用户名: 密码: 验证码:
用等离子体合成的H_2O_2和改性TS-1催化丙烯气相环氧化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环氧丙烷(PO)是一种重要的丙烯衍生物。近年来出现的以钛硅沸石(TS-1)为催化剂,以稀H202溶液为氧化剂的丙烯液相环氧化工艺(HPPO),因为环境友好和原子利用率高的绿色化学优点受到广泛关注。相对于液相HPPO工艺而言,在气相中进行丙烯环氧化可以克服溶剂带来的问题,因此更具吸引力。本文利用前期建立的等离子体法“原位”合成H202与TS-1催化丙烯气相环氧化耦合方法(G-HPPO),着重研究了耦合反应条件、廉价法合成TS-1的后改性及TS-1中不同钛物种对G-HPPO反应的影响,并针对非骨架Ti-O-Ti物种的改性进行了深入研究,得到以下结论:
     1.在优化条件下,即耦合反应器的上部H2/O2双介质阻挡放电等离子体反应段的输入功率为3.5W,H2和O2进料分别为170ml/min和8ml/min,接地电极循环水温度为5-25℃,下部丙烯气相环氧化反应段的反应温度110℃,改性TS-1(TPAOH水热处理)用量0.2g,丙烯气体进料18ml/min (质量空速10h-1,H2/O2/C3=170/8/18)的条件下,等离子体段H202时空产率为5.7g/(L×h), G-HPPO反应段的丙烯转化率、PO选择性、PO产率和H202有效利用率分别达到13%、97%、1.9kg/(kg×h)和74%。当丙烯进料量增至54ml/min时,PO产率和H202有效利用率可达到2.4kg/(kg×h)和98.4%,比前期研究结果分别提高了10倍和2倍。此外,结合600h连续反应实验和预失活催化剂的原位反应再生实验首次发现,H202在G-HPPO反应条件下对催化剂表面具有自清洁作用,可实时地氧化清除催化剂表面结焦物,从而避免了催化剂失活。
     2.结合紫外拉曼光谱(UV Raman)和紫外可见吸收光谱(UV Vis)表征,首次归属了廉价TS-1中存在的无定型Ti-O-Ti物种,其在UV Raman光谱中的吸收峰位于700cm-1处,与UV Vis光谱260-280nm吸收带相对应。无定型Ti-O-Ti物种是导致H202分解和PO酸式副反应、制约廉价TS-1催化性能的主要原因。
     3.用少量含硫碱金属盐浸渍并在高温下焙烧处理廉价TS-1,可消除无定型Ti-O-Ti物种的酸性和H202分解活性,有效地改善廉价TS-1的性能。含硫碱金属盐的改性作用与碱金属阳离子的酸性中和作用及硫酸根阴离子与Ti-O-Ti物种形成S-O-Ti物种有关。
     4.用TPAOH稀溶液水热处理廉价TS-1也能显著地消除无定型Ti-O-Ti物种的副作用。用扫描透射电镜(STEM/EDX), FT-IR, UV Vis和UV Raman等表征发现,水热处理引起了廉价TS-1晶体形貌、钛物种分布以及骨架钛微环境等变化,表现在晶体内部溶解产生空腔,外部重结晶生长,无定型非骨架钛在重结晶中进入骨架,晶体表面出现骨架钛富集。同时,FT-IR和UV Raman光谱出现850cm-1吸收,而960cm-1吸收峰和1125cm-1吸收峰(拉曼)分别向高波数和低波数位移。
Propylene oxide(PO) is an important propylene derivatives. Recently, a new process HPPO, which shows high environmental benefits and atom utilization, has been commercialized. But HPPO process need large amount of solvent, which causes PO solvolysis and large energy consumption for separation. Gas-phase epoxidation method can effectively avoid liquid solvent problems. Therefore, a gas-phase propylene epoxidation process G-HPPO was reported. In G-HPPO gaseous plasma H2O2directly react with propylene on the surface ofTS-1catalyst to produce PO. In this work, the influences of reaction conditions and catalytic activity on reaction efficiency were studied by optimizing reaction conditions and modifying TS-1catalyst. At the same time, the catalytic performance of TS-1involving different Ti species was also investigated.
     1, When the input power of the plasma unit reaches3.5W, the flow rates of H2, O2and propylene are170ml/min,8ml/min and18ml/min (the gaseous H2O2output in plasma unit is308mg/h), the epoxidation temperature is110℃and catalyst loading is0.2g, the propylene conversion and PO selectivity are13%and97%. PO productivity and H2O2utilization arel.9kg/(kg·h) and74%, respectively. When propylene flow rate is54ml/min, PO productivity and H2O2utilization can improved to2.4kg/(kg·h) and98.4%. More importantly, the activity of catalyst remains stable for more than600h. And the catalyst regeneration indicates that the absorption species could be burned by gaseous H2O2, which effectively avoids the inactivity of catalyst in G-HPPO process.
     2, Amorphous Ti species in titanium silicalite-1(TS-1) was investigated by UV Raman spectroscopy (UV Raman), UV-Vis diffuse reflectance spectroscopy (UV Vis). A peak at700cm-1in UV Raman, which is corresponding to the UV Vis band at260-280nm, is first assigned to symmetric vibration of hexacoordinated Ti-O-Ti linkages of amorphous Ti species. The existence of amorphous Ti species is the main reason to cause enhanced acidity and H2O2decomposition inTS-1.
     3, In order to improve the catalytic performance of TS-1, a small amount of sulfosalt impregnation can effectively reduce the negative effect of amorphous Ti species because of two reasons:(1) inhibiting the acidity of TS-1by metal cations, such as Na+or K+etc;(2) inactivating the ability of H2O2decomposition by formation of the Ti-O-S with anions SO42-.
     4, Hydrothermal treatment with TPAOH dilute solution can also reduce the negative effectof amorphous Ti species, then improve the catalytic performance of TS-1. The results of STEM, FT-IR, UV Vis and UV Raman show that TPAOH treatment could change TS-1crystal morphology, redistribute the Ti species in TS-1and modify the chemical micro- environmen of framework Ti. It showed that, TPAOH activation caused many intracrystalline voids, new crystal growth on the top of TS-1and the framework Ti enriched on the surface of TS-1. TPAOH activation also caused the blue shifting of peak at960cm-1(FT-IR and UV Raman spectrum), the red shifting of peak1125cm-1(UV Raman spectrum), as well as, new peak at850cm-1appearing in FT-IR and UV Raman spectrum of treatment TS-1.
引文
[1]张旭之,陶志华,王松汉,等.丙烯衍生物工学[M].北京:化学工业出版社,1995.
    [2]NIJHUIS T A,MAKKEE M,MOULIJN J A,et al.The Production of Propene Oxide:Catalytic Processes and Recent Developments[J].Ind. Eng. Chem. Res.,2006,45:3447-3459.
    [3]VALBERT J R,ZAJACEK J G,ORENBUCH D I.Propene oxide and glycol. In Encyclopedia of Chemical Processing and Design[M],New York:1993.
    [4]马庆刚.环氧丙烷的生产与消费[J].化学工业,2011,2-3:25-28.
    [5]郭杨龙,姚炜,刘晓晖,等.丙烯环氧化合成环氧丙烷技术的研究进展[J].石油化工,2008,37(02):111-118.
    [6]钱.世界环氧丙烷市场分析[J].精细化工原料及中间体,2010,12:47-48.
    [7]张健,谢妤,牛志蒙.环氧丙烷生产技术及市场综述[J].化工科技,2010,18(03):75-79.
    [8]李剑.环氧丙烷生产技术分析与比较[J].合成技术及应用,2011,2:39-44.
    [9]李雅丽HPPO新技术将引领环氧丙烷生产[J].石油化工技术与经济,2010,5:39.
    [10]石理.天津大沽HPPO法环氧丙烷中试装置成功运行[J].石油化工技术与经济,2010,4:20.
    [11]张志丰,吴广铎,赵春梅.环氧丙烷生产技术分析[J].化学工业,2009,12:44-47.
    [12]蔡杰,吴莉娜.国内外环氧丙烷生产技术及市场分析[J].中国氯碱,2009,5:1-6.
    [13]于剑昆Degussa-Uhde公司的HPPO工艺介绍[J].化学推进剂与高分子材料,2009,72:15-22+30.
    [14]RICHEY. W F. Chlorohydrins. In Kirk-Othmer:Encyclopedia of Chemical Technology,4th Edition[M].New York:Wiley,1994.
    [15]陈超美.环氧丙烷合成工艺技术进展[J].石油化工,2002,31(4):300-304.
    [16]李翠.氯醇化法环氧丙烷生产中的循环经济探索[J].环境保护与循环经济,2009,(1):20-22.
    [17]JORGE E M. Chlorohydrin process:U.S.Patent No.6043400[P],2000.
    [18]CISNEROS M D, HOLBROOK M T, Hydrodechlorination process and catalyst for use therein: U.S.Patent No.5476984[P],1995.
    [19]张建丽.环氧丙烷生产技术进展及市场分析[J].氯碱工业,2008,44(9):29-33.
    [20]WEGENER G,BRANDT M,DUDA L, et al.Trends in industrial catalysis in the polyurethane industry[J].Appl. Catal. A; G,2001,221:303-335.
    [21]周寿祖,朱凤梅.环氧内烷生产技术进展[J].四川化工与腐蚀控制,2002,5(2):30-32.
    [22]KOLLAR J. Epoxidation process:U.S.Patent No.3351635[P],1967.
    [23]MARQUIS E T, KEATING K P, KNIFTON J F, et al. Olefin epoxidation of olefins in a polar mediam; U.S.Patent No.4891437[P],1990.
    [24]PELL M, KORCHAK E I. Epoxidation using ethylbenzene hydroperoxide with alkali or adsorbent treatment recycle ethylbenzene:U.S.Patent No.3439001[P],1969.
    [25]DUBNER W S, COCHRAM R N. Propylene oxide-styrene monomer process; U.S.Patent No. 5210354[P].1993.
    [26]VAN DER SLUIS J J. Process for the preparation of styrene and propylene oxide; U.S. Patent No.6504038[P],2003.
    [27]TSUJI J, OMAE T. Process for producing propylene oxide:U.S.Patent No.6639086 [P],2003.
    [28]OKU N, SEO T. Process for producing propylene oxide:U.S.Patent No.6646138[P],2003.
    [29]ISHINO M. Development of new propylene oxide process.16 th Saudi Arabia-Japan Joint Symposium[C]. Dhahran, Saudi Arabia,2006.
    [30]TARAMASSO M, PEREGO G, NOTARI B. Perparation of porous cyrstalline synthetic material comprised of silicon and titanium oxides;U.S.Patent No.4410501[P],1983.
    [31]Clerici M GOxidation of Saturated-Hydrocarbons with Hydrogen-Peroxide, Catalyzed by Titanium Silicalite[J].Appl. Catal.,1991,681-2:249-261.
    [32]Clerici M G,Ingallina PEpoxidation of Lower Olefins with Hydrogen-Peroxide and Titanium Silicalite[J].J. Catal.,1993,1401:71-83.
    [33]CLERICI M G, ROMANO U. Process for the epoxidation of olefinic compounds and catalysts used therein:U.S.Patent No.4824976[P],1989.
    [34]CLERICI M G, ANGELIS A D, INGALLINA P. Process for the preparation of epoxides form olefins:U.S.Patent No.5817842[P],1998.
    [35]CLERICI M G, ROMANO M U. Process for the epoxidation of olefinic compounds and catalysts used therein:U.S.Patent No.4937216[P],1990.
    [36]ARCA V, FURLAN P. Process for the preparation of olefinic epoxides:U.S.Patent No.6060610[P],2000.
    [37]黄顺贤,朱斌,林民,等.丙烯环氧化反应的研究新进展[J].化工进展,2007,26(6):769-773.
    [38]史春风,朱斌,林民,等.过氧化氢环氧化丙烯制环氧丙烷的研究新进展[J].现代化工,2007,27(9):17-21.
    [39]HUANG J, AKITA T, FAYE J, et al. Propene epoxidation with dioxygen catalyzed by gold clusters[J].Angew. Chem. Int. Ed,2009,48,7862-7866.
    [40]VAN SANTEN R A, KUIPERS H P E. The mechanism of ethylene epoxidation[J]. Adv. Catal., 1987,35,-321.
    [41]GEENEN P V, BOSS H J, POTT G T. A study of the vapor-phase epoxidation of propylene and ethylene on silver and silver-gold alloy catalysts[J]. J. catal.,1982,77,499-510.
    [42]CANT N W, HALL W K. Oxidation of labeled olefins over silver[J]. J. Catal.,1979,52,81-94.
    [43]CAMPBELL C T. Chlorine promoters in selective ethylene epoxidation over Ag(111):A comparison with Ag(110)[J]. J. Catal.,1986,99,28-38.
    [44]GRANT R B, LAMBERT R M. A sigle crystal study of the silver-catalysed selective oxidation and total oxidation of ethylene[J].J. Catal.,1985,92,364-375.
    [45]GLEAVES J T, SUALT A G, MADIX R J, et al. Ethylene oxidation on silver powder:A tap reactor study [J]. J. Catal.,1990,121,202-218.
    [46]ROBERTS J T, MADIX R J, CREW W W. The rate-limiting step for olefin combustion on silver experiment comapared to theory[J].J. Catal.,1993,141,300-307.
    [47]LEI Y, MEHMOOD F, LEE S. Increased silver activity for direct propylene epoxidation via subnanometer size effects[J]. Science,2010,328,244-228.
    [48]ZHU W, ZHANG Q, WANG Y. Cu(Ⅰ)-catalyzed epoxidation of propylene by molecular oxygen[J]. J. Phys. Chem. C,2008,112,7731-7734.
    [49]CHU H, YANG L, ZHANG Q, et al. Copper-catalyzed propylene epoxidation by molecular oxygen:superior catalytic performaces of halogen-free K+-modified CuOx/SBA-15[J]. J. Catal.,2006,24,225-228.
    [50]SU W, WANG S, YING P, et al. A molecular insight into propylene epoxidation on Cu/SiO2 catalysts using 02 as oxidant[J]. J. Catal.,2009,268,165-174.
    [51]MURATA K, KIYOZUMI Y. Oxidation of propene by molecualr oxygen over Ti-moified silicalite catalysts[J]. Chem. Commun.,2001,1356-1357.
    [52]LIU Y, MURATA K, INABA M. Epoxidation of propylene with molecular oxygen in methanol over a peroxo-heteropoly compound immobilized on palladium exchanged HMS[J]. Green Chem.,2004,6,510-515.
    [53]AMANO F, YAMAGUCHI T, TANAKA T. Photocatalytic oxidation of propylene with molecular oxygen over highly dispersed Titanium, Vanadium and Chromium oxides on silica[J]. J. Phys. Chem. B,2006,110,281-288.
    [54]MURATA C, HATTORI T, YOSHIDA H. Electrophilic property of O3- photoformed on isolated Ti species in silica promoting alkene epoxidation[J]. J. Catal.,2005,231,292-299.
    [55]YOSHIDA H, TANAKA T, YAMAMOTO M, et al. Epoxidaition of propene by gaseous oxygen over silica and Mg-loaded silica under photoirradiation[J]. J. Catal.,1997,171,351-357.
    [56]SONG Z, MIMURA N, BRAVO-SUAREZ J J, et al. Gas-phase epoxidation of propylene through radicals generated by silica-supported molybdenum oxide[J]. Appl. Catal. A: G,2007,316,142-151.
    [57]MINURA N, TSUBOTA S, MURATA K, et al. Gas-phase radical generation by Ti oxide clusters supported on silica:application to the direct epoxidation of propylene to propylene oxide using molecular oxygen as an oxidant[J]. Catal. Lett.,2006,110,47-51.
    [58]NIJHUIS T A, MUSCH S, MAKKEE M, et al. The direct epoxidation of propene by molten salts[J]. Appl. Catal. A,2000,196,217-224.
    [59]BERNDT T, BOGE O. Gas-phase epoxidation of propylene and ethylene[J]. Ind. Eng. Chem. Res.,2005,44,645-650.
    [60]BERNDT T, BRASEL S. Epoxidation of a series of C2-C3 olefins in the gas phase[J]. Chem. Eng. Technol.,2009.8.1189-1194.
    [61]DUMA V, HONICKE D, Gas phase epoxidation of propene by nitrous oxide over silica-supported iron oxide catalysts[J]. J. Catal.,2000,191,93-104.
    [62]王野,朱文明,张庆红.以一氧化二氮或氧气为氧化剂的丙烯环氧化催化反应[J].催化学报,2008,29(9):857-865.
    [63]YANG S, ZHU W, ZHANG Q, et al. Iron-catalyzed propylene epoxidation by nitrous oxide: Effect of boron on structure and catalytic behavior of alkali metal ion-modified FeOx/SBA-15[J]. J.Catal.,2008,254,251-262.
    [64]WANG X, ZHANG Q, GUO Q, et al. Iron-catalyzed propylene epoxidation by nitrous oxide: dramatic shift of allylic oixdation to epoxidation by the modification with alkali metal salts[J]. Chem. Commun.,2004,1396-1397.
    [65]MOENS B, WINNE H D, CORTHALS S, et al. Epoxidation of propylene with nitrous oxide on Rb2SO4-modified iron oxide on silica catalysts [J]. J. catal.,2007,247,86-100.
    [66]SATO A, MIYAKE T. Jpn. Pat. Tokkaihei 4-352771 [P].1992.
    [67]LAUFER W, HOELDERICH W F. Direct oxidation of propylene and other olefins on precious metal containing Ti-catalysts[J], Appl. Catal. A:G.2001,213(2):163-171.
    [68]HOELDERICH W F.'One-pot'reactions:A contribution to environmental protection [J], Appl. Catal. A:G.,2000,194-195:487-496.
    [69]MEIERS R, DINAGERDISSEN U, HOELDERICH W F. Synthesis of propylene oxide from propylene,oxygen, and hydrogen catalyzed by palladium-platinum-containing titanium silicalite[J]. J. Catal.,1998,176:376-386.
    [70]JENZER G, MALLAT T,MACIEJEWSKI M, et al. Continuous epoxidation of propylene with oxygen and hydrogen on a Pd-Pt/TS-1 catalyst[J] Appl. Catal. A:G.,2001,208:125-133.
    [71]DANCIU T, BECKMAN E J, HANCU D, et al. Direct synthesis of propylene oxide with CO2 as the solvent[J]. Angew. Chem. Int. Ed.,2003,42:1140-1142.
    [72]BECKMAN E J. Production of H2O2 in CO2 and its use in the direct synthesis of propylene oxide[J].Green. Chem.,2003,5:332-336.
    [73]HAYASHI T, TANAKA K, HARUTA M. Selective vapor-phase epoxidation of propylene over Au/TiO2 catalysts in the presence of oxygen and hydrogen[J] J. Catal.,1998,178:566-575.
    [74]STANGLAND E E, TAYLOR B, ANDRES R P, et al. Direct vapor phase propylene epoxidation over deposition-precipitation gold-titania catalysts in the presence of H2/O2:Effects of support, neutralizing agent, and pretreatment[J]. J. Phys. Chem. B,2005,109:2321-2030.
    [75]ZWIJNEBURG A, SALEH M, MAKKEE M, et al. Direct gas-phase epoxidation of propene over bimetallic Au catalysts[J], Catal. Today,2002,72:59-62.
    [76]ZWIJNENBURG A, GOOSSENS A, SLOOF W G, et al. XPS and Mossbauer characterization of Au/TiO2 propene epoxidation catalysts[J]. J. Phys. Chem. B,2002,106:9853.
    [77]CHOU J, MCFARLAND E W. Direct propylene epoxidation on chemically reduced Au nanoparticles supported on titania[J]. Chem. Commun.,2004:1648.
    [78]OYAMA S T. Mechanisms in Homogeneous and Heterogeneous Epoxidation Catalysis[M]. Elsevier Science,2008,302.
    [79]LANGE DE OLIVIRA A, WOLF A, SCHUETH F. Highly selective propene epoxidation with hydrogen/oxygen mixtures over titania-supported silver catalysts[J]. Catal. Lett.,2001,73:157.
    [80]WANG R, GUO X, WANG X, et al. Effects of preparation conditions and reaction conditions on the epoxidation of propylene with molecular oxygen over Ag/TS-1 in the presence of hydrogen[J]. Appl. Catal. A:G.,2004,261:7.
    [81]GUO X, WANG R, WANG X, et al. Effects of preparation method and precipitator on the propylene epoxidation over Ag/TS-1 in the gas phase[J]. Catal. Today.,2004,93-95:217.
    [82]WANG C, GUO X, WANG X, et al. Gas-phase propylene epoxidation over Ag/TS-I prepared in W/O microemulsion:Effects of the molar ratio of water to surfactant and the reaction temperature[J]. Catal. Lett.,2004,96:79.
    [83]UPHADE B S, AKITA T, NAKAMURA T, et al. Vapor-phase epoxidation of propene using H2 and O2 over Au/Ti-MCM-48[J]. J. Catal.,2002,209:331.
    [84]SINHA A K, SEELAN S, TSUBOTA S, et al. Catalysis by gold nanoparticles:epoxidation of propene[J]. Top. Catal.,2004,29:95.
    [85]kALVACHEV Y A, HAYASHI T, TSUBOTA S, et al. Vapor-phase selective oxidation of aliphatic hydrocarbons over gold deposited on mesoporous titanium silicates in the co-presence of oxygen and hydrogen[J]. J. Catal.,1999,186:228.
    [86]QI C, AKITA T, OKUMURA M, et al. Epoxidation of propylene over gold catalysts supported on non-porous silica[J]. Appl. Catal. G.,2001,218:81.
    [87]SINHA A K, SEELAN S, TSUBOTA S,et al. A three-dimensional mesoporous titanosilicate support for gold nanoparticles:Vapor-phase epoxidation of propene with high conversion[J] Angew. Chem. Int. Ed.,2004,43:1546.
    [88]LU J, ZHANG X, BRAVO-SUAREZ J J, et al. Kinetics of propylene epoxidation using H2 and O2 over a Gold/mesoporous titanosilicate catalyst[J]. Catal. Today,2007,123:189.
    [89]SACALIUC E, BEALE A M, WECKHUYSEN B M, et al. Propene epoxidation over Ti-SBA-15 catalysts[J]. J. Catal.,2007,248:235.
    [90]GUMARANATUNGE L, DELGASS W N. Enhancement of Au capture efficiency and activity of Au/TS-1 catalysts for propylene epoxidation[J]. J. Catal.,2005,232:38.
    [91]CHOWDHURY B, BRAVO-SUAREZ J J, DATE M, et al. Trimethylamine as a gas-phase promoter:Highly efficient epoxidation of propylene over supported gold catalysts[J], Angew. Chem. Int. Ed.,2006,45:412.
    [92]NIJHUIS A T, WECKHUYSEN B M. The role of water in the epoxidation over gold-titania catalysts[J]. Chem. Commun.,2005:6002-6004.
    [93]OJEDA M, LGLESIA E. Catalytic epoxidation of propene with H2O-O2 reactants on Au/TiO2[J]. Chem. Commun.,2009:352-354.
    [94]HUANG J, AKITA T, FAYE J, et al. Propene Epoxidation with Dioxygen Catalyzed by Gold Clusters[J]. Angew. Chem. Int. Ed.,2009,48:7862-7866.
    [95]MIZUNO N, YAMAGUCHI K KAMATA K. Epoxiation of olefins with hydrogen peroxide catalyzed by polyoxometalates[J]. Coord. Chem. Rev.,2005,249:1944-1956.
    [96]XI Z, ZHOU N, SUN Y, et al. Reaction-controlled phase-transfer catalysis for propylene epoxidation to propylene oxide[J]. Science,2001,292:1139-1141.
    [97]Li J, GAO S, Li M, et al. Influence of composition of heteropolyphosphatotungstate catalyst on epoxidation of propylene[J]. J. Mol. Catal. A,2004,218(2):247-252.
    [98]ZHOU N, XI Z, GAO S, et al Epoxidation of propylene by using [C5H5NC16H33]3[PW4O16] as catalyst and with hydrogen peroxide generated by 2-ethylanthrahydroquinone and molecular oxygen[J]. Appl. Catal. A:G.,2003.250:239-245.
    [99]KAMATA K, YONEHARA K, SUMIDA Y, et al. Efficient epoxidation of olefins with>99% selectivity and use of hydrogen peroxide[J].Science,2003,964-966.
    [100]Clerici M G,Bellussi G,Romano USynthesis of Propylene-Oxide from Propylene and Hydrogen-Peroxide Catalyzed by Titanium Silicalite.J. Catal.,1991,1291:159-167.
    [101]CLERIEI M G, INGALLINA P. Proeess for oxidizing organic Compounds with Hydrogen Peroxide Produeed in an Anthraquinone Redox Proeess[P]. EP549013AI,1993.
    [102]CLERICI M G, INGALLINA P. Process for Producing Olefin Ox ides[P]. US 5221795,1993.
    [103]CLERICI M G, INGALLINA P. Process for Oxidizing Organic Compounds[P]. US 5252758, 1993.
    [104]ZAJACEK J G, JUBIN J C J, CROCCO G L. Integrated Process for Epoxide Production[P]. US 5384418,1995.
    [105]JUBIN J, JOHN C. Epoxidizer Oxygen Recovery [P]. US5468885,1995.
    [106]GELBEIN A P. Three Stage Propylene Oxide Process [P]. US6337412,2002.
    [107]GUTH J L, KESSLER H, WEY R. Proceeding of the 7th Interational Zeolite Conference [C], Kodansh, Tokyo,1986:121.
    [108]MULLER U, STECK W. Ammonium-based alkaline-free synthesis of MFI-type boron and titanium zeolite[J], Stud. Surf. Sci. Catal.,1994,84/A:203-210.
    [109]THANGARAJ A, EAPAN M J, SIVASANKER S, et al. Studies on the Synthesis of Titanium Silicate. TS-1[J]. Zeolites,1992,12(9):943-950.
    [110]TUEL A, BEN TAARIT Y, NACCACHE C. Characterization of TS-1 synthesized using mixtures of tetrabutyl and tetraethyl ammonium hydroxides[J]. Zeolites,1993,13 (6):454-461.
    [111]KRAUSHAR B, VAN HOOFF J H C. A new method for preparation of titanium silicalite (TS-1)[J].Catal. Lett.1988,1:81-84.
    [112]王祥生,李钢,陈涛等.一种复合催化剂的制备和应用[p].CN,01140509,2001.
    [113]ZHOU J, WANG X. A novel method for synthesis of TS-1[J]. 催化学报,1999,20:5-6.
    [114]WANG X, GUO X, LI G. Proceedings of the 12th international zeolite conference[C], Baltimore, USA,1998:1283.
    [115]KLEMM E, DIETZSEH E, SEHWARZ T. Direet Gas—Phase Epoxidation of Propene with Hydrogen Peroxide on TS-1 Zeolite in a Mierostruetured Reaetor[J]. Ind.Eng. Chem.Res.,2008,47(6):2086-2090.
    [116]周军成.氢氧等离子体法直接合成过氧化氢及其在丙烯气相环氧化中的应用[D]大连:大连理工大学,2008.
    [117]BARTON D G, PODKOLZIN S G. Kinetic study of a direct water synthesis over silica-supported gold nanoparticles[J]. J. Phys. Chem. B,2005,109:2262.
    [118]SIVADINARAYANA C, CHOUDHARY T V, MAEMEN L L, et al. The nature of the surface species formed on Au/TiO2 during the reaction of H2 and O2:An inelastic neutron scattering study[J]. J. Am. Chem. Soc.,2004,126:38.
    [119]WELLS D H, DEGLASS W N, THOMSON K T. Formation of hydrogen peroxide from H2 and O2 over a neutral gold trimer, A DFT study[J]. J Catal.,2004,225:69.
    [120]WELLS D H, DELGASS W N, THOMSON K T. Evidence of defect-promoted reactivity for epoxidation of propylene in titanosilicate (TS-1) eatalysts:A DFT study[J]. J. Chem. Soc,2004,126:2956.
    [121]WELLS D H, JOSHI A M, DELGASS W N, et al. A quantum chemical study of comparison of various propylene epoxidation mechanisms using H2O2 and TS-1 catalyst[J]. J. Phys. Chem. B,2006,110:14627.
    [122]NEUROCK M, MANZER L E. Theoretical insights on the mechanism of alkene epoxidation by H2O2 with titanium silicalite[J]. Chem. Commun.,1996:1133.
    [123]VAYSSILOW G N, VAN SANTEN R A. Catalytic activity of titanium silicalites-a DFT study[J]. J. Catal.,1998,175:170.
    [124]AJO H M, BONDZIE V A, CAMPBELL C T. Propene adsorption on gold particles on TiO2(110)[J]. Catal. Lett.,2002,78:359.
    [125]JOSHI A M, DELGASS W N, THOMSON K T. Partial oxidation of propylene to propylene oxide over a neutral gold trimer in the gas phase:A density functional theory study[J]. J. Phys. Chem. B,2006,110:2572.
    [126]TAYLOR B, LAUTERBACH J, BLAU G E, et al. Reaction kinetic analysis of the gas-phase epoxidation of propylene over Au/TS-1[J]. J. Catal.,2006,242:142.
    [127]CHOWDHURY B, BRAVO-SUAREZ J J, MIMURA N, et al. In situ UV-vis and EPR study on the formation of hydroperoxide species during direct gas phase propylene epoxidation over Au/Ti-SiO2 Catalyst[J]. J. Phys. Chem. B,2006,110:22995.
    [128]TURNER M, GOLOVKO V B, VAUGHAN O P H, et al. Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters[J]. Nature,2008,981-984.
    [129]JOSHI A M, DELGASS W N, THOMSON K T. Mechanistic implications of Aun/Ti-lattice proximity for propylene epoxidation[J]. J. Phys. Chem. C,2007,111:7841.
    [130]NIJHUIS T A, VISSER T, WECHHUYSEN B M. The role of gold in gold-titania epoxidation catalysts[J]. Angew. Chem. Int. Ed.,2005,44:1115.
    [131]YAP N, ANDRES R P, DELGASS W N. Reactivity and stability of Au in and on TS-1 for epoxidation of propylene with H2 and O2[J]. J. Catal.,2004,226:156-170.
    [132]NIJHUIS T A, WECKHUYSEN B M, The direct epoxidation of propene over gold-titania catalysts-A study into the kinetic mechanism and deactivation[J]. Catal. Today,2006,117:84.
    [133]LIN W, FREI H. Photochemical and FT-IR probing of the active site of hydrogen peroxide in Ti silicalite sieve[J]. J. Am. Chem. Soc.,2002,124:9292-9298.
    [134]MIMOUN H. The role of peroxymetallation in selective oxidative processes[J]. J. Mol. Catal.,1980,7:1.
    [135]CLERICI M G.TS-1 and propylene oxide,20 years later[J].Oil Gas-European Magazine,2006, 322:77-82.
    [136]SINCLAIR P E, CATLOW C R A. Quantum chemical study of the mechanism of partial oxidation reactivity on titanosilicate catalysts:Active site formation, oxygen transfer, and catalyst deactivation[J]. J. Phys. Chem. B.1999,103:1084.
    [137]THIELE G F, ROLAND E. Propylene epoxidation with hydrogen peroxide and titanium silicalite catalyst:Activity, deactivation and regeneration of the catalyst[J]. J. Mol. Catal. A: Chem.,1997,17:351-356.
    [138]WANG Q, WANG L, CHEN J, et al Deativation and regeneration of titanium silicalite catalyst for epoxidation of propylene[J]. J. Mol. Catal. A:Chem.,2007,273:73-80.
    [139]THANGARAJ A, SIVASANKER S. An improved method for TS-1 sythesis; 29Si NMR studies[J]. Chem. Commun.,1992:123-124.
    [140]MULLER U, STECK W. Ammouium-based alkaline-free synthesis of MFI-type boron and Titanium zeolites[J]. Stud. Surf. Sci. Catal.,1994,84:203-210.
    [141]李钢.钛硅分子筛的合成、表征及催化丙烯环氧化性能的研究[D].大连:大连理工大学,2000.
    [142]郭新闻.含钛沸石的制备、表征及其氧化性能的研究[D].大连:大连理工大学,1994.
    [143]张义华.钛基催化材料的合成、表征和选择氧化性能研究[D].大连:大连理工大学,2001.
    [144]王丽琴.钛硅分子筛合成过程及其催化氧化性能研究[D].大连:大连理工大学,2003.
    [145]成卫国.丙烯环氧化钛硅分子筛制备、水热改性及反应过程的研究[D].大连:大连理工大学,2005.
    [146]PEREGO C, CARATI A, INGALLINA P, et al. Production fo titanium containing molecular sieves and their application in catalysis[J]. Appl. Catal. A:G.,2001,221:63-72.
    [147]KLASS J, KULAWIK K SCHULZ-EKLOFF G. Comparative spectroscopic study of TS-1 and zeolite-hosted extra-framework titanium oxide dispersions[J]. Stud. Surf. Sci. Catal.,1994,84: 2261-2268.
    [148]HUYBRETCHS D R C, BURSKENS P L. Physicochemical and Catalytic Properties of Titanium Silicalites[J].J. Mol. Catal.,1992,71:129-147.
    [149]PETRINI G, CESANA A, ALBERT G D, et al. Deactivation Phenomena on Ti-Silicalite[J]. Stud. Surf. Sci. Catal.,1991,68:761-766.
    [150]SMIRNOV K S, VAN DE GRAAF B. On the origin of the band at 960 cm-1 in the vibrational spectra of Ti-substituted zeolites[J]. Micropor. Matet.,1996,7:133-138.
    [151]ASTORINO E, PERI J B, VILLEY R J, et al. Spectroscopic characterization of silicalite-1 and titanium silicalite-1[J]. J. Catal.,1995,157:482-500.
    [152]DEO G, TUREK A M, WACHS I E, et al. Characterization of titanium silicalites[J]. zeolites, 1993,13:365-373.
    [153]DUPREY E, BEAUNIER P SPRINGUEL-HUET M A, BOZON-VERDURAZ F, et al. Characterization of catalysts based on titanium silicalite, TS-1, by physicochemical techniques[J]. J. Catal.,1997,165,22-32.
    [154]CAMBLOR M A, CORMA A, PEREZ-PARIENTE J. Infrared spectroscopic investigation of titanium in zeolites. A new assignment of the 960 cm-1 band[J]. Chem. commun.,1993:557-558.
    [155]RICCHIARDI G, DAMIN A, BORDIGA S, et al. Vibrational structure of Titanium silicate catalysts. A spectroscopic and theoretical study[J]. J. Am. Chem. Soc.,2001,123:1409-11419.
    [156]LI C, XIONG G, LIU J, et al. Identifying framework titanium in TS-1 zeolite by UV resonance Raman spectroscopy[J].J. Phys. Chem.B,2001,105:2993-2997.
    [157]LI C, XIONG G, XIN Q, et al. UV resonance Raman spectroscopic identification of titanium atoms in the framework of TS-1 zeolite[J].Angew. Chem., Int. Ed.,1999,3815:2220-2222.
    [158]FAN F, FENG Z, LI C. UV Raman spectroscopic studies on active sites and synthesis mechanisms of transition metal-containing microporous and mesoporous materials[J]. Accoun. Chem. Res.,2010,43:378-387.
    [159]LIU H, LU G, GUO Y, et al. Effect of pretreatment on properties of TS-1/diatomite catalyst for hydroxylation of phenol by H2O2 in fixed-bed reactor[J].Catal. Today,2004,93:353-357.
    [160]ROFFIA P, PADOVAN M, LEOFANTI G, et al. Catalytic process for the manufacture of oximes[P].U.S.Patent4794198,1998.
    [161]ARCA V, BOSCOLETTO A B, FRACASSO N, et al. Epoxidation of propylene on Zn-treated TS-1 catalyst.J. Mol. Catal. A Chem.,2006,243:264-277.
    [162]SHETTI V N, SRINIVAS D, RATNASAMY P. Enhancement of chemoselectivity in epoxidation reactions over TS-1 catalysts by alkali and alkaline metal ions[J].J. Mol. Catal. A Chem.,2004,210:171-178.
    [163]TATSUMI T, KOYANO K A, SHIMIZU Y. Effect of potassium on the catalytic activity of TS-1[J].Appl. Catal. A,2000,200:125-134.
    [164]SUZUKI T OKUHARA T. Change in pore structure of MFI zeolite by treatment with NaOH aqueous solution[J]. Microp. Mesop. Mater.,2001,43:83-89.
    [165]GROEN J C, BACH T, ZIESE U, et al. Creation of hollow zeolite architectures by controlled desilication of Al-zoned ZSM-5 crystals[J]. J. Am. Chem. Soc.,2005,127:10792-10793.
    [166]GROEN J C, JANSEN J C, MOULIJN J A, et al. Optima aluminum-assisted mesoporosity development in MFI zeolites by desilication[J]. J. Phys. Chem. B,2004,108:13062-13065.
    [167]TSAI S, CHAO P, TSAI T, et al. Effects of pore structure of post-treatment TS-1 on phenol hydroxylation[J]. Catal. today,2009,148:174-178.
    [168]KLIMENKOV M, NEPIJKO S A, MATZ W, et al. The study of Ti doped ZSM-5 particles and cavities inside them[J]. J. Crystal growth,2001,231,577-588.
    [169]WANG Y, LIN M, TUEL A. Hollow TS-1 crystals formed via a dissolution-recrystallization process[J].Micropor. Mesopor. Mater.,2007,102:80-85.
    [170]WANG Y, TUEL A.Nanoporous zeolite single crystals:ZSM-5 nanoboxes with uniform intracrystalline hollow structures[J]. Microp. Mesop. Mater.,2008,113:286-295.
    [171]UGUINA M A, SERRANO D P, OVEJERO G, et al. Preparation of TS-1 by wetness impregnation of amorphous SiO2-TiO2 solids:influence of the synthesis variables[J]. Appl. Catal. A:G.,1995,124:391-408.
    [172]LEE Y N, LAGO R M, FIERRO J L G, et al, Hydrogen peroxide decomposition over Lnl-XAXMnO3(Ln=La or Nd and A=K or Sr) perovskites[J], Appl. Catal. A. General,2001, 215:245-256.
    [173]LIU X,WANG X, GUO X, et al,Regeneration of lamina TS-1 catalyst in the epoxidation of propylene with hydrogen peroxide[J]. Catal. Lett.,2004,97:223-229.
    [174]CHEN L Y, CHUAH G K, JAENICKE S. Propylene epoxidation with hydrogen peroxide catalyzed by molecular sieves containing framework titanium[J]. J. Mol. Cata. A:Chem.,1998, 132:281-292.
    [175]HU S, WILLEY R J, NOTARI B. An investigation on the catalytic properties of titania-silica materials[J]. J. Catal.,2003,220:240-248.
    [176]LI G, WANG X, GUO X, et al. Titanium species in titanium silicaite TS-1 prepared by hydrothermal method[J]. Material. Chem. Phy.,2001,71:195-201.
    [177]SU Y, BALMER B L, BUNKER B C. Raman spectroscopic studies of silicotitanates[J]. J. Phys. Chem. B,2000,104,8160-8169.
    [178]BUSCA G, RAMIS G, AMORES J M G, et al. FT Raman and FT1R studies of titanias and metatitanate powders[J]. J. Chem. Soc. Faraday Trans.,1994,90(20):3181-3190.
    [179]XAMENA F X L, DAMIN A, BORDAGA S, et al. Healing of defects in ETS-10 by selective UV irradiation:a Raman study[J]. Chem. Commun.,2003:1514-1515.
    [180]BARATON M I, BUSCA G, PRIETO M C, et al. On the vibrational spectra and structure of FeCrO3 and of the ilmenite-Type compounds CoTiO3 and NiTiO3[J]. J. Solid State Chem.,1994,112:9-14.
    [181]PAVEL C C, PARK S H, DREIER A, et al. Structural defects induced in ETS-10 by post-synthesis treatment[J]. Chem. Mater.,2006,18:3813-3820.
    [182]WANG X, JACOBSON A J. Crystal structure of the microporous titanosilicate ETS-10 refined from single crystal X-ray diffraction data[J]. Chem. Commun.,1999:973-974.
    [183]DAMIN A, XAMENA F X L, LAMBERTI C, et al. Structural, electronic, and vibrational properties of the Ti-O-Ti quantum wires in the Titanosilicate ETS-10[J]. J. Phys. Chem. B, 2004,108(4):1328-1336.
    [184]FRISCH M J, TRUCKS G W, SCHLEGEL, et al. GaussianO3 (RevisionA.1), Gaussian, Inc., Pittsburgh, PA,2003.
    [185]刘文欢,郭鹏,苏际,等.钛硅分子筛TS-1的酸性表征及酸催化性能[J].催化学报,2009,30(6):482-484.
    [186]ARMAROLI T, MILELLA F, NOTARI B, et al. A spectroscopic study of amorphous and crystalline Ti-containing silicas and their surface acidity[J], Top. Catal.,2001,15:63-71.
    [187]BONINO F, DAMIN A, BORDIGA S, et al. Interaction of CD3CN and pyridine with the Ti(IV) centers of TS-1 catalysts:a spectroscopic and computational study[J]. Langmuir,2003,19 (6):2155-2161.
    [188]AUROUX A, GERVASINI A, JORDA E, et al. Acidic properties of titanium-silicalites-1[J]. Stud. Surf. Sci. Catal.,1994,84:653-659.
    [189]MUSCAS M, SOLINAS V, GONTIER S, et al. Microcalorimetry studies of the acidic properties of titanium-silicalites-1[J]. Stud. Surf. Sci. Catal.,1995,94:101-107.
    [190]ITOH M, HATTORI H, TANABE K. The acidic properties of TiO2-SiO2 and its catalytic activities for the amination of phenol, the hydration of ethylene and the isomerization of butene[J]. J. Catal.,1974,35:225-231.
    [191]BORDIGA S, DAMIN A, BONINO F, et al. The structure of the peroxo species in the TS-1 catalyst as investigated by resonant Raman spectroscopy[J]. Angew. Chem. Int. Ed.,2002,41: 4734-4737.
    [192]NUR H,PRASETYOKO D,RAMLI Z.Sulfation:a simple method to enhance the catalytic activity of TS-1 in epoxidation of 1-octene with aqueous hydrogen peroxide[J].Catal. Commun.,2004,5(12):725-728.
    [193]DESMARTIN-CHOMEL A,FLIRES J L,BOURANE A, et al.Calorimetric and FTIR study of the acid properties of sulfated titanias[J].J. Phys. Chem. B,2006,110(2):858-863.
    [194]JUNE S M,DUPONT O,GRANGE P.TiO2-SiO2 mixed oxide modified with H2SO4I. Characterization of the microstructure of metal oxide and sulfate[J].Appl. Catal. A,2001,208 (1-2):393-401.
    [195]MATSUOKA M,AMPO M.Local sturctures, excited states, and photocatalytic reactivities of highly dispersed catalysts constructed within zeolites[J].J. Photochem. Photobiol. C:Photochem. Rev.,2003,3:225-252.
    [196]MORETTI G, SALVI A M, GUASCITO M R, et al. An XPS study of microporous and mesoporous titanosilicates[J]. Surf. Interface Anal.,2004,36:1402-1412.
    [197]TRONG O D, BONNEVIOT L, BITTAR A, et al. Titanium Sites in Titanium Siliealites:An XPS, XANESandEXAFS Study[J]. J.Mol.Catal.199274:233-246.
    [198]KHOUW C B,DARTT C B,LABINGER J A, et al.Studies on the Catalytic-Oxidation of Alkanes and Alkenes by Titanium Silicates[J].J. Catal.,1994,149(1):195-205.
    [199]KHOUW C B,DA VIS M E.Catalytic Activity of Titanium Silicates Synthesized in the Presence of Alkali-Metal and Alkaline-Earth Ions[J].J. Catal.,1995,151(1):77-86.
    [200]BOLIS V, BORDIGA S, LAMBERTI C, et al. A calorimetric, IR, XANES and EXAFS study of the asorption of NH3 on Ti-silicalite as afunction of the sample pre-treatment[J]. Micorp. Mesop. Material.,1999,30:67-76.
    [201]BORDIGA S, DAMIN A, BONINO F, et al. Effect on interaction with H2O and NH3 on the vibrational, electronic, and energetic peculiarities of Ti centers TS-1 catalysts:A spectroscopic and computatoinal sutdy[J]. J. Phys. Chem. B,2002,106:9892-9905.
    [202]FRUKAWA T, WHITE W B. Structure and crystallisation of glasser in the Li2Si2O5-TiO2 system determined by Raman-spectroscopy[J]. Phys. Chem. Glasses,1979,20:69-80.
    [203]MYSEN B O, RYERSON F J, VIRGO D. The influence of TiO2 on the structure and derivative properties of silicate melts[J]. Am. Mineral.,1980,65:1150-1165.
    [204]GAMBA A, TABACCHI G, FOIS E. TS-1 from first principles[J]. J. Phys, Chem. A,2009,113: 15006-15015.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700