用户名: 密码: 验证码:
二步法制备聚丙烯腈基碳纤维原丝技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要针对二步法工艺制备聚丙烯腈(PAN)基碳纤维原丝过程中纺丝原液溶解和纤维纺丝这两个方面开展基础性研究,深入研究了原丝成形过程中PAN溶液和纤维结构、性能的变化规律,力求掌握与工艺之间的相关性来指导实际的生产过程,达到提升PAN原丝及碳纤维性能的最终目的。文中的大部分实验是在实验室自制的纤维纺丝线上展开的,并利用流变仪,紫外可见光分光光度计,X射线衍射仪,表面积和孔径分析仪,立体显微镜,偏光透光显微镜,场发射扫描电镜,纤维强伸度仪,纤维细度仪等测试分析技术,对PAN溶液和纺丝各阶段纤维的结构、性能变化进行了系统研究,探讨了各工艺参数对它们的影响,并建立了PAN纤维的牵伸变形结构模型。
     在PAN纺丝原液制备方面,讨论了搅拌速度、温度和溶剂种类对溶解过程中PAN溶液的流变性变化规律的影响。在PAN溶液的溶解过程中,剪切黏度会呈现特定的变化规律:溶液的黏度先随粉料的分散而下降,继而随大分子的溶解有小幅提高,最后随分子链在溶液中的运动取向又有小幅的下滑。加大搅拌速度,提高温度和采用混合溶剂都能促进溶解,其中,加快搅拌主要起提高溶解速度的作用,提高温度能提升溶液的可溶解性,而采用混合溶剂则能综合两种溶剂成分的各自优势,使PAN溶液的溶解具有更好的分散性及溶解性。相同浓度下,以采用二甲基乙酰胺(DMAC)/二甲基亚砜(DMSO)混合溶剂溶解得到的PAN溶液具有最低的黏度。利用紫外可见光分光光度计分析了PAN溶液溶解过程中的吸光性能变化,发现PAN溶液在紫外光区300nm波长附近存在强吸收峰,随着溶解的进行,吸收峰逐渐增强,且溶解温度越高,最终溶液的吸收峰越强。最后对PAN溶液凝固成形薄膜的结构进行了比较分析发现,溶液的溶解性越好,结构越均匀,分子链取向性越好,薄膜表面的网状凸起越明显。
     在纤维纺丝方面,主要对PAN纤维的凝固成形及其牵伸变形这两部分做了重点研究。PAN纺丝原液的凝固是一个相分离过程,相分离方式决定了溶液的凝固特性。初生纤维凝固时的相分离方式主要受双扩散速度的影响,本文利用求解Fick第二定律得到的传质系数来表征双扩散速度,根据凝固过程中的扩散速度大小将扩散过程分为扩散初期、中期和末期三个阶段。分析了温度、浓差和纺丝液浓度对各扩散阶段扩散速度的影响,研究发现扩散初期传质系数K1随温度及浓差的升高而增大,与浓差的大小和T’/2基本上成正比关系;凝固扩散中期传质系数K2仍与T1/2呈正比关系,且温度越低,K2与T1/2的正比性越好,但随浓差的增加呈先增大后减小的变化规律;扩散末期的扩散速度随浓差增大而稍减,随温度升高而稍增。扩散速度随聚合物浓度的增加基本上呈线性下降。随后分析了凝固条件对PAN初生纤维结晶、力学性能的影响,降低凝固温度能抑制结晶,提高成形纤维的可牵伸性能,其中凝固浴温度的影响效果要明显大于纺丝液温度;提高纺丝速度能促进初生纤维成形时的塑性变形,增加牵伸比,能细化原纤聚集态结构,降低纤维的结晶度,有利于纤维的细旦化。
     在研究初生纤维在不同溶剂含量、不同拉伸速度的牵伸性能时发现,纤维的屈服强度随溶剂量的下降而线性提高,断裂强度也逐渐增加,断裂伸长率大幅提高后略有下降,干燥10h后的纤维牵伸曲线有最低的屈服平台和较高的伸长率,具最佳的常温牵伸性能;加快拉伸能促进高溶剂含量初生纤维的牵伸变形,对充分干燥后纤维的牵伸变形则起抑制作用;在对不同凝固浴牵伸PAN初生纤维在不同温度下的牵伸性能的研究中发现,初生纤维直径越小,越倾向于在低温处达到最大牵伸,加大凝固浴牵伸能促进纤维细旦化,而加大高温牵伸则更容易达到强化纤维的目的。
     然后对纤维纺丝过程中的第二凝固浴预牵伸、高温空气牵伸、致密化牵伸和蒸汽牵伸中的牵伸变形行为进行了研究。研究发现,凝固浴牵伸为500%的初生纤维以50mm/min的牵伸速度在浓度为80%和温度为70℃的第二凝固浴中能达到近23.5倍的总牵伸率;凝固浴预牵伸后纤维在250~400℃的温度范围内,纤维的可牵伸率随温度的提高先上升后下降,在350℃处达到最大牵伸率,且随牵伸倍数的增大,纤维强度大幅增加,断裂伸长率快速下降;在PAN纤维的致密过程中施加1.05倍的牵伸能使纤维保持较好的塑性同时增强致密化效果,使纤维强度和密度都得到充分提高;通过蒸汽牵伸能大幅度降低纤维纤度,提高强度,且加大蒸汽压力能促进蒸汽牵伸时纤维的牵伸变形。最后根据PAN纤维牵伸变形时的结构、性能变化构建并验证了PAN纤维牵伸变形的分子结构模型。
     在对纺丝过程中各阶段PAN纤维的结构、性能变化的研究中发现,随着纺丝的进行,纤维强度不断增加,断裂伸长率逐渐减小,纤维的双折射率和偏光透光性与力学强度间存在较好的对应关系;纤维在20≈17°附近的衍射峰逐渐增强,其结晶度则与致密性间存在较好的对应关系,结晶度越高,纤维的密度越大,孔隙率越低,致密性越好。在干喷湿纺原丝P1、准干喷湿纺原丝P2和湿纺原丝P3三种纤维的对比研究中发现,三种纤维的结晶度、密度、强度大小比较为:P1>P2>P3;三种纤维的晶粒尺寸、纤度大小比较为:P1This article mainly aims at the dissolution and fiber spinning in the preparation process of polyacrylonitrile (PAN) fibers. The intensive study on evolution of structure and properties during the preparing process and its correlation with techniques has significance in improving performance of PAN precursors and carbon fibers. Most of the experiments were carried out in homemade fiber spinning line. Rheometer, ultraviolet-visible spectrophotometer, X-ray diffractometer, surface area and pore size analyzer, stereo microscope, polarizing microscope, field emission scanning electron microscopy, fiber strength and elongation tester, fiber fineness tester were used to characterize the performance change of PAN solutions and fibers. Influence of drawing technology was studied for establishing molecular deformation structure model.
     In the aspect of preparation of PAN spinning solution, the influence of agitating speed, temperature and solvent on the change of rheology for PAN solution was discussed. In normal dissolving process, shear viscosity change will present certain rule:the viscosity firstly declines with the dispersion of powder, then increases slightly with the dissolution of macromolecular, and lastly declines again with the orientation of molecular chain in the solution. Speeding up agitating, increasing temperature and using composite solvent could promote the dissolution. Among them, speeding up agitating had a role of increasing dissolution rate, and increasing temperature could improve solubility, whereas using composite solvent could integrate advantages of both components, making the solution has better dispersibility and solubility. Under same concentration, the solution with composite solvent (DMAC/DMSO) had a lowest viscosity. Change of light absorption properties of the solution during dissolution process was analyzed by ultraviolet-visible spectrophotometer. It was found that the solution had a strong absorption peak near300nm wavelength in ultraviolet region. With the dissolution, the peak gradually strengthened, and the higher was the solution temperature, the stronger the peak was. Finally, the structure of coagulated PAN membranes was compared, and it was found that the solution with better solubility had more uniform structure, and the orientation of molecular chains was presented as raised net structure in the membrane surface.
     A detailed study on coagulation and drawing deformation of PAN fibers was made during spinning process. The coagulation of PAN solution is a phase separation process which is affected by double diffusion, determining the structure of PAN nascent fibers. In this paper, mass transfer coefficient obtained from the second Fick's law was utilized to represent double diffusion rate. According to the diffusion rate in the solidification process, the diffusion process was divided into initial stage, middle stage and later stage. The influence of temperature, concentration difference and solution concentration on the diffusion velocity was analyzed, and it was found that the mass transfer coefficient of the initial stage (K1) increased with temperature and concentration difference, and was basically in proportion to concentration difference and T1/2. The mass transfer coefficient of the middle stage (K2) was still proportion to T1/2, and the lower was the temperature the better the proportional relationship was, as it increased first then decreased with the increase of the concentration difference. The diffusion rate of the last stage decreased slightly with the concentration difference and increased slightly with temperature. The diffusion rate basically declined linearly with the increase of polymer concentration, expect the medium and later mass transfer coefficient slightly deviation linear relationship. The influence of coagulation conditions on the crystallization and mechanical performance of PAN nascent fibers was discussed, and it was found that reducing temperature could inhibit crystallization and improve drawing performance, when the change of coagulation bath temperature made a more obvious effect than spinning solution temperature. Speeding up drawing could promote the plastic drawing deformation of PAN nascent fiber, and increasing draw ratio could refine aggregated fibrillar and reduce crystallinity, helpful for making fine-denier precursors.
     The influence of solvent content, tensile speed on the drawing performance of PAN nascent fibers was discussed. It was found that yield strength increased linearly, breaking strength increased gradually, and elongation at break increased quickly first and then decreased slightly with solvent content decreasing. The fibers dried for10hours had the lowest yield platform and high elongation, providing the best drawing performance at room temperature. Speeding up drawing can promote deformation of nascent fibers with high solvent content, but not for fibers dried sufficiently. Drawing performance of PAN nascent fibers with the different first coagulation bath draw ratio under different temperature was discussed. It was found that the nascent fibers with small diameter tended to achieve maximum draw ratio in lower temperature, and increasing the first coagulation bath draw ratio could promote thinning fibers, when increasing the high temperature draw ratio was helpful for improving the strength of fibers.
     The drawing deformation behavior of the second coagulation bath pre-drawing, high temperature air drawing, collapsing drawing and steam drawing during spinning process was discussed. It was found that the nascent fibers with the first coagulation bath draw ratio of5×could be drawn nearly23.5times in the80%and70℃second coagulation bath under a tensile speed of50mm/min. Afterwards the draw ratio of pre-drawn fibers increased first and then decreased in250~400℃during high temperature air drawing, achieving maximum draw ratio at350℃, and fiber strength increased greatly and elongation at break fell sharply with the increase of drawing ratio. Imposing1.05times drawing could make fibers keep good plasticity at the same time enhance densification effect in the collapsing process, improving strength and density sufficiently. Steam drawing could greatly reduce fiber denier and improve strength at the same time. And increasing steam pressure could promote deformation during steam drawing. According to the evolution of the fibers' structure and performance during drawing deformation, a molecular structure model was constructed for explaining the drawing deformation mechanism.
     Evolution of the fibers' structure and performance during various stage of spinning process was discussed. It was found that, along with the spinning, the strength increased while elongation at break decreased gradually. The birefringence and polarizing light transmittance had a good corresponding relation with mechanical strength of the fibers. The diffraction peak at nearly2θ≈17°strengthened gradually, when the degree of crystallinity had a good corresponding relation with the density of the fibers. In the comparison of dry-jet wet spinning precursors P1, quasi dry-jet wet spinning precursors P2and wet spinning precursors P3, it was found that in aspects of crystallinity, density, strength:P1> P2> P3, in aspects of grain size, denier:P1
引文
[1]Koberts L P, Deev I S. Carbons fibers:structure and mechanical properties[J]. Composites science and Technology,1998,57(12):1571-1580.
    [2]贺福.碳纤维及石墨纤维[M].北京:化学工业出版社,2010.
    [3]赵稼祥.2004世界碳纤维前景[J].高科技纤维与应用,2004,29(6):9-12.
    [4]罗益锋.新世纪初世界碳纤维透视[J].高科技纤维与应用,2000,25(1):1-7.
    [5]Yaodong L, Satish K. Recent progress in fabrication, structure, and properties of carbon fibers[J]. Polymer Reviews,2012,52(3-4):234-258.
    [6]张新元,何碧霞,李建利,张元.高性能碳纤维的性能及其应用[J].棉纺织技术,2011,4:65-68.
    [7]Otani S, Oya A. Progress of pitch-based carbon-fiber in Japan[J]. Acs Symposium Series,1986,303:323-334.
    [8]Diefendorf RJ, Tokarsky E. High-performance carbon fibers[J]. Polymer Engineering and Science,1975,15(3):150-159.
    [9]Gupta AK, Paliwal DK, Bajaj P. Acrylic precursors for carbon fibers[J]. Journal of Macromolecular Science rev macromolecular chemistry and physics, 1991, C31(1):1-89.
    [10]杨秀珍,李青山,卢东.聚丙烯腈基碳纤维研究进展[J].现代纺织技术,2007,1:45-47.
    [11]王德诚.世界碳纤维的生产能力[J].合成纤维工业,2004,4:18-19.
    [12]林刚;申屠年.对中国碳纤维及其复合材料产业链发展现状的反思[J].高科技纤维与应用,2012,4:1-17.
    [13]任铃子.中国碳纤维工业发展的思考[J].石油化工技术与经济,2009,6:7-9.
    [14]李克健.中国碳纤维研究的过去与现在[J].新材料产业杂志,2009,10:101-105.
    [15]赵稼祥.东丽公司碳纤维及其复合材料的进展—国外碳纤维进展之一[J].高科技纤维与应用,2000,25(4):19-23.
    [16]Chen J, Ge HY, Dong XG, Wang, CG. The formation of polyacrylonitrile nascent fibers in wet-spinning process[J]. Journal of Applied Polymer Science,2007,106(1):692-696.
    [17]Li X, Luo Q, Zhu Y, Wang H. Evolution of the composition and structure of PAN carbon fiber during preoxidation[J]. Science in China. Series B: Chemistry,2001,44(2):196-202.
    [18]Ji M, Wang C, Bai Y, Yu M, Wang Y. Structural evolution of polyacrylonitrile precursor fibers during preoxidation and carbonization[J]. Polymer Bulletin, 2007,59(4):527-536.
    [19]吴雪平,杨永岗,郑经堂,贺福.高性能聚丙烯腈碳纤维的原丝[J].高科技纤维与应用,2001,26(6):6-10.
    [20]Bashir Z. A critical review of the stabilsation of polyacrylonitrile[J]. Carbon, 1991,29(8):1081-1090.
    [21]Ko TH, Day TC, Perng JA, Lin MF. The characterization of PAN-based carbon fibers developed by two stage continuous carbonization[J]. Carbon,1993, 31(5):765-771.
    [22]乔福牛.二甲基亚砜一步法碳纤维用聚丙烯腈原丝生产工艺[J].合成纤维工业,1995,4:19-22.
    [23]汪维良,任铃子,王精铎.腈纶生产工艺第六讲二甲基乙酰胺二步法[J].合成纤维工业,1994,3:51-54.
    [24]贾曌,杨明远.用水相沉淀聚合法制备高分子量PAN[J].山西化纤,1998,1:1-5.
    [25]Zhao YQ, Wang CG, Yu MJ, Cui CS, Wang QF, Zhu B. Study on monomer reactivity ratios of acrylonitrile/acid in aqueous deposited copolymerization system initiated by ammonium persulfate[J], Journal of Polymer Research, 2009,16(4):437-442.
    [26]赵亚奇,王成国,朱波,王延相,王启芬.丙烯腈水相沉淀聚合引发机理的研究[J].材料工程,2008,(3):77-80.
    [27]董兴广,王成国,曹伟伟,陈娟.凝固浴条件对PAN纤维结构及性能的影响[J].高分子材料科学与工程,2007,23(2):170-174.
    [28]Chen J, Ge HY, Dong XG, Wang CG. The formation of polyacrylonitrile nascent fibers in wet-spinning process[J]. Journal of Applied Polymer Science,2007,106:692-696.
    [29]高健,陈惠芳.聚丙烯腈原丝及其干喷湿纺[J].合成纤维L业,2002,25(4):35-39.
    [30]杨茂伟,王成国,王延相,王启芬,刘焕章,蔡相军.PAN湿法纺丝工艺与纤维性能相关性研究[J].材料导报,2006,20(10):156-158.
    [31]王延相,王成国,董雪梅,何东新.PAN原丝微观特征对碳纤维结构与性能的影响[J].金山油化纤,2002,21(4):5-12.
    [32]Gupta A, Harrison 1R. New aspects in the oxidative stabilization of PAN-based carbon fibers:II [J]. Carbon,1997,35(6):809-818.
    [33]Dalton S, Heatley F, Budd PM. Thermal stabilization of polyacrylonitrile fibers[J]. Polymer,1999,40(20):5531-5543.
    [34]Kalashnik AT. The role of different factors in creation of the structure of stabilized acrylic fibers[J]. Fiber Chemistry,2002,34(1):10-17.
    [35]Ko TH. Influence of continuous stabilization on the physical properties and microstructure of PAN-based carbon fibers[J]. Journal of Applied Polymer Science,1991,42(7):1949-1957.
    [36]Yu MJ, Wang CG, Bai YJ, Wang YX, Zhu B. Evolution of tension during the thermal stabilization of polyacrylonitrile fibers under different parameters[J]. Journal of Applied Polymer Science,2006,102:5500-5506.
    [37]Jain MK, Abhuraman AS. Conversion of acrylonitrile-based precursor fibers to carbon fibers. Part 1:A review of the physical and morphological aspects[J]. Journal of Materials Science,1987,22(11):3864-3872.
    [38]Chengguo W, Yujun B, Meijie Y, Yanxiang W. Structural evolution of polyacrylonitrile precursor fibers during preoxidation and carbonization[J]. Polymer Bulletin,2007,59(4):527-536.
    [39]Jing M, Wang CG, Wang Q. Chemical structure evolution and mechanism during pre-carbonization of PAN-based stabilized fiber in the temperature range of 350-600 ℃ [J]. Polymer Degradation and Stability,2007,92(9): 1737-1742.
    [40]Wangxi Z, Jie L, Gang W. Evolution of structure and properties of PAN precursors during their conversion to carbon fiber[J]. Carbon,2003,41 (14): 2805-2812.
    [41]王鹏,潘鼎.干-湿纺聚丙烯腈/二甲基亚砜原液流变性能的研究[J].化工新型材料,2004,32(8):41-43.
    [42]胡盼盼,朱德杰,赵炯心,吴承训.钱宝钧.超高相对分子质量聚丙烯腈浓 溶液的制备[J].合成纤维工业,1998,21(3):10-13.
    [43]徐棵华,吴红枚.高浓度PAN/DMSO原液黏度特性及纺丝工艺性的研究[J].北京化工大学学报(自然科学版),1999,26(3):21-24.
    [44]宋育梅,王刚.二甲基亚砜法碳纤维用聚丙烯腈原丝的技术发展[J].化工科技,2001,9(3):60-63.
    [45]秦志全,周霞.二甲基亚砜法聚丙烯腈原丝干湿纺与湿纺成形工艺的比较[J].高科技纤维与应用.2006,3:19-23.
    [46]何曼君,陈维孝,董西侠.高分子物理[M].上海:复旦大学出版社,2000.
    [47]王茂章,贺福.碳纤维的制造性质及其应用[M].北京:科学出版社,1994.
    [48]Law SJ, Mukhopadhyay SK. Compositional changes during the wet spinning of acrylic fibers from aqueous sodium thiocyanate solvent[J]. Journal of Applied Polymer Science,1998,69:1459-1469.
    [49]贺福.碳纤维及其应用技术[J].北京:化学工业出版社,2004.
    [50]Paul DR. Diffusion during the coagulation step of wet-spinning[J]. Journal of Applied Polymer Science,1968,12:383-402.
    [51]贾文杰,王成国,孙春峰.丙烯腈/丙烯酸甲酯/衣康酸三元共聚物序列结构的Monte Carlo模拟[J].合成纤维工业,2004,27(6):11-13.
    [52]Liu CK, Cuculo JA, Smith B. Coagulation studies for cellulose in the ammonia/ammonium thiocyanate (NH3/NH4SCN) direct solvent system[J]. Journal of Polymer Science Part B:Polymer Physics,1989,27(12): 2493-2511.
    [53]汪仁钧,吴承训,潘鼎.PAN湿法纺丝凝固成形中的凝胶化与传质[J].合成技术及应用,2005,20(2):5-8.
    [54]Qian BJ, Pan D, Wu ZQ. The mechanism and characteristics of dry-jet wet-spinning of acrylic fibers[J]. Advances in Polymer Technology,1986, 6(4):509-529.
    [55]沈新元.高分子材料加工原理[M].北京:中国纺织出版社,2000.
    [56]Hong PD, Chou CM, Huang HT. Phase separation behavior in polyvinyl alcohol/ethylene glycol/water ternary solutions[J]. European Polymer Journal, 2000,36(10):2193-2200.
    [57]Yoo SH, Kim JH, Jho JY, Won J, Kang YS. Influence of the addition of PVP on the morphology of asymmetric polyimide phase inversion membranes:effect of PVP molecular weight[J]. Journal of Membrane Science, 2004,236(1-2):203-207.
    [58]Hao JH, Wang SC. Calculation of alcohol-acetone-cellulose acetate ternary phase diagram and their relevance to membrane formation[J]. Journal of Applied Polymer Science,2001,80(10):1650-1657.
    [59]Cohen C, Tanny GB, Pragar S. Diffusion-controlled formation of porous structures in ternary polymer systems[J]. Journal of Polymer Science: Polymer Physics Edition,1979,17(3):477-489.
    [60]Ziabicki A.纤维成形基本原理[M].上海:上海科学技术出版社,1983.
    [61]Kalabin A, Pakshver E. Thermotropic gelation in wet spinning of fibers from polymer solutions[J]. Fiber Chemistry,2000,32(4):274-278.
    [62]Lee KWD, Chan PK, Feng XS. Morphology development and characterization of the phase-separated structure resulting from the thermal-induced phase separation phenomenon in polymer solutions under a temperature gradient[J]. Chemical Engineering Science,2004,59(7):1491-1504.
    [63]董纪震,赵耀明,陈雪英.合成纤维工艺学(下册).第二版[M].北京:中国纺织出版社,1996.
    [64]王延相,王成国,蔡华姓,马勇,董雪梅.拉伸对聚丙烯腈原丝结构和性能的影响[J].合成纤维,2002,31(5):6-8.
    [65]高绪珊,吴大诚.纤维应用物理学[M].北京:中国纺织出版社,2004.
    [66]董兴广,王成国,曹伟伟.凝固浴拉伸对碳纤维前驱体PAN初生纤维结构和性能的影响[J].高分子材料与工程,2008,24(6):117-120.
    [67]Hu X, Johnson DJ, Tomka JG. Molecular modeling of the structure of polyacrylonitrile fibers[J]. Journal of the Textile Institute,1995,86(2): 322-331.
    [68]唐春红,张旺玺,曹维宇.不同牵伸倍数的PAN原丝的结构性能研究[J].塑料工业,2004.32(3):54-57.
    [69]刘建军,王成国,陈娟,尹玉勇.高效液相色谱法测定聚丙烯腈基碳纤维 原丝中的二甲基亚砜残留[J].色谱,2007,25(2):284-285.
    [70]汪晓峰,倪如青,刘强,沃志坤.高性能聚丙烯腈基原丝的制备[J].合成纤维,2000,29(4):23-27.
    [71]孙金峰,陈杰,刘伟凌,朱伟平,吴永兴.PAN原丝性能对碳纤维强度影响的探讨[J].高科技纤维与应用,2006,31(2):37-46.
    [72]韩曙鹏,徐梁华,曹维宇,姚红.PAN致密化过程对纤维晶态结构的影响[J].合成纤维工业,2004,27(6):17-19.
    [73]贺福.高性能碳纤维原丝与油剂[J].高科技纤维与应用,2004,29(5):1-5.
    [74]Chen H, Wang CG, Ying L, Cai HS. Affect of dope additives on finishing behavior of carbon fiber precursors[J]. Journal of Applied Polymer Science, 2003,90(10):2752-2755.
    [75]刘燕军,周存,姜虹.二甲基硅油及其表面活性剂在化纤生产中的应用[J].合成纤维工业,2002,25(1):40-42.
    [76]张喜强,张庆怀,王俊.新型腈纶油剂ASY-2在聚丙烯腈碳纤维上的应用[J].精细石油化工进展,2001,2(4):28-29.
    [77]姚玉英.化[原理[M].天津:天津科学技术出版社,1999.
    [78]李青山,沈新元,孟庆财.腈纶生产工学[M].北京:中国纺织出版社2000.
    [79]董纪震,罗鸿烈,王庆瑞.合成纤维生产工业学(上册)[M].北京:中国纺织出版社,1981.
    [80]Henrici-Olive G, Olive S. Molecular interactions and macroscopic properties of polyacrylonitrile and model substances[J]. Advances in Polymer Science, 1979,32:123-152.
    [81]Bohn CR, Schaefgen JR, Statton WO. Laterally ordered polymers: polyacrylonitrile and poly(vinyl trifluoroacetate)[J]. Journal of polymer science,1961,55:531-549.
    [82]Hinrichsen G. On the origin of order-disorder in drawn polyacrylonitrile[J]. Journal of applied polymer science,1973,17:3305-3321.
    [83]Liu XD, RulandW. X-ray studies on the structure of polyacrylonitrile fibers[J]. Macromolecules,1993,26:3030-3038.
    [84]王延相,董学梅,焦培明,王成国,季保华,何东新.高性能碳纤维原丝聚合机理和纺丝工艺的研究[J].材料导报,2003,17(4):75-77.
    [85]Bajaj P, Paliwal DK, Gupta AK. Acrylonitrile-acrylic acids copolymers. I: synthesis and characterization[J]. Journal of Applied Polymer Science,1993, 49:823-833.
    [86]王占武,纪箴.聚丙烯腈原丝性能研究[J].炭素技术,1999,(3):14-18.
    [87]Warner SB, Uhlmann DR. Oxidative stabilization of acrylic fibers:part 3 morphology of polyacrylonitrile[J]. Journal of Materials Science,1979,14: 1893-1900.
    [88]贺福,杨永岗,王润娥.用SEM研究PAN原丝的表面缺陷[J].高科技纤维与应用,2002,27(5):28-32.
    [89]王延相,何东新.聚丙烯腈纤维结构缺陷的形成和控制[J].金山油化纤,2004,(4):11-17.
    [90]葛曷一,柳华实,陈娟.PAN原丝至碳纤维缺陷的形成与遗传性[J].合成纤维,2009,2:28-32.
    [91]Takahashi M, Nukushina Y, Kosugi S. Effect of fiber-forming conditions on microstructure of acrylic fiber[J]. Textile Research Journal,1964,34:87-97.
    [92]张旺玺,彭洪修.聚丙烯腈原丝结构与性能的研究[J].合成技术及应用,2000,15(3):5-8.
    [93]Bajaj P, Sreekumar TV, Sen K. Structure development during dry-jet-wet spinning of acrylonitrile/vinyl acids and acrylonitrile/methyl acrylate copolymers[J]. Journal of Applied Polymer Science,2002,86:773-787.
    [94]Dobretsov SL, Lomonosova NV, Stelmakh VP, Frenkel SY. The orientation behaviour of high-molecular polyacrylonitrile[J]. Polymer Science,1972, 14(5):1278-1285.
    [95]陈厚.两种聚丙烯腈原丝结构与性能的对比研究[J].金山油化纤,2000,19(2):1-6.
    [96]Craig JP, Knudsen JP, Holland VF. Characterization of acrylic fiber structure[J].Textile Research Journal,1962,32(6):435-448.
    [97]王延相,王成国,朱波,季保华,王强.聚丙烯腈基纤维的结构设计及其演 变性研究[J].高科技纤维与应用,2005,30(10):10-13.
    [98]Bunsell AR, Hearle JWS, Konopasek L, Lomas B. A preliminary study of the fracture morphology of acrylic fibers[J]. Journal of Applied Polymer Science, 1974,18:2229-2242.
    [99]贺福,高性能碳纤维原丝与干喷湿纺.高科技纤维与应用,2004,29(4):6-12.
    [100]Yadav AK, Kasturiya N, Raj H. Manufacturing process of acrylic fibre by wet spinning[J]. Man-made Textiles,2000,25:421-426.
    [1]周名成,俞汝勤.紫外与可见分光光度分析法[M].北京:化学工业出版社1986.
    [2]贺福.碳纤维及石墨纤维[M].北京:化学工业出版社,2010.
    [3]于伟东,储才元.纺织物理[M].上海:东华大学出版社,2002.
    [1]王鹏,潘鼎.干-湿纺聚丙烯睛/二甲基亚砜原液流变性能的研究[J].化工新型材料,2004,32(8):41-43.
    [2]徐樑华,吴红枚.高浓度PAN/DMSO原液黏度特性及纺丝工艺性的研究[J].北京化工大学学报,1999,26(3):21-24.
    [3]Bhanu VA, Rangarajan P, Wiles K, Bortner M, Sankarpandian M, Godshall D, Glass TE, Banthia AK, Yang J, Wikes G, Baird D. Mcgrath JE. Synthesis and characterization of acrylonitrile/methyl acrylate statistical copolymers as melt processable carbon fiber precursors[J]. Polymer,2002,43:4841-4850.
    [4]Moore WR, Russell J. Critical concentration effects in the viscosities of dilute solutions of high polymers[J]. Journal of Polymer Science,9(5):472-475.
    [5]Mukhamedzhanova MY, Shrishova NY, Khamrakulov G. Rheological properties of concentrated solutions of ternary acrylonitrile copolymers[J]. Fiber Chemistry, 2000,32(5):340-343.
    [6]周彦豪.聚合物加工流变学基础[M].西安:西安交通大学出版社,1988.
    [7]何曼君,陈维孝,董西侠.高分子物理[M].上海:复旦大学出版社,2000.
    [8]贾曌,杨明远.用水相沉淀聚合法制备高分子量PAN[J].山西化纤,1998,1:1-5.
    [9]吴其晔,巫静安.高分子材料流变学[M].北京:高等教育出版社,2002.
    [10]Zisenis, M. Correlation of molecular orientation and shear viscosity of high molar mass polymers in dilute solution[J]. European Polymer Journal,1997,33(5): 773-780.
    [11]Yuan MZ, Yu W, Wei Y, Bang HX, Ming BY. Dynamic rheological behavior of copolymerized linear low-density polyethylenes:effect of molecular weight and its distribution[J].Journal of Macromolecular Science. Part B,2009,48(4):844-855.
    [12]Han WG, Rong JY, Ji YH, Lei Y. Rheological behaviors of PVA/H2O solutions of high-polymer concentration[J]. Journal of Applied Polymer Science,2010,116(3): 1459-1466.
    [13]黄量,于德泉.紫外光谱在有机化学中的应用(上册)[M].北京市:科学出版社,1988.
    [14]贺福.碳纤维及其应用技术[M].北京:化学工业出版社,2004.
    [15]Mulder M.膜技术基本原理[M].北京:清华大学出版,1999.
    [1]姜立军,朱伟平,孙金峰,张明耀.聚丙烯腈基碳纤维的研制[J].化工新型材料,2006,6:75-77.
    [2]王艳芝,钱畅.聚丙烯腈的合成与碳纤维制备[J].中原工学院学报,2006,17(6):20-22.
    [3]葛曷一,柳华实,陈娟.PAN原丝至碳纤维缺陷的形成与遗传性[J].合成纤维,2009,2:21-25.
    [4]Hanna SB, Yehia A A, Ismail M N. Preparation and Characterization of Carbon Fibers fromPolyacrylonitrile Precursors[J]. Journal of Applied Polymer Science, 2012,123(4):2074-2083.
    [5]Sedghi A, Farsani RE, Shokuhfar A. The effect of commercial polyacrylonitrile fibers characterizations on the produced carbon fibers properties[J]. Journal of Materials Processing Technology,2008,198(1-3):60-67.
    [6]董瑞蛟,Keuser M,赵炯心,张幼维,吴承训,潘鼎.聚丙烯腈原丝的凝固成形与相分离研究进展[J].合成技术及应用,2008,2:20-24.
    [7]秦建,刘兆峰,杨明远,毛萍君,王伟俊,李繁亭.共混聚丙烯腈凝固过程中微孔形成机理的研究[J].东华大学学报(自然科学版),1986,6:17-25.
    [8]王贺团,王凯,李常清,徐棵华.光学显微镜研究PAN/DMSO溶液的相分离过程[J].北京化工大学学报(自然科学版),2010,1:73-74.
    [9]Knaul JZ, Creber KAM. Coaulation rate studies of spinnable chitosan solutions[J]. Journal of Applied Polymer Science,1999,73(11):117-127.
    [10]Um IC, Kweon HY, Lee KG, Ihm DW, Lee JH, Park YH. Wet spinning of silk polymer-I. effect of coagulation conditions on the morphological feature of filament[J]. International Journal of Biological Macromolecules,2004,34(1-2): 89-105.
    [11]秦建,刘兆峰,潘鼎,李繁亭.聚丙烯腈共混纤维凝固过程中的扩散现象Ⅰ.扩散系数的测定[J].高分子材料科学与工程,1987,2:50-59.
    [12]吴其晔,巫静安.高分子材料流变学导论[M].北京:化学工业出版社,1994.
    [13]Mulder M.膜技术基本原理[M].北京:清华大学出版,1999.
    [14]Cussler EL.扩散流体系统中的传质[M].北京:北京化学工业出版社,2002.
    [15]王启芬,王成国,于美杰,王延相,朱波.XRD研究沸水热处理对PAN原丝结构与性能的影响[J].功能材料,2008,9:1458-1461.
    [16]陈方泉,高健,陈惠芳,潘鼎[J].二次拉伸对干湿法PAN原丝结构性能的影响.合成纤维工业,2003,6:4-7.
    [1]Erik F, Frank H, Michael RB. Carbon Fibers:precursors, manufacturing, and properties[J]. Macromolecular Materials and Engineering,2012,297(6):493-501.
    [2]Wangxi Z, Jie L, Gang W. Evolution of structure and properties of PAN precursors during their conversion to carbon fibers[J]. Carbon,2003,41(14):2805-2812.
    [3]Hanna SB, Yehia AA, Ismail MN, Khalaf AI. Preparation and characterization of carbon fibers from polyacrylonitrile precursors[J]. Journal of Applied Polymer Science,2012,123(4):2074-2083.
    [4]崔德政,沈协人.东丽碳纤维[J].北京化纤,1985,4:15-27.
    [5]赵稼祥.东丽公司碳纤维及其复合材料的进展—国外碳纤维进展之一[J].高科技纤维与应用,2000,4:19-23.
    [6]Peterlin A. Drawing and extrusion of semi-crystalline polymers[J]. Colloid and Polymer Science,1987,265(5):357-382.
    [7]朱岿立,潘鼎.干-喷湿纺聚丙烯腈纤维拉伸工艺研究[J].合成纤维工业,2003, 2:9-12.
    [8]Yamane A, Kameda T, Kanamoto T, Ito M, Porter RS, Sawai D. Development of high ductility and tensile properties upon two-stage draw of ultrahigh molecular weight poly(acrylonitrile)[J]. Macromolecules,1997,30(14):4170-4178.
    [9]Vinogradov GV, Malkin AY, Leonov Al, Shumskii VF. High elastic deformation of polymers in the viscous state[J]. Polymer Science U.S.S.R.,1970,12(5): 1182-1189.
    [10]仲蕾兰,郭曼丽.合成纤维取向强化与温度和形变速率的关系[J].国外纺织技术(化纤·染整·环境保护分册),1984,5:12-15.
    [11]任夕娟,孟家明,高宏保,成展,朱长江,孙成桂.牵伸浴槽温度和拉伸速度对纤维结构及性能的影响[J].合成纤维工业,1997,20(2):17-20.
    [12]Ajczyk TM, Ska IK, Drzejczak KKJ. Correlation between copolymer characteristics, conditions of fiber formation, and mechanical properties of PAN carbon fiber precursor:part III:effect of fiber formation conditions on mechanical Properties[J]. Textile Research Journal,1989,59(11):665-670.
    [1]刘岳新,徐樑华,张均,赵志娟.PAN分子取向程度与纤维结构性能的关系[J].合成纤维工业,2005,1:5-8.
    [2]Zhenyu S, Xiaoxiao H, Liqun Z, Sizhu W. Enhancing crystallinity and orientation by hot-stretching to improve the mechanical properties of electrospun partially aligned Polyacrylonitrile (PAN) nanocomposites[J]. Materials,2011,4(4):621-532.
    [3]Hou X, Yang X, Zhang L, Waclawik E. Wu S. Stretching-induced crystallinity and orientation to improve the mechanical properties of electrospun PAN nanocomposites[J]. Materials and Design,2010,31(4):1726-1730.
    [4]林治涛,朱波,林雪,谢奔,吴益民,王强.致密化工艺对PAN纤维结构和性能 的影响研究[J].功能材料,2012,15:2006-2008.
    [5]刘岳新,徐樑华,张均,赵志娟.PAN分子取向程度与纤维结构性能的关系[J].合成纤维工业,2005,1:5-8.
    [6]唐有守,魏慧卿,李峰.凝固浴对PAN原丝性能的影响[J].炭素技术,2011,5:14-16.
    [7]朱岿立,潘鼎.干一喷湿纺聚丙烯腈纤维拉伸工艺研究[J].合成纤维工业,2003,2:9-12.
    [8]Zeng XM, Hu J, Zhao JX, Zhang YW, Pan D. Investigating the jet stretch in the wet spinning of PAN fiber[J]. Journal of Applied Polymer Science,2007,106(4): 2267-2273.
    [9]何曼君,陈维孝,董西伙.高分子物理[M].上海:复旦大学出版社,2000.
    [10]任夕娟,孟家明,高宏保,成展,朱长江,孙成桂.牵伸浴槽温度和拉伸速度对纤维结构及性能的影响[J].合成纤维工业,1997,20(2):17-20.
    [11]Xianying Q, Yonggen L, Hao X, Yuchen H, Ding P. Improving preferred orientation and mechanical properties of PAN-based carbon fibers by pretreating precursor fibers in nitrogen[J]. Carbon,2011,49(13):4598-4600.
    [12]Henrici-Olive G, Olive S. Molecular interactions and macroscopic properties of polyacrylonitrile and model substances[J]. Advances in Polymer Science,1979,32: 123-152.
    [13]于伟东,储才元.纺织物理[M].上海:乐华大学出版社,2002.
    [1]Lianjiang T, Huifang C, Ding P, Ning P. Investigating the spinnability in the dry-jet wet spinning of PAN precursor fiber[J]. Journal of Applied Polymer Science,2008, 110(4):1997-2000.
    [2]唐春红,张旺玺,曹维宇,刘杰,吴刚.不同牵伸倍数的PAN原丝结构性能的研究[J].塑料工业,2004,3:54-57.
    [3]徐梁华,张巍,童元建,王晓玲,武冠英.PAN原丝工艺过程结晶行为的研究[J].新型炭材料,1997,3:33-35.
    [4]Mat VK, Mathur RB, Bahl OP, Nagpal KC. Crystallinity of PAN precursors[J]. Carbon,1990,28(1):241-243.
    [5]Juan C, Heyi G, Huashi L, Guozhong L, Chengguo W. The coagulation process of nascent fibers in PAN wet-spinning[J]. Journal of Wuhan University of Technology(Materials Science),2010,25(2):200-205.
    [6]于伟东,储才元.纺织物理,上海:东华大学出版社,2002.
    [7]梁艺乐,姜雯,仉帅,周日辉,赵炯心,张幼维,潘鼎.PAN原丝成形过程中孔隙结构的形成和演变[J].合成纤维工业,2010,5:5-7.
    [8]Wang DH, Hao JJ, Xing XQ, Mo GG, Yu L. Chun X, Wu ZH. Characterization of the nanopore structures of PAN-based carbon fiber precursors by small angle X-ray scattering[J]. Chinese Physics C,2011,35(9):870.
    [9]李连贵,敖玮,孙秀花.PAN基碳纤维原丝致密性及其孔结构研究[J].中国材料科技与设备,2012,2:29-31.
    [10]Chengguo W, Xingguang D, Qifen W. Effect of coagulation on the structure and property of PAN nascent fibers during dry jet wet-spinning[J]. Journal of Polymer Research,2009,16(6):719-724.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700