用户名: 密码: 验证码:
改性高温高韧环氧树脂及其CF增强复合材料环境适应性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环氧树脂具有原料易得、加工性能好、力学性能好等优点,但是普通环氧适用于低温(100℃以下)环境,在高温环境中使用受到限制。虽然可以通过提高交联度、引入刚性基团等手段提高其耐热性,但是这样往往会使环氧树脂的韧性下降。本文针对耐热性和韧性对多官能团环氧进行了改性,开发了新型高温高韧环氧树脂体系,并对其浇注体和CF增强复合材料进行测试,同时模拟高温高湿、高盐度和高辐照等三种恶劣环境进行了人工加速老化试验,研究改性环氧浇注体和CF增强复合材料的环境适应性,并成功将CF改性环氧树脂复合材料作为支撑增强体应用于架空导线中。
     本文采用苯并六元杂环和海岛型增韧改性剂对多官能团环氧树脂进行改性,苯并六元杂环结构能够提高树脂的耐热性能,并且固化时没有小分子放出,使树脂结构致密,海岛型增韧成分和环氧树脂固化后形成两相结构,能够钝化和抑制裂纹的扩展,起到提高环氧韧性的作用。经过改性的高温高韧环氧树脂体系加工性能好,固化产物交联密度高,力学性能好,拉伸强度为42.8MPa,模量为3.4GPa,断裂伸长率达到4.2%,耐热性能好,与碳纤维和玻璃纤维能够良好地结合并有效地传递载荷,CF增强改性环氧树脂复合材料抗拉强度达到2500MPa以上,经过160℃加热3h后,仍能够保持96%以上的强度,玻璃化转变温度为155.5℃,强度高,耐热性能好。
     对固化剂含量为26%-50%的改性环氧树脂体系进行了固化动力学分析和CF增强复合材料的力学性能测试。改性环氧树脂体系的固化反应起始温度、反应峰值温度和反应结束温度随着酸酐固化剂含量的增多而有所提高。酸酐固化剂含量过少,固化反应包括环氧树脂的自聚合和酸酐/环氧的聚合,固化后的环氧树脂内部组织结构不均匀,含有较大的孔隙;酸酐固化剂含量过多,树脂固化反应不够充分;配比适量时,固化反应以酸酐/环氧聚合为主,固化产物组织结构均匀。CF增强不同配比改性环氧树脂复合材料的力学性能随着固化剂含量的增多先增大后减小,当固化剂含量从26.3%提高到46.2%时,弯曲强度从608.1MPa提高到801.5MPa,压缩破坏力从1125.8N增大到3365.9N。改性环氧树脂体系最优配比固化剂含量为46.2%,比经验值44.0%略高。进行环氧树脂设计时,在参考经验公式的同时,也要综合考虑改性剂、加工工艺等因素。对CF增强改性环氧树脂复合材料在生产过程中可能产生内部结构缺陷的因索进行分析,并制备了可能含有相应缺陷的复合材料,研究其内部组织结构对工艺的响应。在纤维增强环氧树脂复合材料拉挤制备过程中,应确保原材料的性能,调整好拉挤速度、温区温度和梯度等工艺参数。树脂体系内的溶剂或纤维吸附的水分等小分子会影响基体和纤维的界面结合,导致材料内部存在大量的气孔;纤维浸胶不充分或者过量会使复合材料内部基体含量不足或者过多,影响复合材料内部组织的致密性和材料表面的光滑度;温度设定过高会使复合材料表面过度交联甚至氧化分解,影响使用性能。
     采用温度25℃-55℃、相对湿度93%的环境模拟湿热环境对改性环氧树脂浇注体和CF增强改性环氧复合材料分别进行2160h和5280h的人工加速老化试验。对湿热老化前后改性环氧树脂及其复合材料的物理性质、热性能、力学性能、化学结构以及微观组织结构等进行了研究。湿热环境中水分的渗透使改性环氧树脂的质量和密度增加,两者的变化趋势基本一致,前期渗透速率较快,到后期改性环氧树脂水分饱和达到平衡,质量、密度趋于水平。树脂达到饱和状态后质量增加1.1%左右。湿热环境老化降低了树脂的硬度,并且变化规律与质量增加的规律基本一样。改性环氧树脂的宏观颜色随着湿热老化的进行而逐渐变浅,老化240h之前颜色变化不明显,240h后开始向乳白色转变。水分的渗透深度呈指数函数增长,根据拟合公式计算出湿热老化30年后改性环氧树脂中水分渗透深度为0.29mm。湿热环境老化没有影响改性环氧树脂的化学结构,渗透进入树脂内的水分也没有和树脂形成化学键,树脂的热性能没有受到影响,老化不同时间的热分解温度在340℃-341℃之间浮动。增强纤维的存在会削弱湿热环境老化对复合材料的影响,水分仅渗入复合材料的表层,降低了复合材料的弯曲强度和冲击强度,但对弯曲强度影响较小,湿热老化5280小时后复合材料的弯曲强度减小了6.35%,由于对外层的二维增强较敏感,冲击强度受到的影响较大,下降了18.5%。湿热环境老化会影响树脂复合材料最外层纤维和基体的结合,降低最外层纤维和基体的结合强度,但这在很大程度上是由老化前纤维和基体的结合状态决定的。如果纤维和基体的界面未老化时存在缝隙、空洞等,湿热老化会对其影响较大,使缺陷处的界面受到破坏。如果未老化时的界面结合较好,则受到的影响不大。
     采用35℃、50g/L的雾化NaCl溶液模拟盐分环境,分别对改性环氧树脂及其CF增强复合材料进行2160h和5280h的人工加速盐雾老化试验。研究了长时间盐雾老化后改性环氧树脂及其CF增强复合材料的物理性质、力学性能、热性能、微观组织结构等,并与湿热老化环境的影响进行对比。盐雾环境老化使改性环氧树脂的质量和密度增加,在老化前期质量和密度增加较快,后期变化缓慢,最后趋于水平,树脂达到饱和平衡时质量增加1.1%左右,与湿热老化相同。盐雾老化对质量和密度影响同湿热老化对质量、密度的影响基本一致。盐雾环境通过水分的渗透、塑化、溶胀作用减小了环氧树脂的硬度,但影响不大。盐雾环境老化没有引起改性环氧树脂官能团和官能团相对含量的变化,也没有改变树脂的起始分解温度和最大速率分解温度。盐雾环境没有改变改性耐高温环氧树脂的化学结构,但引起了物理上的水分吸附,对于耐高温环氧树脂来说属于物理老化。盐雾环境老化和湿热环境老化对于改性环氧树脂的老化机理基本一致,都是通过水分的渗透而引起的物理老化。在较短时间内盐雾环境的老化速度要大于湿热环境的老化速度,但在老化中后期两种环境的老化速率和对树脂的影响程度基本相同,改性环氧树脂吸附饱和的最终平衡状态也相同。改性环氧树脂最终的老化程度由改性环氧树脂的性质、增强纤维性质及含量、界面的结合等情况共同决定。盐雾环境降低了复合材料的弯曲强度和冲击强度,对弯曲强度影响较小,对冲击强度影响相对较大,老化5280h后,弯曲强度下降5.0%,冲击强度下降18.5%,变化趋势和影响幅度同湿热环境老化影响基本一致。盐雾环境老化会严重影响纤维增强环氧树脂基复合材料表面存在缺陷的界面,使缺陷继续扩大,但对老化前结合良好的界面影响不大。
     采用UV-340型紫外老化箱来模拟高辐照地区的日光辐射、冷凝等自然现象,对改性环氧树脂及其CF增强复合材料分别进行1080h和2640h的人工加速紫外老化试验,研究改性环氧树脂及其CF增强复合材料对紫外辐射的响应。高辐照环境中的紫外辐射使改性环氧树脂质量、硬度增加,对密度影响不大。质量和硬度的变化趋势基本一致,在老化前期树脂质量增加,后期开始逐步减小,最终老化后的树脂的质量仍然大于未老化时树脂的质量。随着紫外辐射时间的增加,改性环氧树脂表面从黄色变为深黄色。紫外辐射对环氧树脂起到交联、氧化和裂解的作用。在老化前期交联和氧化作用占主要优势,质量增加,在老化后期裂解占主要作用。紫外辐射对树脂表面形貌产生的影响较大,在老化后期树脂表面出现裂痕,但是影响深度较浅。紫外老化对环氧树脂来说是化学老化,使改性环氧树脂中羟基减少、碳氧双键增多,提高了树脂的起始分解温度和最大速率分解温度,但是提高幅度不大。紫外辐射降低纤维增强环氧树脂基复合材料的力学性能,使弯曲强度和冲击强度减小,对复合材料表层起到裂解的作用,影响了外层玻璃纤维和基体的结合,老化2640h后弯曲强度下降6.6%,冲击强度下降13.5%。
     将CF增强改性环氧树脂复合材料作为支撑增强体成功应用于架空导线中,并进行了型式试验。CF增强改性环氧复合芯导线每公里的质量为742.9kg,是相同规格钢芯铝绞线质量的80.6%,常温拉断力为124.5kN,是钢芯铝绞线的1.65倍,经160℃加热三小时后的拉断力是106.9kN,强度保持率达85.1%。碳纤维复合芯导线的迁移点温度为110℃,在110℃以下的热膨胀系数为11.8×10-6,在110℃以上的热膨胀系数为1.6×10-6,在迁移点温度以上时导线的弧垂基本不再增加,允许导线在更高的温度下使用。现场应用情况表明,新型导线可以取代传统钢芯导线,进行输电线路改造。
Epoxy resin is famous for its availability, processing performance, good mechanical properties, etc, but traditional epoxy resins are usually used at low temperature environment (below100℃), and limited to high temperature environment. Heat resistance of epoxy resin can be increased by means of enhancing the degree of crosslink, adding rigid group, at the expense of reduction of toughness. This article aimed at modification of epoxy resin without the reduction either of the heat resistance and toughness. Epoxy resin was modified by benzene six-membered heterocyclic compound and sea-island structure toughening agents, several tests were taken to evaluate the properties and environmental adaptability of the modified epoxy and its CF reinforced composite, at the same time CF reinforced modified epoxy resin were applied in the overhead cable as the supporting body.
     The curing kinetic analysis and mechanical properties of modified epoxy resin and its CF reinforced composite with different curing agent content of26%-50%were studied respectively. The results showed that the temperature of the begin and the end of the curing reaction raised with the increase in the content of the acid anhydride curing agent. The curing reaction included the polymerization of epoxy resin and the acid anhydride/epoxy polymerization if the curing agent content was not enough. The curing reaction was insufficient if curing agent content was too large. At the appropriate ration of modified epoxy resin, the curing product was uniform. The mechanical properties of CFRP of different curing agent content raised at first and then decreased with the increase of the curing agent. When the curing agent content increased from26.3%to46.2%, the flexural strength increased from608.1MPa to801.5MPa, and the compression destructive power increased from1125.8N to3365.9N. CF reinforced epoxy resin designation should be in reference to the empirical formula, but also considered the modifier, processing technology and other factors. The performance of the raw materials should in good state, and the pultrusion speed, process parameters such as temperature and gradient of temperature zones should be set reasonable. Solvent and the water absorbed on the fiber and epoxy resin would effect of matrix and fiber interface, resulting in a large number of pores inside the material; fiber dipped inadequate or excessive would influence the composite material and the material surface smoothness; curing temperature set too high would make the composite surface cured excessively, and influence the performance.
     Accelerated hygrothermal aging tests on modified epoxy resin and its CF reinforced composite were taken for2160h and5280h respectively, and the environment temperature was between25℃-55℃, the relative humidity was93%. The physical properties, thermal properties, mechanical properties and microstructure were studied. During hygrothermal aging, the mass and density of modified epoxy resin increased, the mass increased1.1%when epoxy resin received saturated state. Color of epoxy resin faded at the begin of aging, the color did not change after240h. The depth of water penetration raised as the exponential growth, according to the fitting formulas calculated, the depth was0.29mm after hygrothermal aging for30years. The chemical structure and thermal resistance of modified epoxy resin did not changed, and the decomposition temperature floated between340℃to-341℃before and after aging. The bending strength and impact strength of CFRP weaked during hygrothermal aging, after5280hours of aging, bending strength reduced by6.35%, and impact strength reduced by18.5%due to the outer layer of CFRP affected by the water adsorption. The hygrothermal aging would affect the binding of the outermost layer of CFRP, reduce the binding strength of the outermost fiber and matrix, but this was largely determined by the combined state before aging.
     Accelerated salt fog aging tests on modified epoxy resin and its CF reinforced composite were taken for2160h and5280h respectively, and the environment temperature was35℃, and the concentration of NaCl solution was50g/L. The physical properties, thermal properties, mechanical properties and microstructure were studied and compared with the results in hygrothermal aging. The mass and density changed the same with which in hygrothermal aging, the mass and density of modified epoxy resin increased, the mass increased1.1%when epoxy resin received saturated state. Hardness decreased and chemical structure did not change. The mechanism of hygrothermal aging and salt fog aging were the same, that aging was caused by water adsorption. Salt fog environment reduced the bending strength and impact strength of the composite material. After aging5280h, the bending strength was decreased by5.0%, and the impact strength was decreased by18.5%. Salt fog environment aging seriously affected the surface with defects, and influenced CFRP with good interface between fiber and matrix a little.
     UV-340aging chamber were used to simulate natural phenomena such as high irradiance radiation and condensation. Accelerated UV aging tests on modified epoxy resin and its CF reinforced composite were taken for1080h and2640h respectively and the physical properties, thermal properties, mechanical properties and microstructure were also studied. Quality and hardness basically showed the same trend in the pre-aging, first increased, and then gradually reduced, the quality of the resin after the final aging was still greater than the quality of the resin before aging. With the increase of UV irradiation time, the surface of modified epoxy resin changed from yellow to dark yellow. Ultraviolet radiation on epoxy played the role of cross-linking, oxidation and pyrolysis. Crosslinking and oxidation accounted during the early aging, resulted in increase of quality, and then effect of pyrolysis was the main role. UV aging was chemical aging, influence the morphology and thermal properties of the modified epoxy resin. UV aging reduced the mechanical properties of CFRP, after aging2640h, the bending strength and impact strength reduced by6.6%and13.5%respectively.
     CF reinforced modified epoxy resin were applied in the overhead cable as the supporting body, sucessfully. Per kilometer quality of CF reinforced modified epoxy composite core was742.9kg, which was80.6%of the ACSR quality at the same size. The tensile force of ACCC at room temperature and heated at160℃for3h was124.5kN and106.9kN,85.1%of tensile strength was remained at high tempertature. The migration point temperature of ACCC was110℃, coefficient of thermal expansion was11.8×10-6when the temperature was bellow110℃, and coefficient of thermal expansion was1.6×10-6when the temperature was above110℃. The small coefficient of thermal expansion of ACCC allowed the wires to be used at higher temperature. Field application showed that the new wire could replace the traditional steel wire and used in transmission line reconstruction.
引文
[1]何平笙.新编高聚物的结构与性能[M].北京:科学出版社,2009
    [2]何平笙,金邦坤,李春娥.热固性树脂及树脂基复合材料的固化——动态扭振法及其应用[M].合肥:中国科学技术大学出版社,2011
    [3]陈祥宝.聚合物基复合材料手册[M].北京:化学工业出版社2004
    [4]陈净.国内环氧树脂行业现状及未来发展趋势[J].中国涂料,2012,27(7):26-27,39
    [5]李晓刚,高瑾,张三平,杜翠薇,卢琳.高分子材料自然环境老化规律与机理[M].北京:科学出版社,2011
    [6]何平笙,李春娥,陈显东,刘建威.环氧树脂-玻璃界面的残余应力[J].高分子材料科学与工程,1990,6(3):40-43
    [7]赵玉庭,姚希曾.复合材料聚合物基体[M].武汉:武汉理工大学出版社,2004
    [8]H.李.环氧树脂[M].北京:中国工业出版社,1965
    [9]上海树脂厂.环氧树脂[M].上海:上海人民出版社,1971
    [10]Kobets L P, Deev I S. Carbon fibers:Structure and mechanical properties[J]. Composites Science and Technology,1998,57(12):1571-1580
    [11]王成国,朱波.聚丙烯腈基碳纤维[M].北京:科学出版社,2011
    [12]贺福,赵建国,王润娥.碳纤维工业的长足发展[J].高科技纤维与应用,2000,25(4):9-13
    [13]罗益锋.新世纪初世界碳纤维透视[J].高科技纤维与应用,2000,25(1):1-7
    [14]Chun W, Song T T, Xia Y W. Effects of liquid crystalline polyurethane on the structure and properties of epoxy[J].Journal of Materials Science Letters,2002,21:719-722
    [15]黄帆,刘轶群,张晓红,高建明,宋志海,谭邦会,魏根栓,乔金.弹性纳米粒子改性环氧树脂的研究[J].中国科学B辑:化学,2004,34(5):432-440
    [16]Dadfar M R, Ghadami F. Effect of rubber modification on fracture toughness properties of glass reinforced hot cured epoxy composites[J]. Materials and Design,2013,47:16-20
    [17]韩孝族,王莲芝,赵国琴,肖刚,张庆余.端经基丁猜橡胶增韧环氧树脂研究[J].高分子学报,1989,(2):225-229
    [18]郝冬梅,王新灵,唐小真.反应型聚碳酸醋增韧改性环氧树脂的相结构与性能[J].上海交通大学学报,2000,34(11):1520-1522
    [19]金坚勇,余英丰,唐晓林等.热塑性聚醚酰亚胺改性四官能环氧树脂的相分离研究[J].功能高分子学报,1999,12(1):83-87
    [20]Brooker R D, Kinloch A J, Taylor A C. The morphology and fracture properties of thermoplastic-toughened epoxy polymers[J]. The Journal of Adhesion,2010,86(7):726-741
    [21]陈宪宏,陈华堂,林明.纳米粘土改性环氧树脂复合材料研究进展[J].绝缘材料,2007,40(2):17-20
    [22]刘刚,张代军,张辉,张晖,安学锋,张忠,益小苏.纳米粒子改性环氧树脂玻璃化转变温度的研究[J].热固性树脂,2009,24(2):6-9
    [23]刘刚,张代军,张晖,安学锋,益小苏,张忠.纳米粒子改性环氧树脂及其复合材料力学性能研究[J].材料工程,2010,(1):57-53
    [24]于浩,路太平.环氧树脂/聚氨酯互穿网络的研究[J].热固性树脂,1996,11(1):13-16
    [25]韦亚兵,张玲,李军.互穿网络法增韧环氧树脂胶粘剂的研究[J].中国胶枯剂,2002,11(1):6-8
    [26]史孝群,肖久梅,龚春秀,马文江,刘建林.环氧树脂增韧研究进展[J].绝缘材料,2002,(1):31-34
    [27]白云起,薛丽梅,刘云夫.环氧树脂的改性研究进展[J].化学与黏合,2007,29(4):289-292,304
    [28]范宏,王建黎.PBA/PMMA型核壳弹性粒子增韧环氧树脂研究[J].高分子材料科学与工程,2001,17(1):121-124
    [29]王晓洁,张炜,谢群炜.热塑性树脂改性环氧基体配方研究[J].新材料新工艺,1999,(2):21-23
    [30]张小华,徐伟箭.无机纳米粒子在环氧树脂增韧改性中的应用[J].高分子通报,2005,(6):100-105
    [31]曹万荣,符开斌,狄宁宇,杨引萍.无机纳米粒子增韧改性环氧树脂的研究进[J].绝缘材料,2009,42(6):31-35,40
    [32]李朝阳,邱大健,谢国先,肖祥定,倪晓雪.纳米Si02增韧改性环氧树脂的研究[J].材料保护,2008,41(4):21-23
    [33]尚蕾,黄奕刚,王建华,贾晓蓉.聚氨酯/环氧树脂互穿网络聚合物的性能研究[J].化学研究与应用,2005,17(4):552-553
    [34]Hsieh K H, Han J L. Graft interpenetrating polymer networks of polyurethane and epoxy. Ⅰ. mechanical behavior[J]. Journal of Polymer Science Part B:Polymer Physics,1990,28(5):623-630
    [35]Thomas J X, Charles A W. Thermal degradation of poly(styrene-g-acrylonitrile)[J]. Polymer Degradation and Stability,1997, 56(1):109-113
    [36]化学工业部合成材料老化研究所.高分子材料老化与防老化[M].北京:化学工业出版社,1979:47-50
    [37]唐福培.在化学介质作用下高分子材料的老化[J].合成材料老化与应用,1997,26(1):18-24
    [38]邢其毅,裴伟伟,徐瑞秋,裴坚.基础有机化学下册(第三版)[M].北京:高等教育出版社,2005
    [39]Irusta L, Fernandez M J. Photooxidative behaviour of segmented aliphatic polyurethane[J]. Polymer Degradation and Stability,1999,63(1): 113-119
    [40]Hamza S S, Abdel M. The effect of thermal ageing and type of stabilizer on creep characteristics of poly(vinyl chloride)[J]. Polymer Degradation and Stability,1998,62(1):171-174
    [41]Chinaglia D L, Hessel R, Oliveira O N. Using shifts in the electronic emission curve to evaluate polymer surface degradation[J]. Polymer Degradation and Stability,2001,74(1):97-101
    [42]Gulmine J V, Janissek P R, Heise H M, Akcelrud L. Degradation profile of polyethylene after artificial accelerated weathering[J]. Polymer Degradation and Stability,2003,79(3):385-397
    [43]Apicella A, Nicolais L. Effect of water on the properties of cpoxy matrix and composite[J]. Advances in Polymer Science,1985,72:69-77
    [44]Nogueira P, Ramirez C. Torres A, Abad M J, Cano J, Lopez J. Hfleet of water sorption on the structure and mechanical properties of an epoxy resin system[J]. Journal of Applied Polymer Science,2001,80:71-80
    [45]Ravari F. Ageing effects on electrical, morphological, and mechanical properties of a low viscosity epoxy nanocomposite[J]. Polymer Degradation and Stability,2012,97(6):929-935
    [46]Prolongo S G, M R Gude, A Urena. Water uptake of cpoxy composites reinforced with carbon nanofillers[J]. Composites Part A:Applied Science and Manufacturing,2012,43(12):2169-2175
    [47]Cabanelas J C, Prolongo S G, Serrano B, Bravo J, Baselga J. Water absorption inpolyaminosiloxane-poxy thermosetting polymers[J]. Journal of Materials Processing Technology,2003,144:143-144
    [48]Zhou J, Lucas J P. Hygrothcrmal effects of epoxy resin. Part I:the nature of water in epoxy[J]. Polymer,1999.40:5505-5512
    [49]Zhou J, Lucas J P. Hygrothermal effects of epoxy resin. Part H: variations of glass transition temperature[J]. Polymer,1999,40:5513-5522
    [50]Carter H G, Kibler K G. Langmuir-type model for anomalous moisture diffusionin composite resins[J]. Journal of Composite Materials, 1978,12:118-131
    [51]Popineau S, Rondeau Mouro C, Sulpice Gaillet C, Shanahan MER. Free/bound water absorption in an epoxy adhesive[J]. Polymer,2005,46: 1733-1740
    [52]Burks B, Kumosa M. The effect of atmospheric aging on a hybrid polymer matrix composite[J]. Composites Part A:Applied Science and Manufacturing,2012,72(15):1803-1811
    [53]Wolfrum J, Eibl S, Lietch L. Rapid evaluation of long-term thermal degradationof carbon fibre epoxy composites[J]. Composites Science and Technology,2009,69(3-4):523-530
    [54]Chatterjee A. Thermal degradation analysis of thermoset resins[J]. Journal of Applied Polymer Science,2009,114(3):1417-1425
    [55]Hodge I M. Physical aging in polymer glasses[J]. Science,1995,267: 1945-1957
    [56]Maddox S L, Gillham J K. Isothermal physical aging of a fully cured epoxy amine thermosetting system[J]. Journal of Applied Polymer Science, 1997,64:55-67
    [57]Barral L, Cano J, Lopez J, Lopez Bueno I, Nogueira P, Abad M J. Physicalaging of a tetrafunctional/phenol novolac epoxy mixture cured with diamine:DSC and DMA measurements[J]. Journal of Thermal Analysis and Calorimetry,2000,60(2):391-399
    [58]Cherdoud Chihani A, Mouzali M, Abadie M J M. Study of crosslinking AMS/DGEBA system by FTIR[J]. Journal of Applied Polymer Science,1998,69:1167-1178
    [59]Bockenheimer C, Fata D, Possart W. New aspects of aging in epoxy networks I. Thermal aging[J]. Journal of Applied Polymer Science,2004,9: 361-368
    [60]Barral L, Cano J, Lopez A J, Lopez J, Nbgueira P, Ramirez C. Thermal degradation of a diglycidyl ether of bisphenol A/1,3-bisaminomethy-lcyclohexane (DGEBA/1,3-BAC) epoxy resin system[J]. Thermochimica Acta,1995,269/270:253-925
    [61]Mailhot B, Morlat Therias S, Ouahioune M, Gardette J L. Study of the degradationof an epoxy/amine resin[J]. Macromolecular Chemistry and Physics,2005,206:575-584
    [62]Hong S G. The thermal-oxidative degradation of an epoxy adhesive on metalsubstrates:XPS and RAIR analyses[J]. Polymer Degradation and Stability,1995,48(2):211-218
    [63]Dao B, Hodgkin J, Krstina J, Mardel J, Tian W. Accelerated aging versus realisticaging in aerospace composite materials. II. Chemistry of thermal aging in a structural composite[J]. Journal of Applied Polymer Science,2006,102:3221-3232
    [64]Musto P, Ragosta G, Russo P, Mascia L. Thermal-oxidative degradation of epoxy and epoxy-bismaleimide networks:kinetics and mechanism[J]. Macromolecular Chemistry and Physics,2001,202:3445-3458
    [65]Galant C, Fayolle B, Kuntz M, Verdu J. Thermal and radio-oxidation of epoxy coatings[J]. Progress in Organic Coatings,2010,69(4):322-329
    [66]Decelle J, Huet N, Bellenger V. Oxidation induced shrinkage for thermally aged epoxy networks[J]. Polymer Degradation and Stability,2003, 81(2):239-248
    [67]Buch X, Shanahan M E R. Thermal and thermo-oxidative ageing of an epoxy adhesive[J]. Polymer Degradation and Stability,2000,68(3): 403-411
    [68]Chen J S. Controlled degradation of epoxy networks:analysis of crosslink density and glass transition temperature changes in thermally reworkable thermosets[J]. Polymer,2004,45:1939-1950
    [69]么枕生.气候学原理[M].北京:科学出版社,1959
    [70]栗原福次(日).塑料的老化(1970)[M].吴三硕译.北京:国防工业出版社,1977
    [71]Van Krevelen D W. Properties of polymers:their correlation with chemical structure[M]. The Fourth revised edition. Amsterdam:Elsevier,2009
    [72]Cataldo F, Angelini G. Some aspects of ozone degradation of poly(vinylalcohol)[J]. Polymer Degradation and Stability,2006,91(11): 2793-2800
    [73]Cataldo F. On the action of ozone on polyaniline[J]. Polymer Degradation and Stability,2001,75(1):93-98
    [74]Franck L L, Bonnet C, Besse S, Lapicquw F. Effects of ozone on the performance of a polymer electrolyte membrane fuel cell [J]. Fuel Cells,2009, 9(5):562-569
    [75]Cataldo F, Omastova M. On the ozone degradation of polypyrrole[J]. Polymer Degradation and Stability,2003,82(3):487-495
    [76]Torres J M, Stafford C M, Vogt B D. Manipulation of the elastic modulus of polymers at the nanoscale:influence of UV-ozone cross-linking and plasticizer[J]. ACS Nano,2010,4(9):45357-45365
    [77]Peng G, Wang H, Wang H, Liu Q, Hao W. Influence of carbonyl Fe on degradationof epoxy in ozone environment[J]. Journal of Polymers and the Environment,2009,17(3):159-164
    [78]Middleton J, Burks B, Wells T, Setters A M, Jasiuk I, Predecki P, Hoffman J, Kumosa M. The effect of ozone on polymer degradation in Polymer Core Composite Conductors[J]. Polymer Degradation and Stability, 2013,98(1):436-445
    [79]Yan M P, Kai W, Mao S Z, Wen X, Xiao J D. Thermal-oxidative aging of DGEBA/EPN/LMPA epoxy system:Chemical structure and thermal-mechanical properties[J]. Polymer Degradation and Stability,2011,96(7): 1179-1186
    [80]Vu D Q, M Gigliotti, M C Lafarie Frenot. Experimental characterization of thermo-oxidation-induced shrinkage and damage in polymer-matrix composites[J], Composites Part A:Applied Science and Manufacturing,2012,43(4):577-586
    [81]Vieille B, Aucher J, Taleb L. Comparative study on the behavior of woven-ply reinforced thermoplastic or thermosetting laminates under severe environmental conditions[J]. Materials and Design,2012,35:707-719
    [82]Marjorie F, Xavier F F, Francesc F, Xavier R, Angels S. Efficient impact resistance improvement of epoxy/anhydride thermosets by adding hyperbranched polyesters partially modified with undecenoyl chains[J]. Polymer,2012,53(23):5232-5241
    [83]潘祖仁.高分子化学(第三版)[M].北京:化学工业出版社,2004
    [84]王从曾.材料性能学[M].北京:北京工业大学出版社,2004
    [1]G B/T 12000-2003,塑料暴露于湿热、水喷雾和盐雾中影响的测定[S]
    [2]GB/T 14522-2008,机械工业产品用塑料、涂料、橡胶材料人工气候老化试验方法-荧光紫外灯[S]
    [3]巩学海,朱波,宋福如,陈原.一种碳纤维复合芯导线接头:中国,200820105980.1[P]
    [4]Oh H S, Moon D Y, Kim S D. An Investigation on Durability of Mixture of Alkali-Resistant Glass and Epoxy for Civil Engineering Application[J]. Procedia Engineering,2011,14:2223-2229
    [1]牛春匀.实用飞机复合材料结构设计与制造[M].北京:航空工业出版社.2010
    [2]蔡永源,李彤,孔莹,马洪声.环氧树脂胶黏剂应用进展[J].化工新型材料,2005,33(11):17-20
    [3]陈平,王德中.环氧树脂及其应用[M].北京:化学工业出版社2004
    [4]孙曼灵.环氧树脂应用原理与技术[M].北京:机械工业出版社2002
    [5]余先纯,孙德林.胶黏剂基础[M].北京:化学工业出版社,2010
    [6]Bagheri R, Marouf B T, Pearson R A. Rubber-toughened epoxies: acritical review[J]. Polymer Reviews,2009,49(3):201-225
    [7]李敏,张佐光,孙志杰,盛华.环氧618树脂线加热固化特征[J].复合材料学报,2004,21(3):17-21
    [8]Yu L, GuoY, Hong M X, Qing P F, Shao Y F. Mechanical properties of cryogenic epoxy adhesives:Effects of mixed curing agent content[J]. International Journal of Adhesion and Adhesives,2013,41:113-118
    [9]周效谅,钱春香,王继刚,郑孝霞.连续纤维增强热塑性树脂基复合材料拉挤工艺研究与应用现状[J].高科技纤维与应用,2004,29(1):41-45
    [10]陈立军,武凤琴,张欣宇,杨建,李荣先.环氧树脂/碳纤维复合材料的成型工艺与应用[J].工程塑料应用,2007,35(10):77-80
    [11]Louis L L, Asami N. Design and manufacturing of an L-shaped thermoplastic composite beam by braid-trusion[J]. Composites:Part A,2012, 43(10):1717-1729
    [12]Alva P, Barzin M, Zvi C. Mechanical properties of hybrid fabrics in pultruded cement composites[J]. Cement and Concrete Composites,2009, 31(9):647-657
    [13]孔庆宝,丁传荣,乔学东.树脂基复合材料拉挤技术研究新进展及我国拉挤工业未来发展讨论(Ⅰ)[J].纤维复合材料,1999,(4):45-51
    [14]孔庆宝,丁传荣,乔学东.树脂基复合材料拉挤技术研究新进展及我国拉挤工业未来发展讨论(Ⅱ)[J].纤维复合材料,2000,(1):50-53
    [15]沈惠平,裴红,高旭东,张娟.玻璃钢光缆增强芯快速拉挤工艺研制[J].玻璃纤维,2004,(1):18-19,11
    [16]李建国,王成忠,于运花,杨小平.拉挤工艺体系的乙烯基酯树脂固化动力学[J].高分子材料科学与工程,2004,20(3):183-186
    [17]朱波,李仲伟,刘建军,蔡华苏.碳纤维/环氧拉挤过程流变特性的研究[J].山东工业大学学报,2002,32(1):10-12
    [18]丁传荣,刘广平,樊宏斌.复合材料拉挤工艺的热传递和固化数学模型研究[J].纤维复合材料,2001,(3):24-27
    [19]李哲,曾竟成,邢素丽,杜刚.碳/玻璃混杂纤维增强环氧树脂复合材料线芯的性能[J].机械工程材料,2007,31(10):29-31
    [20]Rudolf Riesen.热固性树脂[M].上海:东华大学出版社,2009
    [2 1]王莉莉.碳纤维/乙烯基酯树脂拉挤复合材料的环境老化性能研究[D].北京:北京化工大学,2004
    [22]刘建军,王延相,陈厚,朱波,王成国.碳纤维/环氧树脂复合材料连续抽油杆的研制[J].工程塑料应用,2002,30(5):32-34
    [23]何平笙,金邦坤,李春娥.热固性树脂及树脂基复合材料的固化——动态扭振法及其应用[M].合肥:中国科学技术大学出版社,2011
    [24]Myung S Y, Woo I L. Analysis of bubble nucleation and growth in the pultrusion process of phenolic foam composites[J]. Composites Science and Technology,2008,68(1):202-208
    [25]Myung S Y, Woo I L. Analysis of pulling force during pultrusion process of phenolic foam composites [J]. Composites Science and Technology, 2008,68(1):140-146
    [26]Silva F J G, Ferreira F, Costa C, Ribeiro M C S. Meira Castro A C. Comparative study about heating systems for pultrusion process[J]. Composites:Part B,2012,43(4):1823-1829
    [1]Fredj N. Evidencing antagonist effects of water uptake and leaching processes in marine organic coatings by gravimetry and EIS[J]. Progress in Organic Coatings,2010,67(3):287-295
    [2]Legghe. Correlation between water diffusion and adhesion loss:Study of an epoxy primer on steel[J]. Progress in Organic Coatings,2009,66(3): 276-280
    [3]Lettieri M, Frigione M. Effects of humid environment on thermal and mechanical properties of a cold-curing structural epoxy adhcsive[J]. Construction and Building Materials,2012,30:753-760
    |4] Mumenya S W, Tait R B, Alexander M G. Mechanical behaviour of textile concrete under accelerated ageing conditions[J]. Cement and Concrete Composites,2010,32(8):580-588
    [5]Mahmoud, A.M., et al., Non-destructive ultrasonic evaluation of CFRP-concrete specimens subjected to accelerated aging conditions[J]. Nondestructive Testing and Evaluation International,2010,43(7):635-641
    [6]Comyn J. Kinetics and mechanism of environmental attack. In:A.J. Kinloch (editor). Durability of Structural Adhcsives[M]. London:Elsevier Applied Science Publishers,1986
    [7]Adams R D, Cowap J W, Farquharson, Margary G M, Vaughn D. The relative merits of the boeing wedge test and double cantilever beam test for assessing the durabilityof adhesively bonded joints, with particular reference to the use of fracture mechanics[J]. International Journal of Adhesion and Adhesives,2009,29:609-620
    [8]Adamson M J. Thermal-expansion and swelling of cured epoxy-resin used in graphiteepoxycomposite materials[J]. Journal of Materials Science, 1980,15:1736-1745
    [9]Li L, Zhang S Y, Chen Y, Liu M, Ding Y, Luo X, Pu Z, Zhou W, Li S. Water transportation in epoxy resin[J]. Chemistry of Materials,2005,17: 839-845
    [10]Zhou J, Lucas J P. Hygrothermal effects of epoxy resin. Part I:the nature of water in epoxy[J]. Polymer,1999,40:5505-5512
    [11]EL.柯斯乐(美).扩散流体系统中的传质(第二版)[M].北京:化学工业出版社,2002
    [12]Doyle G, Pethrick R A. Environmental effects on the ageing of epoxy joints[J]. International Journal of Adhesion and Adhesives,2009,29: 77-90
    [13]Silva M A G, Silva Z C G, Simao J. Petrographic and mechanical aspects of accelerated ageing of polymeric mortars [J]. Cement and Concrete Composites,2007,29(2):146-156
    [14]Sauvant M V. Hot wet aging of glass syntactic foam coatings monitored by impedance spectroscopy[J]. Progress in Organic Coatings,2007, 59(3):179-185
    [15]Yann R. Anisotropy of hygrothermal damage in fiber/polymer composites:Effective elasticity measures and estimates [J]. Mechanics of Materials,2006,38(12):1143-1158
    [16]Cabanelas J C, Prolongo S G, Serrano B, Bravo J, Baselga J. Water absorption in poly aminosiloxane-epoxy thermosetting polymers[J]. Journal of Materials Processing Technology,2003,144:143-144
    [17]Nogueira P, Ramirez C, Torres A, Abad M J, Cano J, Lopez J. Effect of watersorption on the structure and mechanical properties of an epoxy resin system[J]. Journal of Applied Polymer Science,2001,80:71-80
    [18]Apicella A, Nicolais L. Effect of water on the properties of epoxy matrix and composite[J]. Advances in Polymer Science,1985,72:69-77
    [19]Prolongo S G, Gude M R, Urena A. Water uptake of epoxy composites reinforced with carbon nanofillers[J]. Composites Part A:Applied Science and Manufacturing,2012,43(12):2169-2175
    [20]Carter H G, Kibler K G. Langmuir-type model for anomalous moisture diffusionin composite resins[J]. Journal of Composite Materials, 1978,12:118-131
    [21]Popineau S, Rondeau M C, Sulpice Gaillet C, Shanahan M E R. Free/boundwater absorption in an epoxy adhesive[J]. Polymer,2005,46: 10733-10740
    [22]Lettieri M, Frigione M. Effects of humid environment on thermal and mechanical properties of a cold-curing structural epoxy adhesivc[J]. Construction and Building Materials,2012,30:753-760
    [23]李哲,曾竟成,邢素丽,杜刚.碳/玻璃混杂纤维增强环氧树脂复合材料线芯的性能[J].机械工程材料,2007,31(10):29-31
    [24]曾竟成,罗青.唐羽章.复合材料理化性能[M].长沙:国防科技大学出版社,1998:48-56
    [25]Ravari F. Ageing effects on electrical, morphological, and mechanical properties of a low viscosity epoxy nanocomposite[J]. Polymer Degradation and Stability,2012,97(6):929-935
    [26]Guadagnoa L, Vertuccioa L, Sorrentinoa A, Raimondoa M, Naddeoa C, Vittoria V. Mechanical and barrier properties of epoxy resin filled with multiwalled carbon nanotubes[J]. Carbon,2009,47:2419-2430
    [27]Sciolti M S, Aiello M A, Frigione M. Influence of water on bond behavior betwee sheet and natural calcareous stones[J]. Composites Part B: Engineering,2012,43(8):3239-3250
    [28]Gude M R, Prolongo S G, Urena A. Hygrothermal ageing of adhesive joints with nano reinforced adhesives and different surface treatments of carbon fibre/epoxy substrates[J]. International Journal of Adhesion and Adhesives,2013,40:179-187
    [1]Fredj N. Effect of mechanical stresses on marine organic coating ageing approached by EIS measurements[J]. Progress in Organic Coatings, 2011,72(3):260-268
    [2]Nakache M, Aragon E, Belec L, Perrin F X, Roux G, Le G P. Degradation of rubber to metals bonds during its cathodic delamination, validation of an artificial ageing test[J]. Progress in Organic Coatings,2011, 72(3):279-286
    [3]Sonawala S P, Spontak R J. Degradation kinetics of glass-reinforced polyesters inchemical environments[J]. Part I:Organic solvents. Journalof Material Science,1996,31(18):57-65
    [4]Doyle G, Pethrick R A. Environmental effects on the ageing of epoxy adhesive joints[J]. International Journal of Adhesion and Adhesives,2009, 29(1):877-90
    [5]Stabik J. Ageing of laminates in boiling NaCl water solution[J]. Polymer Testing,2005,24(1):101-103
    [6]P. Bonniau A R, Bunsell A. Comparative study of water absorption theories applied to glass epoxy composites[J]. Journal of Composite Materials, 1979,15(3):272-293
    [7]Toutanji H A. Durability characteristics of concrete columns confined with advanced composite materials[J]. Composite Structure,1999,44:155-161
    [8]Liu H K, Tai N H, Lee W H. Effect of seawater on compressive strength of concrete cylinders reinforced by non-adhesive wound hybrid polymer composites[J]. Composites Science and Technology,2002,62:2131-2141
    [9]Wen S W, Xiao J Y, Wang Y R. Accelerated ageing behaviors of aluminum plate with composite patches under salt fog effect[J]. Composites Part B:Engineering,2013,44(1):266-273
    [1]乔琨,朱波,高学平,谢奔,袁华,吴益民,张春雷.紫外老化对碳纤维增强环氧树脂复合材料性能的影响[J].功能材料,2012,21(43):2989-2992
    [2]Startseva O V, Krotova A S, Golubb P D. Effect of climatic and radiation ageing on properties of VPS7 glass fibrer einforced cpoxy composite[J]. Polymer Degradation and Stability,1999,63(3):353-358
    [3]Decelle, Huet J N, Bellenger V. Oxidation induced shrinkage for thermally aged epoxy networks[J]. Polymer Degradation and Stability,2003, 81(2):239-248
    [4]Malshe V C, Waghoo G. Weathering study of epoxy paints[J]. Progress in Organic Coatings,2004,51(4):267-272
    [5]Devanne T. Radiochemical ageing of an amine cured epoxy network. Part I:change of physical properties[J]. Polymer,2005,46(1):229-236
    [6]Bellenger V, Decelle J, Huet N. Ageing of a carbon epoxy composite for aeronautic applications[J]. Composites Part B:Engineering,2005,36(3): 189-194
    [7]Lafarie-Frenot M C. Comparison of damage development in C/epoxy laminates during isothermal ageing or thermal cycling[J]. Composites Part A: Applied Science and Manufacturing,2006,37(4):662-671
    [8]Hu J. UV aging characterization of epoxy varnish coated steel upon exposure to artificial weathering environment[J]. Materials and Design,2009, 30(5):1542-1547
    [9]Pillay S, Vaidya U K, Janowski G M. Effects of moisture and UV exposure on liquid molded carbon fabric reinforced nylon6 composite laminates[J]. Composites Science and Technology,2009,69(6):839-846
    [10]Musto P. Improving the photo-oxidative stability of epoxy resins by use of functional POSS additives:A spectroscopic, mechanical and morphological study[J]. Polymer,2012,53(22):5016-5036
    [11]George Wypych.马艳秋,王仁辉,刘树华译.材料自然老化手册[M](第三版).北京:中国石化出版社,2004
    [1]甘兴忠.碳纤维复合芯软铝绞线等扩容量导线的性能及应用[J].电线电缆,2007,(5):37-41
    [2]朱爱钧,尤志薇.碳纤维复合导线在上海电网应用前景初探[J].华东电力,2007,35(10):93-95
    [3]董国伦,龚坚刚,余虹云,余长水.碳纤维复合芯软铝绞线设计施工、运行与检修[M].北京:中国电力出版社,2009
    [4]魏晗兴,朱波,陈原,卢毅.新型碳纤维复合芯铝合金导线的特性研究[J].功能材料,2009,40(12):1993-1995
    [5]王春江.电线电缆手册1[M].第二版增订本.北京:机械工业出版社,2008
    [6]张虎,武利会,郑金杯.大铝钢界面比导线的蠕变试验和降温值[J].电力建设,2012,33(7):90-94
    [7]魏晗兴.碳纤维复合材料导线芯的制备及其特性研究[D].济南:山东大学,2010
    [8]E Barjasteh, E J Bosze, Y I Tsai, S R Nutt. Thermal aging of fiberglass/carbon-fiber hybrid composites[J]. Composites:Part A,2009, (40):2038-2045
    [9]V Bellenger, J Decelle, N Huet. Ageing of a carbon epoxy composite for aeronautic applications[J]. Composites:Part B,2005, (36):189-194

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700