用户名: 密码: 验证码:
超高分子量聚丙烯腈混合溶剂沉淀聚合等理论研究及原丝制备工艺的探索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纤维因其拥有高强,高模,密度小等极优越的机械性能及化学稳定性广泛应用于航空、航天领域。聚丙烯腈(PAN)原丝是目前生成碳纤维最主要的原料。在碳纤维的生产过程中,原丝的性能是制约碳纤维性能的主要因素。影响原丝性能的因素主要有聚合体中共聚单体类型、分子量、立构规整性、纺丝方法及工艺、牵伸工艺、干燥致密化程度、上油工艺等。采用高平均分子量聚丙烯腈树脂进行纺丝是生产高强度聚丙烯腈原丝的有效途径。
     基于此我们对于高分子量聚丙烯腈的合成以及纺丝做了大量的工作,研究了混和溶剂沉淀聚合的机理,以及分子量,转化率和沉淀颗粒形貌与反应体系中水含量的关系。利用高分子量聚丙烯腈纺丝,利用落球粘度法研究了纺丝液的流变性质,最终制的了强度1GPa的优质碳纤维原丝。以下是具体研究内容:
     1.本文利用二甲基亚砜(DMSO)与沉淀剂水的非均相混合溶剂沉淀聚合合成高分子量聚丙烯腈。在50℃,55℃,60℃以及65℃4个不同的温度下研究了水含量由0-90%对于转化率的影响,并通过对于转化率的分析对PAN混合溶剂沉淀聚合反应过程的机理进行了探讨。
     2.利用SEM研究了沉淀颗粒微观结构,由于是混合溶剂的沉淀聚合,溶剂DMSO可以与沉淀可以发生溶剂化作用,溶剂DMSO的含量对于沉淀颗粒的结构有着很大的影响。本文应用第四统计力学分析了在混合溶剂沉淀聚合中沉淀颗粒形貌随着沉淀剂水含量以及温度的变化
     3.混合溶剂沉淀聚合中,在水含量很少的时候趋向于溶液聚合方式,而水含量高时倾向沉淀聚合,在这样的体系中,分子量的贡献是来自2部分的,一个是液相的贡献,另一部分是沉淀颗粒表面以及间隙的原位聚合的贡献,我们这里称之为固相的贡献。本文通过固液相聚合反应的动力学方程首先推得两相各自分子量分布的表达式, f_L(X)和f_S(X),进而求出数均分子量的表达式,最后利用实验来求得液-固相贡献之比R值,通过R值可知随水含量的增加,沉淀聚合过程中固相中的聚合逐渐占主导地位。
     4.从沉淀聚合的亚微观聚集过程出发,建立初生态沉淀聚合聚合体凝聚过程模型,推导出了丙烯腈沉淀聚合体的分子量与H_2O/DMSO的关系。在H_2O/DMSO的不同配比条件下进行实验,得出的实验结果与理论推导相吻合。最终可以得到:聚丙烯腈的分子量随H_2O/DMSO比例增加而线性递增的结论。
     5.利用扫描电子显微镜和强度测试仪,研究了普通分子量PAN原丝生产过程中,聚合纺丝工艺以及高温高压牵伸对原丝表面形态及力学性能的影响,并利用群子统计理论,成功预测了高强度纤维的理论牵伸倍数。结果表明:原丝质量的好坏与纺丝液的质量和纺丝工艺密切相关,高温高压蒸汽牵伸,牵伸倍数增大,纤维直径减小,取向提高,纤维表面越光滑,强度和拉伸功率增大;阶段升温聚合方法,干燥致密化效果提高对原丝性能改进具有至关重要的作用;特定工艺下,根据群子统计理论成功预测了纤维强度为1.0GPa时,纤维的理论牵伸倍数为11.16。
     6.高分子聚丙烯腈溶解困难,且制得的纺丝液粘度高。高分子聚丙烯腈的溶解是纺丝中的一个主要难题。我们通过落球法测粘度研究了高分子量聚丙烯腈共聚物的流变性能。论文详细的研究了剪切速率,水含量、温度、浓度与粘度的关系。并求出了不同温度下的粘流活化能。通过研究确定了最佳的湿法纺丝条件,并由此制的纤维直径小于10微米,强度达1GPa的原丝。
PAN fiber is one of the most commonly used precursors for makingcarbon fibers. Since carbon fibers generally have the inherentcombination of high strength, high stiffness, light weight, and chemicalstability, they are uniquely qualified for use in the aerospace industry.
     The Properties of carbon fibers are directly influenced by thequality of PAN precursor fibers. The type of the copolymers,molecularweight of PAN, the stereoregularity and spinning methods arethe mian factors influence the performance of PAN fibers. It is aneffective way using high molecular weight polymer to enhance thestrength of PAN precursor fibers.
     We have done a lot of work on synthesis of high molecular weightpolyacrylonitrile and making PAN fibers with wet-spinning. This paperstudies the mechanism of mixed solvent radical polymerization of PAN.We have studied the relationships between molecular weight, conversionrate, precipitation particle morphology and the content of water in thereaction system. We got the PAN precursor with the strength is1GPa by using high molecular weight polyacrylonitrile resin. The rheologicalproperty of high molecular weight PAN spinning solution was studied byusing falling ball method. The main work we have done are as follows:
     1. We got the high molecular weight PAN by using mixed solventradical polymerization. The precipitation polymerization of acrylonitrile(AN) was carried out in a mixture solvent of dimethyl sulfoxide (DMSO)and water at50-65℃. We studied the effect of water content from0to90%(w/w) on the conversion of aggregation in the precipitationpolymerization. The mechanism of mixed solvent radical polymerizationwas also studied.
     2. The morphologies of PAN precipitates of were investigated bySEM analysis measurement. The solvent content of DMSO have greatimpact on the morphology of precipitation particle. According tosub-cluster statistical theory, we stduied the relationship of precipitationparticle morphology with the content of water and the reactiontemperature.
     3. We synthesis PAN by mixed solvent radical polymerization, thewater content affects the polymerization a lot. When the water content islow the polymerization tends to the solution polymerization, and whenwater content is high it tends to precipitation polymerization. Thecontribution of molecular weight of the PAN is from two parts, one isthe contribution of solution polymerization which we called the contribution of liquid phase. The other is the particle surface andprecipitation polymerization gap contributions which we called thecontribution of solid phase. Though the kinetic equation of two phasepolymerization which we metioned above, we get the expressionmolecular weight distribution of two-phase polymerizations f_L(X)(theexpression molecular weight distribution of the liquid phase) and f_S(X)(the expression molecular weight distribution of the solid phase). Thenwe deduce the expression of the number average molecular weight. Weobtain the values of R which is the ratio of liquid-solid phasecontributions from the data of the number molecular weight. The valueof of R show that the soild-phase polymerization play the main role forthe contribution of the number molecular weight with the increase ofwater in the reaction system.
     4. The purpose of this study is experimental and theoreticalinvestigations of PAN molecular weight increase in precipitationpolymerization as functions of H_2O/DMSO ratio and intrinsic viscosity.To obtain the purpose, precipitation polymerization of acrylonitrile wascarried outby changing the solvent ratio of H_2O/DMSO at differenttemperature, molecular weight and intrinsic viscosity ofthe obtainedpolymer were measured in DMF solution, and model mechanism ofprecipitation polymerization was suggested in relation betweenmolecular weight increases of PAN and H_2O/DMSO ratio.
     5. By using scanning electron microscopy (SEM) and electric singlefiber strength tester, effects of different spinning processes, especiallypressured stream drawing, were investigated on the mechanicalproperties and morphologies of precursor in the preparation of PANprecursor. The empirical relationship between fiber strength and drawratio was studied by using the sub-cluster statistical theory, with whichthe corresponding draw ratio of higher-strength precursor wassuccessfully predicted. The results indicated that: the property ofPAN-based precursor is closely related with the quality of spinning dropand spinning process. During the pressured-stream drawing, as theincrease of draw ratio, fiber diameter decreased, the degree oforientation raised, the surface of precursor became smoother and thestrength and tensile power increased. Polymerization temperaturecontrolled by stage and the results of drying collapse play a importantrole in the improvement of mechanical property of the precursor.According to sub-cluster statistical theory, it was predicted successfullywhen fiber strength was1.0GPa under a certain experimental conditionof the fiber were11.16.
     6. The high molecular weight PAN is difficut to dissolve, and theviscosity of the spinning solution which produced by the high molecularweight PAN and DMSO is high. The rheological behavior ofPAN/DMSO solution was studied with falling ball rheometer. We studied the relationship between the shear rate, water content,temperature, concentration and viscosity of the spinning solution.According to Arrhenius equation, the viscous flow activation energydecrease with the inerease the concentration of the water in the spinningsolution from0-3wt%. We got the PAN precursor with the diameter lessthan10μm and the intensity more than1Gpa.
引文
[1]张旺玺,王艳芝.聚丙烯腈基碳纤维综述[J].合成技术及应用,1998,14(2):20-22
    [2]贺福,王茂章.碳纤维及其复合材料[M].北京:科学出版社1995
    [3]益小苏,范欣愉.大飞机复合材料技术引领纤维产业发展的思考[J].高科技纤维与应用,2009,34:1-8
    [4]沈曾民.新型碳材料.北京[M]:化学工业出版社,1991.53-54.
    [5]施凯跃.聚丙烯腈PAN系碳纤维发展[A].尖端材料科技协会,2005,8:7
    [6] D D Edie. The effect procession the structure and properties of carbon fibers[J].Carbon,1998,36:345-362
    [7]王茂章,贺福.碳纤维的性质、制造及其应用[M].北京:科学出版社,1984
    [8]吴宏仁,吴立峰.纺织纤维的结构和性能[M].北京:纺织工业出版社,1985.
    [9]郭玉明,冯志海.高性能PAN基碳纤维及其复合材料在航天领域的应用[J].高科技纤维与应用,2007,32(5):1-7
    [10] Rajalingam P, Radhakrishxan G. Polyacrylonitrile precursor for carbon fibers[J]. PolymerReviews,1991,31(2):301-310
    [11]贺福,孙微.碳纤维复合材料在大飞机上的应用[J].高科技纤维与应用,2007,6:5-8
    [12]罗益锋,碳纤维的新形势与新技术[J].新型碳材料,1995,4:13
    [13] P.Bajaj, K.Sen, S.Hajir Bahrami. Solution Polymerization of acrylonitrile with vinyl acidsin dimthylformamide[J]. Journal of Applied Polymer Science,1996,59:1539-1550
    [14] T. A. Edison. Electric-lamp[P]. US223898,1880
    [15]张旺玺.聚丙烯腈基碳纤维的新进展[J].高科技纤维与应用,2001,26(5):12-15
    [16]小林弘明.碳素纤维强化复合材料的最近的动向[J].日本复合材料学会志,1999,25(1):18-21
    [17]钱伯章,朱建芳.碳纤维发展现状及市场分析[J].合成纤维,2007,7:10-14
    [18] Schurz J. Discoloration effects in acrylonitrile polymer[J]. Journal of Polymer Science,1958,28(117):438-439
    [19]宋育梅,王刚.二甲基亚砜法碳纤维用聚丙烯腈原丝的技术进展[J].化工科技,2001,9(3):60-63
    [20]罗益锋.国外PAN原丝及碳纤维专利分析报告(1)[J].高科技纤维与应用,2006,31:1-4
    [21]日本东丽公司[P].特开平13-181925.2001-07-03
    [22] Chand S. Review carbon fibers for composites[J]. Journal of MaterialsScience,2000,35(6):1303-1313
    [23]陈光大.碳纤维用PAN原丝的生产和研究[J].吉化科技,1994,2:17-21
    [24] Gao S, Nishinari K. Effect of Degree of Acetylation on Gelation of Konjac Glucomannan[J]. Biomacromolecules,2004,5:175~185
    [25]张旺玺.丙烯腈与衣康酸共聚物的合成与表征[J].山东工业大学学报,1999,29:13-15
    [26]任铃子.丙烯腈聚合及其原液制备[J].北京:纺织工业出版社,1981
    [27]潘祖仁,于再章.自由基聚合[M].北京:化学工业出版社,1983
    [28]程璐,王浩静,欧阳琴等.丙烯腈-衣康酸共聚物稀溶液的粘度行为[J].功能高分子学报,2008,21(3):306-311
    [29]陈方泉,陈慧芳,潘鼎.聚丙烯腈/二甲基亚砜容易的流变学性质[J].高分子材料科学与工程,2005,21(3):133-136
    [30]朱德杰.缠结对超高分子量聚丙烯腈特性粘度测定的影响[J].中国纺织大学学报,1996,22(1):3-5
    [31]汪仁钧,吴承训,潘鼎. PAN湿法纺丝凝固成形中的凝胶化与传质[J].合成技术及应用,2005,20(2):5-8
    [32] Paul D R. Diffusion during the coagulation step of wet-spinning[J]. Journal of PolymerScience.1968,12(3):383-402
    [33]王延相,季保华,刘焕章.湿法纺PAN原丝凝固过程的研究[J].功能材料,2005,36(9):1438-1441
    [34]李青山,沈新元,孟庆财等.腈纶生产工学[M].北京:中国纺织出版社,2000
    [35]季保华,王成国.湿纺凝固条件对PAN初生纤维形态结构的影响[J].合成纤维工业,2006,29(1):1-4
    [36]程能林.溶剂手册[M].北京:化学工业出版社,2002
    [37] Ziabicki A.纤维成形基本原理[M].上海:上海科学技术出版社,1983
    [38]林凤崎,徐樑华,李常清等.凝固条件对PAN初生纤维微孔结构形态影响[J].合成纤维,2006,29(1):16-19
    [39]董兴广,王成国,曹伟伟等.凝固浴条件对PAN纤维结构及性能的影响[J].高分子材料科学与工程,2007,23(2):170-174
    [40]唐春红,张旺玺,曹维宇等.不同牵伸倍数的PAN原丝结构性能的研究[J].塑料工业,2004,32(3):54-57
    [41]刘世昌,陈慧芳,潘鼎.碳纤维用PAN原丝超声波水洗新技术[J].宇航材料工艺,2006,36:46-47
    [42]贾文杰,王成国,王强.油剂在聚丙烯腈基碳纤维中的应用[J].塑料工业,2004,32:55-57
    [43]贺福.高性能碳纤维原丝与油剂[J].高科技纤维与应用,2004,29:1-5
    [44]刘燕军,周存,姜虹.二甲基硅油及其表面活性剂在化纤生产中的应用[J].合成纤维工业,2002,25:40-42
    [45]张喜强,王俊.腈纶油剂ASY-2的研制[J].精细石油化工进展,2000,1:24-26
    [46]王延相,王成国等.拉伸对聚丙烯腈原丝结构和性能的影响[J].合成纤维,2002,31:6-8
    [47]汪晓峰,倪如青,刘强.高性能聚丙烯腈基原丝的制备[J].合成纤维,2000,29:23-27
    [48]齐志军,宋威等. PAN原丝成产过程对碳纤维强度的影响因素[J].高科技纤维与应用,2001,26:17-20
    [49]韩曙鹏,徐樑华,曹维宇等. PAN纤维致密化过程对纤维晶态结构的影响[J].合成纤维工业,2004,27:17-19
    [50] Masaki T, Komatsubara. Finish for carbon fiber precursirs[P]:US,5783305.1998
    [51]日本专利[P],特开平11—12874.1999
    [52] Jahn A K. Finish for acrlic fiber[P]: US4072617.1978
    [53]沈新元.高分子材料加工原理[M].北京:中国纺织出版社,2000
    [54]张旺玺.丙烯腈与丙烯酸混合介质悬浮聚合工艺研究[J].合成纤维,2000,29:6-9
    [55]余木火,唐建国.高分子化学[M].北京:中国纺织出版社,1999
    [56]王宏岳,郭华.显微摄影法对PAN原液静态凝固特征的初步探讨[J].合成纤维工业,1987,5:24-29
    [57]潘祖仁,翁志学,黄志明.悬浮聚合[M].北京:化学工业出版社,1997
    [58]陈厚,张旺玺,王成国.水相悬浮聚合法合成较高分子量聚丙烯腈[J].高分子材料科学与工程,2003,19:79-82
    [59]张引枝,李志敬,贺福等.混合溶剂法合成高分子量PAN[J].合成纤维,1993,22:22-26
    [60]赵建青,李伯耿,袁惠根.丙烯腈水相沉淀聚合研究进展[J].高分子通报,1992,3:1-8
    [61]王善崎.高分子化学原理[M].北京:北京航空航天大学出版社,1993
    [62]日本专利[P],特开平8-27619. l996
    [63]贺福.回眸和展望我过的碳纤维工业[J].化工进展,2000,19:12
    [64]汪昆华,罗传秋,周啸.聚合物近代仪器分析[M].北京:清华大学出版社,2000
    [65] Kavesh, Pervorsek, Proeess for Producing high Tenacity, high Modulus CyrstallineThermoplastics article and novel Product Fibers[P], EP64167,1982.
    [66]西原良浩、古谷禧典等,高强度聚丙烯睛纤维的制造方法[P],JP,63-249713,63-249714,63-249715,1988,10.17
    [67] Uchida, Acrylic fiber with physical properties[J],EP213772,1986
    [68]田中宏佳、玉置广志、上田富士男等,高强度聚丙烯睛纤维的制备[J],JP61-160415,1986
    [69]内田昭喜,高强高模丙烯睛纤维及其制备[J],JP62-33817,1987
    [70]井上猛司、山木纯,高强高模纤维的制备[P],JP62-28407,1987
    [71]寅丸雅章、古谷禧典、西原良浩,高性能聚丙烯睛纤维及其制备[P],JP63-85108,1988
    [72] E.Maslowski[J], Fiber World,3,15(1987)
    [73]西原良浩,古谷禧典,高性能聚丙烯睛纤维的制备方法[P],JP特开平1-104820,特开平l-104816,1989.4.21
    [74]岸田一夫,长谷川章等,单分散性超高分子量聚丙烯睛的合成[P],JP特平1-53281,1989.9.28
    [75]西原良浩,宝迫芳彦等,高分子量聚丙烯睛的合成工艺[P],JP特开平3-210309,1991.2.28
    [76]吴承训,何建明,施飞舟,丙烯睛的悬浮聚合,高分子学报[J],No.1, P121,Fbe.,1991
    [77]赵祥臻[J],自然,14(12),950(1981)
    [78]赵祥臻,氟碳聚合物经快速电子辐照后自由基的衰变[J],核化学与放射化Vol4(2),P111,1982
    [79]赵祥臻,李宗珍,含氟烷基氧杂磺酸钾盐快速电子辐照自由基衰变有机学[J],No.4:279(1982)
    [80]赵祥臻,金纪林,预辐照聚三氟氯乙烯薄膜接枝苯乙烯的研究[J],高分子讯,No.4:270(1986)
    [81]赵祥臻,金纪林[J]Radiat.phys.Chem.,31(4-6):505(1955)
    [82]赵祥臻,李宗珍[A] Proeeeding of R adiation Curing in Asia’88,349(1988)
    [83]赵祥臻[A]7th International Meeting of Radiation Proeeeding,14-32(1988)
    [84]朱德杰,中国纺织大学博士论文,聚丙烯睛溶液缠结和解缠的研究(1996)
    [85]徐忠波,张旺玺,王成国等.丙烯腈与衣糠酸在混合溶剂中沉淀共聚合[J].化工科技,2002,15(2):124.
    [86]金日光.模糊群子论.第1版[M].哈尔滨:黑龙江科技出版社,1985
    [87]张林,杨明远,毛萍君.悬浮聚合反应制备高相对分子质量PAN[J].合成纤维工业,1998,21:29-31
    [88] Riguang Jin, Hangquan li. Study of polymer blends with sub-cluster theory. Proceedingsof the China-Japan international conferences on rheology[M]. Beijing: Peking universitypress,1991:33-40
    [89]张旺玺,王艳芝.丙烯腈与丙烯酸的共聚合及表征[J].化学世界,2000,41:577-581
    [90]金日光.第四统计力学[M].汉城:韩国宣文梅地亚出版社,1998
    [91]高绪珊,吴大诚.纤维应用物理学[M].北京:中国纺织出版社,2001
    [92] Riguang Jin, Yadung Chang, Guiping Chang. The correlation of the model parameters ofsub-cluster groups of PVC particles size distribution with condition parameter ofpolymerization process and rheological properties[A]. Proceeding IX internationalcongress on rheology,1984,1:449-457
    [93] Hu X, Tomaka J G. Molecular modelling of the stucture of polyacrylonitrile fibres[J].Journal of the Textile Institute,1995,86:322-331
    [94]胡恒亮,穆祥祺. X射线衍射技术[M].北京:纺织工业出版社,1990
    [95] Riguang Jin,Hangquan li. Comparison of PVC/ABS and PVC/SBS blends[J]. Journal ofmaterial science,1994,10:181-186
    [96]贾明道,杨明远等[J],北京化纤,1998(2):1~3
    [97]王艳芝,朱波.混合溶剂法合成高分子量聚丙烯腈[J].山东大学学报,2002,4:
    [98]东丽[P], JP412269,1997.
    [99]三菱人造丝[P], JP13220,1997
    [100]胡盼盼,朱德杰,赵炯心.超高相对分子质量聚丙烯腈浓溶液的制备[J].合成纤维工业,1998,21:10-13
    [101吴雪平,杨永岗,郑经堂,等.高性能聚丙烯腈基碳纤维的原丝[J].高科技纤维与应用,2001,26:6-10
    [102]张旺玺.聚丙烯睛基碳纤维的新进展[J].高科技纤维与应用,2001,26(5):12-14
    [103]贺福.碳纤维及其应用技术[M].北京:化学工业出版社,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700