营养成分进行了测定。采用Plackett-Burman设计法,从9个相关因素中筛选出了影响条斑紫菜多糖提取率的主要影响因子,分别为浸提温度(P=0.0017),浸提时间(P=0.0043)和料液比(P=0.0180)。
     (2)通过二次回归通用旋转组合设计对提取工艺进行研究,得到了多糖得率最高的萃取条件为料液比1.16:100(g/mL)、时间4.7h、温度100℃;多糖纯度最高的萃取条件为料液比1.16:100(g/mL)、时间1.3h、温度73.2℃。在试验范围内,影响紫菜多糖得率的顺序为温度>料液比>时间,对多糖纯度影响顺序为料液比>时间>温度。经试验验证,回归模型预测性良好。
     (3)在得率优化条件下获得PSPY的得率19.5%,纯度94.5%,硫酸基含量7.2%,3,6-AG含量为12.3%,单糖组成为Gal、Xyl、Fuc、Ara,摩尔比为:46:2:1:1。水溶液中,25℃时特性粘度为3.38dL/g;PSPY等当点为7.15。抗肿瘤细胞研究发现,PSPY在低浓度时(<200μg/mL),对293细胞有一定的促进生长作用,而在浓度相对较高时(>200μg/mL),对293细胞有抑制作用;对SGC-7901和95D细胞有一定的抑制作用,在考察浓度范围内最大抑制达到20%;但对U937细胞有明显的促进生长作用,在浓度为1000μg/mL时,生长促进作用达到26.82%。抗氧化研究表明,PSPY清除超氧负离子EC_(50)=0.20mg/mL,清除羟基自由基EC_(50)=1.32mg/mL,同时都有较好的对数量效关系(r>0.95)。对PSPY进行分级分离获得三个均一性组分PSPY3、PSPY4和PSPY5,其分子量分别为2.2×10~5 Da、3.9×10~5Da和6.1×10Da,硫酸基含量分别为7.4%、10.5%和7.9%,单糖组成及摩尔比分别为:25.8(Gal):1.1(Ara):1(Fuc),27(Gal):1(Ara),PSPY5为Gal。
     (4)通过超声降解研究,建立了相应的Mark-Houwink方程,单因素考察发现超声功率的增大及体系温度的增加均有利于PSPY超声降解作用增强;浓度的影响不是单调变化的,在0.75g/dL时降解较快。建立了不同温度下描述反应速率常数随反应时间变化的PSPY超声降解动力学方程,发现反应速率常数与反应时间之间呈显著的指数关系。以动力学方程为基础,通过Arrhenius方程,计算出PSPY超声降解反应的活化能为52.13kJ/mol。PSPY特性粘度与超声处理时间之间有指数关系,且从理论推导进行了验证。在结构方面,降解产物——超声降解后紫菜多糖(UD-PSPY)的分子量分布发生明显变化,向低分子量迁移,但红外光谱特征未出现变化。在抗肿瘤活性方面,UD-PSPY抗SGC-7901和U937肿瘤细胞效果极显著提高,而抗95D和293细胞效果没有明显变化;在抗氧化方面,UD-PSPY清除超氧负离子(UD-PSPY:EC_(50)=0.14mg/mL,PSPY:EC_(50)=0.20mg/mL)和清除羟基自由基(UD-PSPY:EC_(50)=0.59mg/mL,PSPY:EC_(50)=1.32mg/mL)有显著提高。
     (5)从UD-PSPY中获得了三个均一性组分F2,F3和F4,分子量分别为2.1×10~5Da,3.1×10~5Da和4.0×10~5Da,硫酸基含量分别为7.6%,10.3%和11.7%,单糖组成均为Gal、Ara、Fuc,其摩尔比分别为:48.5:1.2:1、39.0:1.1:1和36.4:1.1:1。经红外光谱和核磁共振分析,结果其分子骨架中的重复结构单元分别为:F2为[G-A]和[G-L6S];F3为[G-A]、[G-L6S]和[G-A2M];F4为[G-A]、[G-L6S]和[G-A2 or 6M]。抗氧化研究发现,清除超氧负离子能力大小顺序为:F4>F3>F2>Vc;清除羟基自由基能力大小顺序为:F2>F3>F4>Mannitol;螯合能力大小顺序为:EDTA>F4>F3>F2;还原力大小顺序为:Vc>F2>F3>F4。从构效角度推测,在清除超氧负离子或螯合能力方面,多糖中的硫酸基含量可能起主要作用;在清除羟基自由基或还原力方面,多糖的分子量大小起主导作用。
     (6)进行了PSPY的微波降解试验研究。发现该微波系统的响应时间约为4s,工作体积在20~40mL范围内,经t检验温度变化率没有显著差异。采用恒温比较法以美拉德反应(MR)作为模型反应对微波加热的非热效应进行了探讨,通过褐变程度、紫外可见光光谱、同步荧光光谱及GC-MS分析发现,在本实验条件下,微波加热具有非热效应,且可推测微波只加速了MR的进程,并没有改变其反应途径。PSPY微波降解试验表明,在考察实验范围内,微波本身对PSPY没有降解作用,但微波辅助H_2O_2降解PSPY有明显提高。随着H_2O_2添加量的增加,降解作用增强,但添加量为2%和4%之间的降解作用差异较小;随着微波功率的增大,微波辅助降解作用更加明显。PSPY微波降解试验同时证实了微波加热中存在一定的非热效应。
Porphyra is an impotant and economical alga in China.Its polysaccharides possess multi-pharmaceutic activities,and extractive and value-added technologies of polysaccharides from porphyra are key problems in the deep processing.Preparation technology,physicochemical property,ultrasonic degradation(kinetics and modification),microwave degradation and its non-thermal effects of polysaccharide from Porphyra yezosensis(PSPY) were studied.The detail contents and conclusions are as follows.
     The contents of protein,fat and total sugar in P.yezoensis were determined.The Plackett-Burman design method was used to the screening of the main impact factors on the extraction rate of P.yezoensis polysaccharide,and results are extraction temperature (P=0.0017),extraction time(P=0.0043),ratio of sample to solvent(P=0.0180).
     Extracting technology of polysaccharide was designed and carried out in the method of quadratic regression rotation design.The optimal condition with rather higher rate(purity) for extraction of polysaccharide are determined as follows:ratio of sample to solvent 1.16:100(1.16:100)(g/mL),extraction time 4.7(1.3) h and extraction temperature 100(73.2)℃.In the present test,the order for affecting rate in the extraction is extraction temperature>ratio of sample to solvent>extraction time,and so the corresponding order for purity is ratio of sample to solvent>extraction time>extraction temperature.The regression model was effective and predictability, which was confirmed by experimental verification.
     PSPY was obtained in the optimal condition(with rather higher rate),the rate is 19.5%,purity is 94.5%,sulfated group is 7.2%,3,6-AG is 12.3%,and monosaccharide composition is Gal、Xyl、Fuc、Ara,in the molar ratio of 46:2:1:1,respectively.The intrinsic viscosity of PSPY in distilled water at 25℃is 3.38dL/g.,Test with maillard reaction,browing is rather higher in acid condition than in the alkaline one,the least is in neutral condition,this may be affect by hydrolysis of PSPY.Equivalent point of PSPY is 7.15.PSPY has inhibition retrogradation of starch.Effects of PSPY on tumor cells growth were investigated.Results are as follows:in rather low concentration(<200μg/mL),PSPY has a certainty promotion on cell 293,but in rather high concentration(>200μg/mL) PSPY has a certainty inhibition on cell 293.PSPY also has a certainty inhibition on cell SGC-7901and 95D,the highest inhibition activity as much as 20%.As cell U937 is concerned,PSPY has markedly promotion effect,and in concentration 1000μg/mL,the promotion activity is up to 26.82%.Antioxidation activity of PSPY was also studied.EC_(50) of scavenging superoxide anion radical and scavenging hydroxyl radical is 0.18mg/mL and 1.32mg/mL,respectively,and good (r>0.95) logarithmic activity-dose relationship was found here.Three homogeneity fractions were obtained,and molecular weight is 2.2×10~5 Da、3.9×10~5 Da and 6.1×10~5 Da,sulfated group content is 7.4%、10.5%and 7.9%,monosaccharide composition in the molar ratio of PSPY3(Gal:Ara:Fuc,25.8:1.1:1),PSPY4(Gal:Ara,27:1), PSPY5(Gal),respectively.
     Ultrasound degradation of PSPY was systematic studied.The Mark-Houwink equation was also extablished firstly,then,augmentation of power and enhance temperature can promote the degradation,and effect of concentration on the degradation is not monotony,the rather higher degradation is at concentration of 0.75g/dL,these were concluded from single factor investigation.Remarkable exponential relation between reaction rate constant and reaction time was found from dynamics equation established in different temperature conditions.Activation energy of the degradation is 52.13kJ/mol,which was estimated according to Arrhenius and dynamics equations. There is exponential relation between intrinsic viscosity of PSPY and reaction time, which was validated from theoretical derivation.Further study,as structure of UD-PSPY(Ultrasound degradation of PSPY) is concerned,distribution of molecular weight was notability altered and moved to the rather lower.As for anti-tumor activity of cell SGC-7901 and U937,the activities were observably improved,but the effects on activities for 95D and 293 were not too obviously changed.As about antioxidation, scavenging superoxide anion radical(UD-PSPY:EC_(50)=0.14mg/mL,PSPY:EC_(50)= 0.20mg/mL) and scavenging hydroxyl radical(UD-PSPY:EC_(50)=0.59mg/mL,PSPY: EC_(50)=1.32mg/mL) were also notedly improved.
     Three homogeneity fractions(F2,F3 and F4) were obtained from UD-PSPY, molecular weight is 2.1×10~5Da,3.1×10~5 Da and 4.0×10~5 Da,sulfated group content is 7.6%,10.3%and 11.7%,monosaccharide composition in the molar rato of(Gal、Ara、Fuc)F2(48.5:1.2:1)、F3(39.0:1.1:1) and F4(36.4:1.1:1),respectively.It has a linear backbone of alternating[G-A]and[G-L6S]in F2,[G-A]and[G-L6S]and[G-A2M]in F3,[G-A]and[G-L6S]and[G-A2or6M]in F4,which were analyzed by FT-IR and NMR spectroscopies.The order of activity scavenging superoxide anion radical is F4>F3>F2>Vc,activity scavenging hydroxyl radical is F2>F3>F4>Mannitol,chelating ability is EDTA>F4>F3>F2,reducing power is Vc>F2>F3>F4,respectively.Decrease of molecular weight was dominant reason for increases on activities of scavenging hydroxyl radical and reducing power of F1,F2 and F3,and increase of sulfate content in molecule was dominant reason for increases on activities of scavenging superoxide anion radical and chelating ferrous ions.
     Parameters of the microwave reaction instrument were mensurated.The apparatus log time is about 4s,and there is no markedly difference in rate of temperature increasing was found between volumes between 20mL to 40mL,which was confirmed by t test check.The non-thermal effects in microwave reaction were investigated by constant temperature-compare methord adopting MR as model reaction.Non-thermal effect(accelerating the MR,without changing the reaction path) in microwave reaction was found in the present study,which was authenticated and confirmed by browning, spectrum of ultraviolet-visible scanning,spectrum of synchronous fluorescent scanning and GC-MS analyses.There is no degradation for microwave on PSPY,but it can accelerate degradation of H_2O_2 on PSPY.As content of H_2O_2 is concerned,increasing of H_2O_2 content can promote the degradation,but up to 2%and 4%,the increasing action is very weak.Increasing microwave anode current can promote the degradation of H_2O_2 on PSPY.Non-thermal effect in microwave reaction was also validated in the degradation of H_2O_2 on PSPY.
引文
[1]Chen L.Cell suspension culture from Porphyra linearis(Rhodophyta),a multicellular marine red alga[J].J.Appl.Phycol.,1989(1):153-159.
    [2]Tseng C K,Fei X G.Macroalgal commercialization in the Orient[J].Hydrobiologia,1987(151):167-172.
    [3]Chen L.Porphyra cell suspension cultures,novel biotechnological approach for the production of hoshi-nori[J].Nat.Hist.Res.,1997(3):111-121.
    [4]Chopin T,Yarish C,Wilkes R.Developing Porphyra/salmon integrated aquaculture or bioremediationand diversification of the aquaculture Industry[J].J Appl Phycol,1999(11):463-467.
    [5]Lahaye M,Jegou D,Chemical and physical-chemical characteristics of dietary fibres from Ulva lactuca(L.) Thuret and Enteromorpha compressa(L.)[J].Journal of Applied Phycology,1993(5):195-200.
    [6]Huheihel M,Ishanu V,Tal J.Activity of Porphyridium sp.polysaccharide against herpes simplex viruses in vitro and in vivo[J].2002,50:189-200.
    [7]Qi H,Zhang Q,Zhao T,et al.Antioxidant activity of different sulfate content derivatives of polysaccharide extracted from Ulva pertusa(Chlorophyta) in vitro[J].Int J Biol Macromol,2005,37(4):195-9.
    [8]Pereira M S,Mulloy B,Mourao P.Structure and activity of sulfated fucans:comparisons between the regular,repetitive and linear fucans from echinoderms with the more heterogeneous and branched polymers from brown algae[J].J.Biol.Chem.,1999,274:7656-7667.
    [9]Caceres P J,Carlucci M J,Damonte E B.Carrageenan from chilean samples of stenogramme interrupta(phyllophoraceae):Structure analysis and biological activity[J].Phytochemistry,2000,53:81-86.
    [10]Yukihiro O,Kawai M,Amano H,et al.Effect of Oligosaccharides from Porphyan In Vitro Digestions,Utilizations by Various Intestinal Bacteria,and Levels of Serum Lipid in Mice [J].Nippon Suisan Gakkaishi,1998,64:98-104.
    [11]Nishino T,Aizu Y,Nagumo T.The relationship between the molecular weight and the anticoagulant activity of two types of fucan sulfates from the brown seaweed Ecklonia kurome[J].Agric.Biol.Chem.,1991.55:791-796.
    [12]Nunn J R,Holt H M.Red-seaweed polysaccharides,Part Ⅱ.Porphyra eapensis and the separation of d- and l-galactose by crystallisation[J].J.Chem.Soc.,1957:1094-1097.
    [13]Peat S,Turvey J R,Rees D A.Carbohydrates of the red alga,Porphyra umbilicalis[J].J.Chem.Soc.,1961:1590-1595.
    [14]Peat S,Rees D A.Carbohydrase and sulphatase activities of Porphyra umbilicalis[3].Biochem J,1961,79:7-12.
    [15]Su J C,Hassid W Z.Carbohydrates and nucleotides in the red alga Porphyra perforata.Ⅰ.Isolation and identification of carbohydrates[J].Biochemistry,1962,1:468-74.
    [16]Su J C,Hassid W Z.Carbohydrates and nucleotides in the red alga Porphyra perforata.Ⅱ.Separation and identification of nucleotides[J].Biochemistry,1962,1:474-80.
    [17]Anderson N S,Rees D A.Porphyran:a polysaccharide with a masked repeating structure[J].J.Chem.Sot.,1965,10:5880-5887.
    [18]Turvey J R,Christison J.The enzymic degradation ofporphyran[J].Biochem.J.,1967,105:317-321.
    [19]Brasch D J,Chang H M,Chuah C T.et al.The galactan sulfate from the edible,red alga Porphyra columbina[J].Carberhydrate Res.,1981,97:113-125.
    [20]Yoshizawa Y,Enomoto A,Todoh H,et al.Activation of murine macrophages by polysaccharide fractions from marine algae(Porphyra yezoensis)[J].Biosci Biotechnol Biochem,1993,57(11):1862-6.
    [21]纪明侯,Lahaye M,Yaphe W.对三种红藻琼脂的化学与13C-NMR分析[J].海洋与湖沼,1986,17(3):185-195.
    [22]高洪峰,南北方坛紫菜多糖结构特征比较研究[J].海洋与湖沼,1992,23(5):541-549.
    [23]史糅,史升耀.紫菜胶和紫菜琼胶[J].海洋科学,1994.1:48-52.
    [24]高洪峰.不同生长时期坛紫菜中藻胆蛋白的含量变化[J].海洋与湖沼,1993,24(6):645-648.
    [25]肖美添,杨军玲,林海英,等.紫菜多糖的提取及抗流感病毒活性研究[J].福州大学学报,2003.1(5):631-635.
    [26]吕燕,陈颢,汪永娟,等.坛紫菜多糖的分离纯化和化学结构分析[J].南京中医药大学学报(自然科学版),2000,5(16):159-161.
    [27]吕燕,陈颢,汪水娟,等.坛紫菜多糖的分离纯化和结构分析(Ⅱ)[J].南京大学学报(自然科学),2001,37(2):240-245.
    [28]张伟云,陈颢,汪水娟,等.条斑紫菜中四个多糖组分的提纯及组成分析[J].食品科学,2000.21(11):50-52.
    [29]张伟云,陈颢,汪水娟,等.条斑紫菜中一种琼胶多糖的分离纯化及鉴定[J].植物学通报,2000,17(5):429-434.
    [30]刘青梅,杨性民,邓红霞,等.采用微波技术提取紫菜多糖的工艺研究[J].农业工程学报,2005,21(2):153-156.
    [31]邓红霞,邬应龙,刘青梅,等.紫菜多糖提取工艺优化研究[J].食品工业科技,2005,26(1):129-130.
    [32]何荣海,马海乐,骆新峥.条斑紫菜多糖超声提取及其对U937细胞生长抑制影响的研究[J].农业工程学报,2005,21(8):165-168.
    [33]肖海芳,马海乐.条斑紫菜蛋白和多糖提取工艺优化[J].食品研究与开发,2005.26(1):84-87.
    [34]李铁林,吴昌贤,张海虾.糖腈乙酸酯衍生物气相色谱分析的改进[J].分析化学,1982,10(5):272-276.
    [35]Silvestri L,Hurst R E.Analysis of sulfate in complex carbohydrates[J].Analytical Biochem,1982,123:303-309.
    [36]Yaphe W.Colorimetric determination of 3,6-anhydro-.galactose and galactose in marine algal polysaccharides[J].Anal.Chem.,1960,32:1327-1330.
    [37]Yaphe W,Arsenault G P.Improved resorcinol reagent for the determination of fructose and 3,6-anhydro-galactose in polysaccharides[J].Anal Biochem,1965,13:143-148.
    [38]Sekkal M,Huvenne J P,Legrand E Direct structural identification of polysaccharides from red algae by FTIR microspectrometry.Ⅰ.Localization of agar in gracilatia verrucosa sections[J].Mikrochim Acta,1993,112:1-10.
    [39]Miyazaki T,Oikawa N.Studies on fungal polysaccharide,Ⅶ.Water-soluble polysaccharide of Grifola umbellate(Fr.) Pilat[J].Chem Pharm Bull,1973,21:2545-2548.
    [40]Sasaki T,Takuma M,Jakasuka J,et al.Further study of the structure of lentinan,an antitumor polysaccharide from lentinus edodes[J].Carbohydr Res,1976,47(1):99-104.
    [41]Geyer R,Geyer H.Saccharide linkage analysis using methylation and other techniques[J].Methods Enzymol,1994,230:86-107.
    [42]Bock K,Pedersen H.Carbon-13 nuclear magnetic resonance data for oligosaccharides[J].Carbohydr Chem Biochem,1984,42:193-225.
    [43]Ebringerova A,Hromadkova Z.Structural features of a water-soluble L-arabino-.D-xylan from rye bran[J].Carbohydr.Res.,1990,198:57-65.
    [44]Lahaye M,Yaphe W.13C-NMR spectroscopic investigation of methylated and charged agarose oligosaccharides and polysaccharides[J].Carbohydrate Research,1989,190:249-265.
    [45]周慧萍,陈琼华.紫菜多糖的抗凝血和降血脂作用[J].中国药科大学学报,1990,21(6):358-359.
    [46]钱伟,胡文彬,施庆忠.条斑紫菜提取液的降血脂作用及其临床观察[J].中国海洋药物杂志,1998,17(2):43-44.
    [47]周慧萍,陈琼华.紫菜多糖对实验性血栓和心肌收缩力的影响[J].中国药科大学学报,1991,22(1):50-52.
    [48]周慧萍,陈琼华.紫菜多糖对核酸、蛋白质生物合成和免疫功能的影响[J].中国药科大学学报,1989,20(2):86-88.
    [49]Yoshizawa Y,Ametani A,Tsunehiro J,et al.Macrophage stimulation activity of the polysaccharide fraction from a marine alga(Porphyra yezoensis):structure-function relationships and improved solubility[J].Biosci Biotechnol Biochem,1995,59(10):1933-7.
    [50]张伟云,周建峰,陈 颢.紫菜多糖对免疫细胞及肿瘤细胞生长的影响[J].生命科学,2002,2(6):167-170.
    [51]张伟云,刘宇峰,陈颢.紫菜多糖PY4对免疫细胞增殖的影响[J].中国药科大学学报,2001,32(1):57-59.
    [52]西泽一俊.海藻生活活性物质[J].食品匕科学,1989,24:54-59.
    [53]周慧萍,陈琼华.紫菜多糖对机体细胞的保护作用[J].中国药科大学学报,1989,20(6):340-342.
    [54]周慧萍,陈琼华.紫菜多糖抗衰老作用的实验研究[J].中国药科大学学报,1989,20(4):231-234.
    [55]Jimenez E A,Goni C I.Nutritional evaluation and physiological effect of edible seaweeds [J].Arch Latonoam Nutr,1999,9(2):114-120.
    [56]吕琴,姜乃澄.食用海藻对肠道菌群及肠道微环境影响的研究[J].东海海洋,2002,20(2):58-64.
    [57]肖美添,杨军玲,林海英,等.紫菜多糖的提取及抗流感病毒活性研究[J].福州大学学报(自然科学版),2003,31(5):631-635.
    [58]Yoshida O,Nakashima H,Yoshida T.Sulfation of the immuno-modulating polysaccharide lentinan:A novel strategy for anti-vitals to human immunodeficiency vires[J].Biochem Pharma,1988,37:2887-2891.
    [59]Mizumoto K,Sugawara I,Ito W.Sulfated ho mopolysaccharide with immunomodulating activities are more potent anti-HTLV Ⅲ agents than sulfatd bet eropolysaccharides[J].Jpn.J.Exp.Med.,1988,58(3):145-151.
    [60]Jagodzinski P P,Wiaderkiewicz R,Kurzawski G.Mechanism of the inhibitory effect of eurdlan sulfate on HIV-1 infection in vitro[J].Virology,1994,202(3):735-745.
    [61]田庚元,李寿桐,宋麦丽.牛漆多糖硫酸酯的合成及其抗病毒活性[J].药学学报,1995,30(2):107-111.
    [62]Yoshida O,Nakashima H,Yoshida T.Sulfation of the immtmomodulating polysaccharide lentinan:A noval strategy for antivirals to human immtmodeficiency virus(HIV)[J].Bioehem Pharma,1998,37(7):2887-2889.
    [63]Alban S,Franz G.Characterization of the znticoagul antaction sofasemi synthetic curdlansulfat[J].Thromb Res,2000,99(4):377-388.
    [64]Carlucci M J,Ciancia M,Arena A,et al.Antiherpetie activity and mode of action of natural carrageenans of diverse strcture types[J].Antiviral Research,1999,43(2):93-102.
    [65]王兆梅,李琳,郭祈远.多糖结构修饰研究进展[J].中国医药工业杂志,2002,33(12):144-148.
    [66]Cirelli A F,Covian J A.Effect of sulfation on the biological activity of(1→3)glucans from the tree fungus Cyttaria harioti Fisher[J].Carbohydrate Research,1989,190(329-337).
    [67]Inoue K,Kawamoto K,Nakajima H,et al.Chemical modification and antitumor activity of a D-manno-D-glucan from Microellobosporia grisea[J].Carbohydr Res,1983,115:199-208.
    [68]陈茹玉,陈小茹.N,N-二(2-氯乙基)果糖基磷酰胺酯的合成及其抗肿瘤活性研究[J].高等学校化学学报,1993,14(7):963-965.
    [69]陈晓明,田庚元.多糖硫酸酯化的研究进展[J].有机化学,2002,22(11):835-839.
    [70]Williams D L,McNamee R B,Jones E 1.A method for the Solubilization of a(1-3)- d glucan isolated from Sacchaomyces cerevisae[J].Carbohyd Res,1991,219:203-213.
    [71]Inoue H,Nakayama H,Tsuhako M.A one-step phosphorylation of D-aldohexoses and D-aldopentoses with inorganic cyclo-triphosphate[J].Carbohydr Res,2000,324(1):10-6.
    [72]Tsuhako M,Sueyoshi C,Baba Y.Phosphorylation of Glucose with cyclo-Triphosphate[J].Chem.Lett.,1987,187(7):1431-1434.
    [73]Mizutani H,Ponnamperuma C.Effect of polynucleotides on the dimerization of glycine[J].Orig Life,1981,11(3):237-41.
    [74]Colquhoun I J,Jay A J,Eagles J,et al.Structure and conformation of a novel genetically engineered polysaccharide P2[J].Carbohydr Res,2001,330(3):325-33.
    [75]Jamas S,Easson D D,Ostroff G R.PGG-glucans.A novel class of macrophage activity immunomodulators[J].ACS Symp Ser,1991,469(1):44-51.
    [76]Yoshizawa Y,Tsunehiro J,Nomura K,et al.In vivo macrophage-stimulation activity of the enzyme-degraded water-soluble polysaccharide fraction from a marine alga(Gracilaria verrucosa)[J].Biosci Biotechnol Biochem,1996,60(10):1667-71.
    [77]Martijin W A,Piet D,Maartje F.The mechanism of cavitation-induced polymer scission experimental and computational verification[J].Polymer,2004,45:6461-6467.
    [78]唐爱民,梁文芷.超声处理对速生材木浆纤维结构的影响[J].声学技术,2002,19(2):78-85.
    [79]Cunko R,Tomljenovic A.Changes of physical properties of cellulose fibers by the impact of ultrasound[J].Tekstil,2003,52(2):47-54.
    [80]Aimin T,Hongwei Z,Gang C,et al.Influence of ultrasound treatment on accessibility and regioselective oxidation reactivity of cellulose[J].Ultrason Sonochem,2005,12(6):467-72.
    [81]Jacobs H,Delcour A.Hydrothermal modifications of granular starch,with retention of the granular structure:a review[J].J Agri Food Chem,1998,46(8):2895-2905.
    [82]Isono Y,Kumagal T,Watanabe T.Ultrasonic degradation of waxy rice starch[J].Biosci.Biotech.Biochem,1994,58(10):1799-1802.
    [83]Seguchi M,Hignsa T.Study of wheat starch structures by sonication treatment[J].Cereal chem,1994,71(6):639-641.
    [84]Azhar A,Hamdy M K.Study of wheat starch structures by sonication treatment[J].J Food Sci,1999,44(3):801-804.
    [85]Chen R H,Chang J R,Shyur J S.Effects of ultrasonic conditions and storage in acidic solutions on changes in molecular weight and polydispersity of treated chitosan[J].Starch,2002,24:116-123.
    [86]王伟,秦汶.脱乙酰基甲壳素的超声波降解[J].化学通报,1999,9:41-44.
    [87]韩松涛,斤泰球,蔡纯.超声波强化壳聚糖在乙酸溶液中降解作用的研究[J].声学技术,1999,18(3):139-141.
    [88]Rokita B,Czechowska R.Ulanski,P.,Modification of polymers by ultrasound treatment in aqueous solution[J].E-polymer Art,2005,24:46-50.
    [89]Trzcinski S,Staszewska D U.Kinetics of ultrasonic degradation and polymerization degree distribution of sonochemically degraded chitosan[J].Carbohydrate Polymers,2004,56(4): 489-498.
    [90]Shari B,Svetlana Z,Jochen W.Molecular weight and degree of acetylation of high-intensity ultrasonicated chitosan[J].Food Hydrocolloids,2005,19:821-830.
    [91]Baxter S,Zivanovic S,Weiss J.Molecular weight and degree of acetylation of high-intensity ultrasonicated chitosan[J].Food Hydrocolloids,2005,19(5):821-830.
    [92]Tabata K,Ito W,Kojima T,et al.Ultrosonic degradation of schizophyllan,an antitumor polysaccharide produeed by schizophyllan commune fries[J].Carbohydr Res,1981,89(1):121-135.
    [93]Stahmann K P,Monschau N,Sahm H.Structure properties of native and sonicated cinerean,α-(1,3)(1,6)-D-glucan produced by Botrytis cinerea[J].Carbohydr Res,1995,226(1):115-128.
    [94]Cheng Y L,Chun H C,Yeh A I.Preliminary study on the degradation kinetics of agarose and carrageenans by ultrasound[J].Food Hydrocolloids,1999,13(3):477-481.
    [95]Lorimer J P,Mason T J,Cuthbert T C.Effect of ultrasound on the degradation of aqueous native dextran[J].Ultrasonics Sonochemistry,1995,21(1):55-62.
    [96]Portenlanger G;Heusinger H.The influence of frequency on the mechanical and radical effects for the ultrasonic degradation of dextranes[J].Ultrasonics Sonochemistry,1997,4:127-130.
    [97]Renata C B,Bozena R,Salah L.Degradation of chitosan and starch by 360-kHz ultrasound [J].Carbohydrate Polymers,2005,60:175-184.
    [1]高淑清,单保恩.条斑紫菜生物学作用的研究进展[J].现代中西医结合杂志,2004,13(12):1661-1662.
    [2]王娟,戴继勋,张义听,等.紫菜的生殖与生活史研究进展[J].中国水产科学,2006,13(2):322-326.
    [3]汤晓荣,潘光华,许东海.紫菜分子遗传学研究进展[J].中国海洋大学学报,2006,36(5):687-692.
    [4]周利亘,王春辉,王君虹,等.紫菜多糖的分离纯化及生物学功能研究进展[J].粮汕食品科技,2006,14(4):67-69.
    [5]Nunn J R,Holt H M.Red-seaweed polysaccharides,Part II.Porphyra capensis and the separation of d- and 1-galactose by crystallisation[J].J.Chem.Soc.,1957:1094-1097.
    [6]Frei E,Preston R D.Non-Cellulosic Structural Polysaccharides in Algal Cell Walls.Ii.Association of Xylan and Mannan in Porphyra Umbilicalis[J].Proc R Soc Lond B Biol Sci,1964,160:314-327.
    [7]Yoshizawa Y,Enomoto A,Todoh H,et al.Activation of murine macrophages by polysaccharide fractions from marine algae(Porphyra yezoensis)[J].Biosci Biotechnol Biochem,1993,57(11):1862-1866.
    [8]Yoshizawa Y,Tsunehiro J,Ametani A.Macrophage stimulation activity of the polysaccharide fraction from a marine alga(Porphyra yezoensis):structure-function relationships and improved solubility[J].Biosci Biotechnol Biochem,1995,59(10):1933-1937.
    [9]吕燕,陈颢,汪水娟,等.坛紫菜多糖的分离纯化和化学结构分析[J].南京大学学报(自然科学版),2000,16(3):159-161.
    [10]吕燕,陈颢,汪水娟,等.坛紫菜多糖的分离纯化和结构分析(Ⅱ)[J].南京大学学报(自然科学版),2001,37(2):240-245.
    [11]张伟云,陈颢,汪水娟,等.条斑紫菜中一种琼胶多糖的分离纯化及鉴定[J].条斑紫菜中一种琼胶多糖的分离纯化及鉴定,2000,17(5):429-434.
    [12]张伟云,陈颢,汪水娟,等.条斑紫菜中四个多糖组分的提纯及组成分析[J].食品科学,21(11):50-52.
    [13]周慧萍,陈琼华.紫菜多糖的抗凝血和降血脂作用[J].中国药科大学学报,1990,21(6):358-360.
    [14]周慧萍,陈琼华.紫菜多糖对核酸蛋白质生物合成和免疫功能的影响[J].中国药科大学学报,1989,20(2):86-88.
    [15]周慧萍,陈琼华.紫菜多糖抗衰老作用的实验研究[J].中国药科大学学报,1989,20(4):231-234..
    [16]周慧萍,陈琼华.紫菜多糖对实验性血.栓和心肌收缩力的影响[J].中国药科大学学报,1991, 22(1):50-52.
    [17]徐民俊,茅云翔,庄筠昀,等.条斑紫菜孢子体cDNA文库构建及表达序列标签的初步分析[J].大连水产学院学报,26(2):7-12.
    [18]Zhang Q,Li N,Zhou G,et al.In vivo antioxidant activity of polysaccharide fraction from Porphyra haitanesis(Rhodephyta) in aging mice[J].Pharmacol Res,2003,48(2):151-155.
    [19]Zhang Q,Qi H,Zhao T,et al.Chemical characteristics of a polysaccharide from Porphyra capensis(Rhodophyta)[J].Carbohydr Res,2005,340(15):2447-2450.
    [20]冯琛,路新枝,于文功.逆境胁迫对条斑紫菜生理生化指标的影响[J].海洋湖沼通报,2004,34(3):22-26.
    [21]肖海芳,马海乐.条斑紫菜蛋白和多糖提取工艺优化[J].食品研究与开发,2005,26(1):84-87.
    [22]何荣海,马海乐,骆新峥.条斑紫菜多糖超声提取及其对U937细胞生长抑制影响的研究[J].农业工程学报,2005,21(8):165-168.
    [23]周存山,马海乐,曾慧琴.条斑紫菜多糖的分离纯化及Mark-Houwink方程参数测定[J].2006,27(9):41-44.
    [24]Zhou C,Ma H.Ultrasonic degradation of polysaccharide from a red algae(Porphyra yezoensis)[J].J Agric Food Chem,2006,54(6):2223-2228.
    [25]刘青梅,杨性民,邓红霞,等.采用微波技术提取紫菜多糖的工艺研究[J].农业工程学报,2005,21(2):153-156.
    [26]邓红霞,邬应龙,刘青梅,等.紫菜多糖提取工艺优化研究[J].食品工业科技,2005,26(1):129-130.
    [27]刘凤,顾中凯,何培民.影响紫菜多糖提取的几种因子[J].上海水产大学学报,2005,14(1):89-83.
    [28]Plackett R L,Burman J P.The design of optimum multifactorial experiments[J].Biometrika,1946,33:305-325.
    [29]Desai K M,Akolkar S K,Badhe Y P,et al.Optimization of fermentation media for exopolysaccharide production from Lactobacillus plantarum using artificial intelligence-based techniques[J].Process Biochemistry,2006,41:1842-1848.
    [30]Wang Y,Lu Z.Optimization of processing parameters for the mycelial growth and extracellular polysaccharide production by Boletus spp.ACCC[J].Process Biochemistry,2005,40(3):1043-1051.
    [31]Chen D,Han Y,Gu Z.Application of statistical methodology to the optimization of fermentative medium for carotenoids production by Rhodobacter sphaeroides[J].Process Biochemistry,2006,41(8):1773-1778.
    [32]陈人弼.坛紫菜主要营养成分的分析[J].台湾海峡,1999,18(4):465-468.
    [33]张全斌,赵婷婷,綦慧敏.紫菜的营养价值研究概况[J].海洋科学,2005,29(2):69-73.
    [1]周慧萍,陈琼华.紫菜多糖的抗凝血和降血脂作用[J].中国药科大学学报,1990,21(6):358-360.
    [2]肖美添,杨军玲,林海英,等.紫菜多糖的提取及抗流感病毒活性研究[J].福州大学学报(自然科学版),2003,31(5):631-635.
    [3]王长云,管华诗.多糖抗病毒研究进展Ⅱ、硫酸多糖抗病毒作用[J].生物工程进展,2000,20(2):3-8.
    [4]高淑清,单保恩.条斑紫菜生物学作用的研究进展[J].现代中西医结合杂志,2004,13(12):1661-1662.
    [5]Yasuko Y,Atushi E,Hirofumi T,et al.Activation of macrophages by polysaccharide fractions from marine algea(Porphyra yezoensis)[J].Biosci.Biotech.Biochem,1993,57(11):1862-1866.
    [6]何荣海,马海乐,骆新峥.条斑紫菜多糖超声提取及其对U937细胞生长抑制影响的研究[J].农业工程学报,2005,21(8):165-168.
    [7]邓红霞,邬应龙,刘青梅,等.紫菜多糖提取工艺优化研究[J].食品工业科技,2005,26(1):129-130.
    [8]姚兴存,舒留泉,穆春林.紫菜琼胶酶法提取工艺研究[J].食品科技,2003,23(11):27-28.
    [9]Marie E,Lucchesi C,Jacqueline S.et al.Solvent free microwave extraction of Elletaria cardamomum L.:A multivariate study of a new technique for the extraction of essential oil [J].Journal of Food Engineering,2007,79(3):1079-1086.
    [10]Mauri-Aucejo A R,Arnandis-Chover T R,Marin-Saez.et al.Application of pressurized fluid extraction to determine cadmium and zinc in plants[J].Analytica Chimica Acta,2007,581(1):78-82.
    [11]Wang S,Chen F,Wu J,et al.Optimization of pectin extraction assisted by microwave from apple pomace using response surface methodology[J].Journal of Food Engineering,2007,78(2):693-700.
    [12]Li J,Ding S,Ding X.Optimization of the ultrasonically assisted extraction of polysaccharides from Zizyphusjujuba cv.Jinsixiaozao[J].Journal of Food Engineering,2007,80(1):176-183.
    [13]陶平,许庆陵,姚俊刚,等.大连沿海13种食用海藻的营养组成分析[J].辽宁师范大学学报(自然科学版),2001,24(4):406-410.
    [14]何洁,崔铁军,王家骧,等.4种药用海藻有效成分的分析与利用[J].中国海洋药物,1996,15(2):26-30.
    [15]范晓,韩丽君,郑乃余.我国常见食用海藻的营养成分分析[J].中国海洋药物,1993, 4:32-37.
    [16]Yasuko Y,Atushi E,Hirofumi T,et al.Polysaccharide Fraction from a Marine alga(Porphyra yezoensis):Structure-Function Relationships and Improved Solubility[J].Biosci.Biotech.Biochem,1995,59(10):1933-1937.
    [17]吕燕,陈颢,汪水娟,等.坛紫菜多糖的分离纯化和化学结构分析[J].南京中医药大学学报(自然科学版),2000,16(3):159-163.
    [18]张伟云,陈颢,汪水娟,等.条斑紫菜中四个多糖组分的提纯及组成分析[J].食品科学,2000,21(11):50-52.
    [19]张惟杰,主编.糖复合物生化研究技术(第二版)[M].杭州:浙江大学出版社,1998,11-12.
    [20]Staub A M.Removeal of Protein-sevag method[J].Methods in Carbohydrate Chemistry,1965,5(2):5-6.
    [21]Bradford M M.A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding[J].Anal Biochem,1976,72:248-54.
    [22]陈莉,屠康,王海,等.采用响应曲面法对采后红富士苹果热处理条件的优化[J].农业工程学报,2006,159-163(3):175-178.
    [23]邹祥.姬松茸胞外多糖快速分离及性质初步分析[J].食品科学,2005,26(4):75-79.
    [24]夏向东,吕飞杰,台建祥,等.裸大麦中生育三烯酚的超临界CO_2流体萃取工艺[J].农业工程学报,2004,20(5):191-195.
    [25]孙文爽,陈兰祥.多元统计分析[M].北京:教育出版社,1994,221-225.
    [26]张锐,袭兴国,郭建军,等.羊栖菜中岩藻甾醇、马尾藻甾醇以及水溶性多糖的综合提取工艺[J].农业工程学报,2006,22(4):190-193.
    [27]刘晓雯,陈向东,吴梧桐.灰树花菌丝体多糖的分离纯化和理化性质研究[J].药物生物技术,2005,18:12-15.
    [28]倪德江,谢笔钧,宋春和,等.茶多糖提取条件的研究[J].农业工程学报,2003,19(2):176-179.
    [1]张伟云.两种丰产海洋生物中的生物大分子活性成分的研究[D].南京大学:1999.
    [2]李水军.条斑紫菜品质分析[D].上海水产大学:2002.
    [3]刘红全.条斑紫菜的转基因研究[D].中国海洋大学:2004.
    [4]Zhang Q,Li N,Zhou G,et al.In vivo antioxidant activity of polysaccharide fraction from Porphyra haitanesis(Rhodephyta) in aging mice[J].Pharmacol Res,2003,48:151-155.
    [5]Zhao T,Zhang Q,Qi H,et al.Degradation of porphyran from Porphyra haitanensis and the antioxidant activities of the degraded porphyrans with different molecular weight[J].Int J Biol Macromol,2006,38:45-50.
    [6]周慧萍,陈琼华.紫菜多糖的抗凝血和降血脂作用[J].中国药科大学学报,1990,21(6):358-359.
    [7]Yoshizawa Y,Ametani A,Tsunehiro J,et al.,Macrophage stimulation activity of the polysaccharide fraction from a marine alga(Porphyra yezoensis):structure-function relationships and improved solubility[J].Biosci Biotechnol Biochern,1995.59(10):1933-7.
    [8]周慧萍,陈琼华.紫菜多糖的抗凝血和降血脂作用[J].中国药科大学学报,1990,21(6):358-359.
    [9]周慧萍,陈琼华.紫菜多糖对机体细胞的保护作用[J].中国药科大学学报,1989,20(6):340-342.
    [10]张伟云,周建峰,陈颢.紫菜多糖对免疫细胞及肿瘤细胞生长的影响[J].生命科学,2002,2(6):167-170.
    [11]周慧萍,陈琼华.紫菜多糖抗衰老作用的实验研究[J].中国药科大学学报,1989,20(4):231-234.
    [12]Zhang Q,Li N,Liu X,et al.The structure of a sulfated galactan from Porphyra haitanensis and its in vivo antioxidant activity[J].Carbohydr Res,2004,339:105-111.
    [13]高淑清,单保恩.条斑紫菜生物学作用的研究进展[J]。现代中西医结合杂志,2004,13(12):1661-1662.
    [14]汤晓荣,潘光华,许东海,等.紫菜多糖的分离纯化及生物学功能研究进展[J].粮油食品科技,2006,36(5):687-692.
    [15]Duan J Y,Zheng Y,Dong Q,et al.Structttral analysis of a pectic polysaccharide from the leaves ofDiospyros ak/[J].Phytochemistry,Volume,2004,65:609-615.
    [16]Bao X F,Liu C P,Fang J N,et al.Structural and immunological studies of a major polysaccharide from spores of Ganoderma lucidum(Fr.) Karst[J].Carbohydrate Research,2001,332:67-74.
    [17]Silvestri L,Hurst R E.Analysis of sulfate in complex carbohydrates[J].Analytical Biochem,1982,123:303-309.
    [18]Dodgson K S,Price R G.A note on the determination of the ester sulphate content of sulphated polysaccharides[J].Biochem J,1962,84:106-110.
    [19]Yaphe W.Colorimetric determination of 3,6-anhydro-.galactose and galactose in marine algal polysaccharides[J].Anal.Chem.,1960,32:1327-1330.
    [20]Yaphe W,Arsenault G P.Improved resorcinol reagent for the determination of fructose and 3,6-anhydro-galactose in polysaccharides[J].Anal Biochem,1965.13:143-148.
    [21]Harding S E.The intrinsic viscosity of biological macromolecules.Progress in measurement, interpretation and application to structure in dilute solution.Prog Biophys Mol Biol,1997.68(2-3):p.207-62.
    [22]魏新林,夏文水.甲壳低聚糖的特性研究[J].水产科学,2004,23(2):15-19.
    [23]李海洋.滴定分析的数学研究[J].锦州师范学院学报(自然科学版),2001,22(4):31-32.
    [24]高寅飞,马海乐,王振斌,等.蜂胶的超临界CO_2萃取物的体外抗肿瘤作用[J].食品研究与开发,2006,27(7):1-3.
    [25]Nishikimi M,Rao N A,Yagi K.The occurrence of superoxide anion in the reaction of reduced phenazine methosulphate and molecular oxygen[J].Biochem Biophys Res Commun,1972.46:849-854.
    [26]Halliwell B,Gutteridge J M,Aruoma O I.The deoxyribose method:a simple "test-tube" assay for determination of rate constants for reactions of hydroxyl radicals[J].Anal Biochem,1987,165(1):215-219.
    [27]林晓芝,唐渝,张渊明,等.海藻多糖的组成及结构光谱分析[J].化学通报,2005,12:911-917.
    [28]何荣海,马海乐,骆新峥.条斑紫菜多糖超声提取及其对U937细胞生长抑制影响的研究[J].农业工程学报,2005,21(8):165-168.
    [29]张伟云,刘宇峰,陈 颢,等.一种紫菜多糖的制备及对淋巴细胞生长的影响[J].武汉植物学研究,2001,19(2):149-152.
    [30]周利亘,王春辉,王君虹,等.紫菜多糖的分离纯化及生物学功能研究进展[J].粮汕食品科技,2006,14(4):67-69.
    [31]胡云.芦荟的抗氧化活性和芦荟多糖增强免疫力功能的研究[D].南京农业大学,2004.
    [32]Glin I,Bykokuroglu M E,Oktay M.Antioxidant and analgesic activities of turpentine of Pinus nigra Arn.subsp.pallsiana(Lamb.) Holmboe[J].J.Ethnopharmacology,2003(86):51-58.
    [33]Pilar R,Oussama A,Antonio L.Potential Antioxidant Capacity of Sulfated Polysaccharides from the Edible Marine Brown Seaweed Fucus vesiculosus[J].J.Agric.Food Chem.,2002,50(4):840-845.
    [34]Mabeau S,Fleurence J.Seaweed in food products:biochemical and nutritional aspects[J].Trends Food Sci.Technol.1993,4:103-107.
    [35]Jimenez-Escrig A,Jimenez-Jimenez I,Pulido R,et al.Antioxidant activity of fresh and processed edible seaweeds.J.Sci.Food Agric.2001,81:530-534.
    [36]Hua Y,Liu X,Xing R,et al.In vitro determination of antioxidant activity of proteins from jellyfish Rhopilema esculentum[J].Food Chemistry,2006,95:123-130.
    [37]MERCIER Y,GATELLIER P,RENERRE M.Lipid and protein oxidation in vitro,and antioxidant potential in meat from Charolais cows finished on pasture or mixed diet[J].Meat science,2004,66:467-473.
    [38]Qi H,Zhang Q,Zhao T,et al.Antioxidant activity of defferent sulfate content derivatives polysaccharide extracted from Ulva pertusa in vitro[J].Bio Macro,2005,37:195-199
    [1]Harkal U D,Gogate P R,Pandit A B.Shenoy,M.A.Ultrasonic degradation of poly(vinyl alcohol)in aqueous solution[J].Ultrason Sonochem,2005,13:471-479.
    [2]Li Y,Li J,Guo S,et al.Mechanochemical degradation kinetics of high-density polyethylene melt and its mechanism in the presence of ultrasonic irradiation[J].Ultrason Sonochem,2005,12:183-189.
    [3]Kubo M,Matsuoka K,Takahashi A,et al.Kinetics of ultrasonic degradation of phenol in the presence of TiO2 particles[J].Ultrason Sonochem,2005,12:263-269.
    [4]Pandit A B,Gogate P R,Mujumdar S.Ultrasonic degradation of 2:4:6 trichlorophenol in presence of TiO2 catalyst[J].Ultrason Sonochem,2001,8:227-231.
    [5]Tauber M M,Guebitz G M,Rehorek A.Degradation of azo dyes by laccase and ultrasound treatment[J].Appl Environ Microbiol,2005,71:2600-2607.
    [6]Aliyu M,Hepher M J.Effects of ultrasound energy on degradation of cellulose material[J].Ultrason Sonochem,2000,7:265-268.
    [7]Cravotto G;Tagliapietra S,Robaldo B,et al.Chemical modification of chitosan under high-intensity ultrasound[J].Ultrason Sonochem,2005,12:95-98.
    [8]Ranata C B,Bozena R,Salah L,et al.Degradation of chitosan and starch by 360-kHz ultrasound [J].Carbohydrate Polymers,2005,60:175-184.
    [9]Chengyi L,Chunhsien C,Ani Y,et al Preliminary study on the degradation kinetics of agarose and carrageenans bu ultrasound[J].Food hydrocolloids,1999,13:477-481.
    [10]Inui H,Tsujikubo M,Hirano S.Low molecular weight chitosan stimulation of mitogenic response to platelet-derived growth factor in vascular smooth muscle cells[J].Biosci Biotechnol Biochem,1995,59:2111-2114.
    [11]Kim T H,Ihm J E,Choi Y J,et al.Efficient gene delivery by urocanic acid-modified chitosan[J].J Control Release,2003,93:389-402.
    [12]Howard J G,Zola H,Christie G H,et al.Studies on immunological paralysis.V.The influence of molecular weight on the immunogenicity,tolerogenicity and antibody-neutralizing activity of the 3 pneumococcal polysaccharide[J].Immunology,1971,21:535-546.
    [13]Pugh N,Ross S A,EISohly M A,et al.Characterization of Aloeride,a new high-molecular-weight polysaccharide from Aloe vera with potent immunostimulatory activity [J].J Agric Food Chern,2001,49:1030-1034.
    [14]Presta M,Oreste P,Zoppetti G,et al.Antiangiogenic activity of semisynthetic biotechnological heparins:low-molecular-weight-sulfated Escherichia coli K5 polysaccharide derivatives as fibroblast growth factor antagonists[J].Arterioscler Thromb Vasc Biol,2005,25:71-76.
    [15]高淑清,单保恩.条斑紫菜生物学作用的研究进展.现代中西医结合杂志,2004,13:1661-1662.
    [16]Yoshizawa Y,Ametani A,Tsunehiro J,et al.Macrophage stimulation activity of the polysaccharide fraction from a marine alga(Porphyra yezoensis):structure-function relationships and improved solubility[J].B iosci.Biotechnol.Biochem.,1995,59:1933-1937.
    [17]Takahashi K,Hirano Y,Araki S,et al.Emulsifying ability of porphyran prepared from dried nori,Porphyrayezoensis,a red alga[J].J Agric Food Chem,2000,48:2721-2725.
    [18]Morric L M,Maclean M W,Long W F,et al.Porphyra primary structure[J].Eur.J.Biochem.,1983,133:676-684.
    [19]Muthupandian A,Tyson N,Lyndon T,et al.Sonochemical Degradation of Sodium Dodecylbenzene Sulfonate in Aqueous Solutions[J].Australian Journal of Chemistry,2003,56:1045-1049.
    [20]Vinodgopal K,Muthupandian A,Franz G.Sonochemical Degradation of a Polydisperse Nonylphenol Ethoxylate in Aqueous Solution[J].J.Phys.Chem.,2001,105:3338-3342.
    [21]Myslabodski D E,Stancioff D,Heckert R A.Effect of acid hydrolysis on the molecular weight of kappa carrageenan by GPC-LS[J].Carbohydrate Polymers,1996,31:83-92
    [22]Singh S K,Jacobsson S P.Kinetics of acid hydrolysis of carrageen as determined by molecular weight(SEC-MALLS-R),gel breaking strength,and viscosity measurements[J].Carbohydrate Polymers,1994,23:89-103.
    [23]Cyrille R,Marc L.Average Molecular Weight and Molecular Weight Distribution of Agarose and Agarose-Type Polysaccharides[J].Carbohydrate Polymers,1989,10:289-298.
    [24]Goodman R E,Pederson D M.beta-Galactosidase from Bacillus stearothermophilus.beta-Galactosidase from Bacillus stearothermophilus[J].Can.J.Microbiol.,1976,22:817-825.
    [25]Lusis A J,Paigen K.Properties of mouse alpha-galactosidase[J].Biochim.Biophys.Acta.,1976,437:487-497.
    [1]李坚斌,李琳,李冰,等.超声降解多糖研究进展[J].食品工业科技,2006,27(9):181-184.
    [2]Hyungsu K,Jae W L.Effect of ultrasonic wave on the degradation of polypropylene melt and morphology of its blend with polystyrene[J].Polymer,2002,43(8):2585-2589.
    [3]Shirgaonkar I Z,Pandit A B.Degradation of aqueous solution of potassium iodide and sodium cyanide in the presence of carbon tetrachloride[J].Ultrasonics Sonochemistry,1997,4(3):245-253.
    [4]Trzcinski S,staszewska D U.Kinetics of ultrasonic degradation and polymerization degree distribution of sonochemically degraded chitosan[J].Carbohydrate Polymers,2004,56(4):489-498.
    [5]Baxter S,Zivanovic S,Weiss J.Molecular weight and degree of acetylation of high-intensity ultrasonicated chitosan[J].Food Hydrocolloids,2005,19(5):821-830.
    [6]Renata C B,Bozena R,Salah L,et al.Degradation of chitosan and starch by 360-kHz ultrasound[J].Carbohydrate Polymers,2005,60(2):175-184.
    [7]刘石生,丘泰球,蔡纯,等.超声波对壳聚糖降解作用的研究[J].广东工业大学学报,2000,9(3):83-86.
    [8]Tabata K,Ito W,Kojima T.Ultrasonic degradation of schizophyllan,an antitumor polysaccharide produced by schizophyllum commune fries[J].Carbohydr Res,2001,89(1): 121-135.
    [9]Allan G G,Altman L C,Bensinger R E,et al.Zikakis J P,In Chitosan and Related Enzymes.Odand,FL:Academi press.1984:119-133.
    [10]Ikeda I,Sugano M,Yoshida K,et al.Effects of Chitosan Hydrolysates on Lipid Absorption and on Serum and Liver Lipid Concentrations in Rats[J].Agri Food Chem,1993,41(3):431-435.
    [11]Inui H,Tsujikubo M,Hirano S.Low molecular weight chitosan stimulation of mitogenic response to platelet-derived growth factor in vascular smooth muscle cells.Biosci Biotech Biochem,1995,59:2111-2114.
    [12]Renata C B,Bozena R,Salah L.Degradation of chitosan and starch by 360-kHz ultrasound [J].Carbohydrate Polymers,2005,60:175-184.
    [13]师然新,徐祖洪,李恩智,等.降解的角叉菜多糖的抗肿瘤活性[J].海洋与湖沼,2000,31(6):45-48.
    [14]Yasuko Y,Atushi E,Hirofumi T,et al.Activation of macrophages by polysaccharide fractions from marine alga(Porphyra yeaoensis)[J].Biosci Biotech Biochem,1993,57(11):1862-1866.
    [15]Decker E A,Welch,B.Role of ferritin as a lipid oxidation catalyst in muscle food[J].Journal of Agricultural and Food Chemistry,1990,38:674-677.
    [16]Yen G C,Wu J Y.Antioxidant and radical scavenging properties of extracts from Ganoderma tsugae[J].Food Chemistry,1999,65:375-379.
    [17]Oyaizu,M.Studies on products of browning reaction:Antioxidative activities of browning reaction prepared from glucosamine[J].Jap.J.of Nutr.,1986,44:307-315.
    [18]Mathew S,Abraham T E.In vitro antioxidant activity and scavenging effects of Cinnamomum verum,leaf extract assayed by different methodologies[J]..Food Chem Toxicol.,2006,44(2):198-206.
    [19]Lahaye M,Jegou D.Chemical and physical-chemical characteristics of dietary fibres from Ulva lactuca(L.) Thuret and Enteromorpha compressa(L.)[J].Journal of Applied Phycology,1993,5:195-200.
    [20]Lahaye M,Yaphe W,Phan M T.et al.~(13)C-NMR.Spectroscopic investigation ofmethylated and.charged agarose oligosaccharides and polysaccharides[J].Carbohydr.Res.1989,190:249-265.
    [21]Qi H,Zhang Q,Zhao T,et al.In vitro antioxidant activity of acetylated and benzoylated derivatives of polysaccharide extracted from Ulva pertusa(Chlorophyta)[J].Bioorg Med Chem Lett,2006.16(9):2441-5.
    [1]高福成.现代食品工程高新技术.北京:中国轻工业出版社,1997.
    [2]Bohr H,Bohr J.Microwave-enhanced folding and denaturation of globular proteins[J].Phrsical review E:Statistical physics in Plasms Fluids and Related Interdisciplinary Topics,2000,61:4310-4314.
    [3]Pomerai D I,Smith B,Dawe A.et al.Microwave radiation can alter protein conformation without bulk heating[J].FEBS Letter,2003,543(1):93-97.
    [4]Jacob J,Chia L,Boey E Thermal and nothermal interaction of microwave radiation with materials[J].Journal of Mater Science,1995,48:445-451.
    [5]Pagnotta M,Pooley C,Gurland B,et al.Microwave activation of mutarotation of a-D-glucose:example of an intrinsic microwave effect[J].Physical Organic chemistry,1993,6:407-411.
    [6]Byus C V,Glickman B W,Krewski D,et al.A review of the potential health risk of radio frequency fields from wireless telecommunication devices.The Royal Society of Canada,1999.
    [7]黄卡玛,杨晓庆.微波加快化学反应中非热效应研究的最新进展[J].自然科学进展,2006,16(3):273-279.
    [8]Asher S,Shimon M,Uri C,et al.Examining for possible non-thermal effects during heating in a microwave oven[J].Food Chemistry,2007,in press.
    [9]Wendy A B.Examination of aroma volatiles formed from thermal processing of Florida reconstituted grapefruit juice[D].Florida:University of Florida,2004.
    [10]Torgeir H,Olav S,Bjom,E.The influence of the conformation state of κ- andι-carrageenan on the rate of acid hydrolysis[J].Carbohydrate research,1996,288:175-187.
    [11]Boekel M.Formation of flavour compounds in the Maillard reaction[J].Biotechnology advances,2006,24:230-233.
    [12]Sivia B M,Pilar M B.A critical evaluation of fluorescence as a potential marker for the Maillard reaction[J].Food Chemistry,2006,95:423-430.
    [13]Kenji U,Shuichi K.Modification of chitosan by the Maillard reaction using cellulose model compounds[J].Carbohydrate Polymers,2007,in press.
    [14]Shen S C,Tseng K C,Wu J S.An analysis of Maillard reaction products in ethanolic glucose-glycine solution[J].Food Chemistry,2007,102:281-287.
    [15]Zhou G;Yao W,Wang C.Kinetics of microwave degradation of λ-carrageenan from Chondrus ocellatus[J].Carbohydrate Polymers,2006,64:73-77.
    [16]Rees D A.The carrageenan system of polysaccharides.Part 1.The relation between the κ-and λ-components.Journal of the chemical Society,1963,6:1821-1832.
    [17]Hjerde T,Smidsrod O,Christensen B E.The influence of the conformational state of k- and i-carrageenan on the rate of acid hydrolysis[J].Carbohydrate Research,1996,288:175-187.
    [18]Hjerde T,Smidsrφd O,Stokke B,et al.Acid hydrolysis of k- and i-carrageenan:Characterization of partially hydrolyzed samples and single-stranded oligomers released from the ordered structures.Macromolecules,1998,31:1842-1851.
    [19]Lai M F,Kuo M I,Li C F,et al.Ultrasonication and heat effects on the chemical and gelling properties of red algal polysaccharides[J].Food Science,1996,23:717-729.
    [20]Lai M F,Li C F,Li C Y.Characteristics and thermal behavior of six sulphated polysaccharides from seaweeds[J].Food Hydrocolloids,1994,8:215-232.
    [21]Ai Z,Yang P,Lu X.Degradation of 4-chlorophenol by a microwave assisted photocatalysis method[J].Journal of Hazardous Materials 2005,124:147-152.
    [22]Daneshvar N,Betmajady M A,Asghar Y Z.Photooxidative degradation of 4-nitrophenol (4-NP) in UV/H_2O_2 process:Influence of operational parameters and reaction mechanism[J].Journal of Hazardous Materials,2007,139:275-279.
    [23]Buxton G V,Greenstock C L,Helman W P,et al.Critical review of rate constants for reactions of hydrogen atoms and hydroxyl radicals(·OH/·O-) in aqueous solution[J].J Phys Chem Ref Data,1988,17:513-886.
    [24]Han D H,Cha S Y,Yang H Y.Improvement of decomposition of aqueous phenol by microwave irradiation in UV/H_2O_2 process and kinetic study[J].Water Research,2004,38:2782-2790.
    [25]Shao J,Yang Y,Zhong Q.Studies on preparation of oligoglucosamine by oxidative degradation under microwave irradiation[J].Polymer Degradation and Stability,2003,82:395-398.
    [26]Lack S,Dulong V,Picton L,et al.High-resolution nuclear magnetic resonance spectroscopy studies of polysaccharides crosslinked by sodium trimetaphosphate:a proposal for the reaction mechanism[J].Carbohydrate Research,2007,342:943-953.
    [27]Vodenicarova M,Drimalova G,Hromadkova Z,et al.Xyloglucan degradation using different radiation sources:A comparative study[J].Ultrasonics Sonochemistry,2006,13:157-164.
    [28]Rosa DS,Lopes DR,Calil MR.Thermal properties and enzymatic degradation of blends of poly(ε-caprolactone) with starches[J].Polymer Testing,2005,24:756-761.
    [29]Kari TI,Hiroaki K,Tsukasa M,et al.An immunomodulating pectic polymer from Glinus oppositifolius[J].Phtochemistry,2007,68:1046-1058.
    [30]Thanos CG,Briannan EB,William JB,et al.Intraperitoneal stability of alginate-polyornithine microcapsules in rats:An FTIR-SEM analysis[J].Biomaterials,2006,27:3570-3579.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700