用户名: 密码: 验证码:
利用啤酒废弃物为原料进行Bt液态发酵的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苏云金芽胞杆菌(Bacillus thuringiensis,简称Bt)是迄今最成功、最广泛使用的一种微生物杀虫剂。与使用化学农药导致严重的“3R”问题相比,该微生物杀虫剂具有易于生产、专一性、对脊椎动物无毒的特点。目前原料成本高是Bt难于推广的最重要原因之一,迫切需要研发一种便宜、易得的生产培养基及经济的发酵路线。啤酒厂废水及其废弃物来源广,废水属中、高浓度的有机废水,非常适合开发高附加值的生物制品,但目前国内外尚未见有关啤酒废水培养Bt的报道。本研究思路是以啤酒废弃物为培养基培养Bt,可缓解其他原料的缺陷,以期达到减少环境污染,降低Bt生产成本,促进Bt生产推广的目的。
     (1)本研究跟踪观测了啤酒废水、城市污水COD的日/月变化,并以不同污水处理工段污水(+污泥)为原料培养苏云金杆菌BRC-WLY_1。研究表明:啤酒废水的年平均COD达1342.0 mg/L,是城市污水(COD 167.7 mg/L)的8倍,其平均COD月间变异系数分别为16.7%、57.3%,日变异系数分别在42-52.4%、184.4-391.3%范围;与城市污水相比,啤酒废水具有高且稳定的COD,可生化性强、卫生好等特点;以不同工段的啤酒废水+废弃物为原料发酵Bt,其活芽胞数均可达10~9 cfu/mL级,产晶体蛋白高、而发酵时间仅20 h左右;较好的组合是4/5(1/2酸化废水+1/2啤酒原废水)+1/5酵母液,适当地补充碳、氮有利于BRC-WLY_1的发酵。由于啤酒废弃物来源丰富且易得,完全适合做为Bt发酵的工业化生产原料。
     (2)为了提高酵母泥的利用率,减轻后期发酵的灭菌工作,本研究率先采用环境工程预处理污水、污泥的处理方式,对啤酒废弃物进行预处理,研究发现A处理方式是较好的处理方法;并采用正交优化处理酵母泥,其最佳的预处理条件是新鲜酵母泥稀释6倍、A处理方式处理时间2 min、pH 5、高压蒸汽灭菌消毒时间45 min,其中稀释倍数对还原糖和氨基氮生成的影响最大。处理后啤酒废水、城市污泥、酵母泥氨基氮分别提高了73%、64.2%、198%,酵母泥按优化条件预处理后,氨基氮收得率为
     4.37%(处理后称酵母液)。不但提高原料利用率,降低生产成本,又可达到无菌要求。(3)为了寻求适合污水为培养基的Bt菌株,本研究从不同的污水处理厂及其不同工段分离Bt菌株。40个样品中分离到芽胞菌112株,其中镜检有2株为Bt,占2.7%;对分离菌株的生物学特性、形态学、生理生化指标等进行测定;通过SDS-PAGE分析其蛋白质片段,并采用cry1-cry11、cyt、vip3A、aiiA和inhA 14对引物,通过PCR-RFLP鉴定体系对其cry基因型进行分析。结果表明:BRC-WLY_1、BRC-WLY2均含有65 kD蛋白片段,且都含有cry1(cry1Ag,cry1Ba,cry1Gb,cry1La)、cry2(cry2Ac)、vip3A和aiiA基因,BRC-WLY_1还含有inhA基因。与标准菌株8010和HD-1相比,分离的两株菌可缩短发酵时间6-8 h(缩短20%-30%),BRC-WLY_1发酵周期最短仅15 h,能缩短近50%的发酵时间,活菌数和晶体蛋白均较高,BRC-WLY_1发酵所得晶胞混合物为0.1312 g/25mL,对2-3龄小菜蛾具更高的毒力,48 h校正死亡率分别达到96.6%和100%,而8010和HD-1分别为89.7%,93.1%。
     (4)为了寻找啤酒废水+酵母液培养BRC-WLY_1可能缺陷的营养因子,采用单因素实验确定葡萄糖、N物质、(NH4)2SO4、酵母液、KH_2PO_4、ZnSO_4、吐温80、NaCl为主要的营养限制因子,并采用PB(Plackett-Burman)、RSM(响应面优化)进一步优化培养基,获得的优化培养基组成(W/V)为:以1/2啤酒原废水+1/2酸化废水为溶液,添加葡萄糖0.2%、(NH_4)_2SO_4 0.1%、ZnSO_4 0.05%、吐温80 0.15%、NaCl 0.6%、N物质0.4%、酵母液30%(V/V)、KH_2PO_4 0.12%。优化后芽胞数可达10.86×10~8 cfu/mL,比优化前增加了5.1倍,OD_(595)由0.194增加至0.258。
     优化的最佳发酵条件是:初始pH 7.5-8、装液量80 mL(500 mL三角瓶)、发酵温度30-34℃、接种量5%。最佳补料方式为发酵8 h,加入10%的酵母液,与未补料相比,芽胞数、晶体干重和生产强度和单位糖产量分别提高了8、1.78、0.98、3.07倍。
     综上所述,啤酒废弃物适合作为Bt发酵的工业化生产原料,从“老”污水系统分离的高效Bt菌株,更适合于啤酒废弃物为培养基的发酵,可达到有效转化啤酒废弃物和生产高效低成本Bt杀虫剂的双盈利目的。
Bacillus thuringiensis(Bt) is the most widely and successfully used bio-insecticide. It has the characteristics of easily production , specificity and no toxicity to vertebrates , comparing to chemical pesticides which caused“3R”problems when used. However,production of Bt formulations using existing expensive raw material and fermentation technology incurs heavy expenditure. There is one of the primary causes why the use of these biopesticides has limitations. Hence,it is imperative to develop a cheaper media for culturing Bt and providing a feasible technical route,which would facilitate the production of biopesticides in a cost effective manner. The quantity of wastewater generated from brewery is large and is characterized by a high pollution load,and its sustainable management via value-addition is an alternative efficacious route to other disposal options,namely,biological wastewater treatment processes. So far, there is no report about that Bt-based biopesticide production from brewery wastewater and its castoff. In this study, brewery wastewater and its castoff were used as a novel medium to cultivate Bt based on clean-up option as well as augmentation path for commercialization of economical biopesticides.
     The wastewater formed flow and COD variations days/months of sewage from urban sewage-digestive plant and brewery wastewater-digestive plant were extensively investigated. In the year,the average COD of sewage from brewery wastewater-digestive plant is 1342.0 mg/L which is 8 folds higher than that of sewage from urban sewage-digestive plant. The variability coefficient of months for urban sewage-digestive plant and brewery wastewater is 16.7% and 57.3% respectively, and 42-52.4% and 184.4-391.3% for variation days. Wastewater from brewery wastewater-digestive plant possesed relatively invariable COD and with abundance nutrition and sanitation.
     Brewery raw wastewater/acidified waste water+yeast fluid (brewery-waste-medium) from different working procedure were found to be suitable for culturing Bacillus thuringiensis strain BRC-WLY1,which could produce spores up to 10~9cfu/mL and high crystal compound as well as short fermentation cycle (around 20h). The optium combination is 4/5 (1/2 acidified wastewater + 1/2 brewery raw wastewater)+ 1/5 pretreatmented yeast fluid. Supply carbon and nitrogen is favor to BRC-WLY_1 production. Due to brewery wastewater/sludge/ waste yeast slurry is a cheaper raw material and very easy to obtain,it would be a good material for the industrialisation production of Bt-based bioinsecticide.
     In order to improve the utilization ratio of brewery wastes and to ease the sterilization with high pressure steam,the methods to pretreat sludge/sewage used in environment engineering were selected to pretreat brewery sludge /sewage. It showed that method A is the top choice. An orthogonal design was furthur used to optimize the condition, including dilution ratio, pH, pretreatment time, and/or the time of sterilization with high pressure steam, for the pretreament of brewery wastewater and sludge, and waste yeast slurry. The optimal condition comprised 6 times diluent of the waste yeast slurry ,pH at 5.0,pretreatment time for 2 min and/or the time of sterilization with high pressure steam for 45min was obtained. By the optimal pretreatment condition, the produce ofα-amino nitrogen after pretreatment improved up to 73%, 64.2% and 198% respectively for brewery wastewater, sludge and waste yeast slurry, and the harvest rate of theα-amino nitrogen for waste yeast slurry is 4.37%.
     The sewages collected from the different process stages and sewage-digestive plants were used to isolated Bt strains, and 2 strains (named BRC-WLY_1 and BRC-WLY2) were obtained. Besides the investigation of the morphology, biochemical characteristics and fermentation performance, the gene and protein types of the above two strains were analysis by PCR-RFLP with 14 couples specific primers and by SDS-PAGE respectively. The results indicated that both BRC-WLY_1 and BRC-WLY2 harbored the genes of cry1(cry1Ag,cry1Ba,cry1Gb,cry1La) , cry2(cry2Ac) , vip3A and aiiA , and the protein with 65KD. Compared to the two control strains HD-1 and 8010, BRC-WLY_1 and BRC-WLY2 possess shorter fermentation cycle(nearly cut 20%-30%). The minimum fermentation cycle of BRC-WLY_1 is 15h and its hybrid of crystal and sporangium in the ferment liquid is 0.1312g/25mL. Bioassay results showed that the correction mortalitie at 48h of BRC-WLY_1, BRC-WLY2, 8010 and HD-1 was 96.6%, 100%, 89.7% and 93.1% respectively for 2-3rd instar larvae of Plutella xylostella.
     To seek the nutritional deficiency factors in brewery-waste-medium for BRC-WLY1,8 nutritional factors were optimized by single factor experiments. Based on the above result, the Plackett-Burman (PB)Methods and the response surface methodology(RSM) were used to further optimize the fermentation medium.The optimal brewery-waste-medium comprised 0.2% of glucose,0.1% of (NH4)2SO_4,0.05% of ZnSO_4,0.6% of NaCl,0.15% of Tuween80,0.4% of material A,30% of pretreatmented yeast fluid , 0.12% of KH_2PO_4 and 1/2brewery waste water+1/2 acidified wastewater was obtained, which could produce spores up to 10.86×10~8 cfu/mL resulted in a 5.1 times increase of sporangium yield in comparison with the original medium. OD595 increased to 0.258 from 0.194 that of fermentation without optimized.
     The single factor experiment were used to optimize fermentation conditions and the optimal conditions comprised initial pH at 7.5-8,80 mL of liquid volume in the 500mL flask,fermentation temperature at 30-34℃and 5% of inoculation volume was obtained . The optimal fed batch mode is fedding 10%(V/V) of yeast fluid after culturing for 8 h,which resulted in spores yield, crystal weightiness, production intensity and yield of units sugar increased 8, 1.78, 0.98 and 3.07 times than those of fermentation without fed batched.
     In conclusion,BRC-WLY1 and BRC-WLY2 isolated from sewage/sludge are suitable to grow in brewery-wastewater-medium. It suggested that brewery wastewater could be used for the industrialisation production of Bt based bioinsecticide,which would effectively utilize the bio-organic waste materials from the environment,on the one hand, and reduce the cost the Bt formulation on the other.
引文
蔡友华,范文霞,刘学铭,陈卫东,徐玉娟,陈智毅.响应面法优化巴西虫草发酵培养基的研究[J].食用菌学报,2007,14 (2):55-59.
    常明,周顺桂,卢娜,倪晋仁.微生物转化污泥制备苏云金杆菌生物杀虫剂[J].环境科学,2006,27(7):1450-1454.
    常明,周顺桂,卢娜,倪晋仁.污泥-废糖蜜联合发酵培养Bt生物杀虫剂[J].北京大学学报(自然科学版),2007,43(6):759-763.
    常亚飞,陈守文,喻子牛.苏云金素发酵培养基的优化设计[J].中国生物防治,2006,22 (3):190 -194.
    陈聪(a),李今煜,关雄.二次回归旋转组合设计在苏云金杆菌发酵培养基优选中的应用[J].武夷科学,2005,21:7-12.
    陈聪(b),李今煜,关雄.应用旋转组合设计研究C、N、P对苏云金杆菌的影响[J].福建农林大学学报(自然科学版),2005,34(1):34-36.
    陈坚,堵国成,李寅,华兆哲.发酵工程试验技术[M].北京:化学工业出版社,2003,96-97.
    陈锦权,关雄,黄志鹏.苏云金杆菌发酵培养基配方优化[J].农业工程学报,1997,13(1):223-224.
    陈锦权,黄志鹏.苏云金杆菌(Bt 8010)工业发酵过程研究[J].农业工程学报,1998,(1):243-246.
    陈魁.试验设计与分析[M].清华大学出版社,北京,1996,94-96.
    陈良荣.台湾生物农药的发展与应用[J].世界农药(增刊),2010,32(1):25-29.
    陈宁,常高峰,张克旭. L-异亮氨酸发酵培养基的响应面法优化[J].食品与发酵工业,2004,30(2):33-37.
    陈涛.工业控制系统的仿真控制环节[J].电子应用技术,1995,8:12-14.
    陈雄,章莹,王金华.响应面方法优化菊粉酶液体发酵培养基的研究[J].生物技术,2006,16(5):44-47.
    陈钊,周仕萍,陈忠全,将敖齐.水生金针菜对啤酒及饮食废水的净化[J].城市环境与城市生态,1993,6(2):15-19.
    程萍,Aronson AI,喻子牛.初始碳源对苏云金芽胞杆菌cry-lacZ融合基因表达的影响
    [J].微生物学杂志, 2001,21(1):7-9.
    程贤亮,刘翠君,姚经武.我国生物农药产业发展的现状、趋势与对策[J].湖北农业科学,2010,49(9):2287-2289,2316.
    戴全裕,陈钊.多花黑麦草对啤酒废水净化功能的研究[J].应用生态学报,1993,4(3):334-337.
    戴全裕,蒋兴昌,张珩,戴玉兰.水雍菜对啤酒及饮食废水净化与资源化研究[J].环境科学学报,1996,16(2):249-251.
    党阿丽,沈玉波,齐云翔,李鹤.正交试验设计考察苏云金杆菌140-51培养基[J].生物技术,1996,6(4):44-46.
    邓秋农.臭氧技术的现状及发展趋势[J].净水技术,2001,20 (3):7 -10.
    丁国武,社潇刺.过氧乙酸与漂白粉对模拟医院污水消毒效果的研究[J].兰州医学院学报,2001,27(4):21-22.
    丁满生,李绩,肖冬光.啤酒酵母泥回收利用研究动态[J].酿酒科技,2001,4:73-75.
    丁学知,夏立秋,高必达.苏云金杆菌410718高毒力杀虫菌株发酵条件的研究[J].食品与发酵工业,2003,29(2):26-29.
    窦霁虹,孙珺,李博海.苏云金芽胞杆菌发酵参数的分析[J].生物数学学报,2002,17(4):471-475.
    费成煜.苏云金杆菌发酵工艺条件研究[J].农业现代化研究,1994,15(5):307-309.
    傅金祥,裴丽花,许海良,杨玉森.二氧化氯氧化污泥减量试验研究[J].工业安全与环保,2008,33(4):11-l3.
    高家合(b),李梅云,王革,廖文程,宋春满,张有平,朱恩稳.苏云金杆菌33菌株最佳培养基和发酵条件研究[J].生物技术,2004,14(1):28-29.
    高俊山,杨俊明.从啤酒废水中制取粗蛋白的研究[J].环境科技,1992,12(1):35-41.
    高路.啤酒副产物在饲料工业中的应用[J].啤酒科技,2004,(12):30-31.
    关雄.苏云金芽胞杆菌8010的研究[M].北京:科学出版社,1997,161-162.
    关雄,陈锦权,黄志鹏,汤玉波,高日霞.苏云金芽胞杆菌培养基优化及间歇发酵[J].生物工程学报,1998,14(1):75-80.
    管敦仪.啤酒工业手册(修订版) [M].北京:中国轻工业出版社,1998.
    郭爱莲,刘诗锋.利用工业废液摇瓶培养苏云金芽胞杆菌[J].微生物学通报,1995,2(22):83-85.
    郭尽力,任万衷,林剑,徐世艾.谷氨酸对苏云金杆菌的芽胞和伴胞晶体的影响[J].微生物学杂志,2001,21(1):55-56.
    郭雪霞,张慧媛,来创业,孙学华.啤酒废弃物在食品工业中的应用[J]. 2007,6:127-131.
    国家环境保护总局.水和废水监测分析方法(第4版) [M].北京:中国环境科学出版社,2002.
    何增耀,叶兆杰,吴方正.农业环境科学概论.上海:上海科学技术出版社,1991,175-177.
    和致中.碳、氮、磷三因素对苏云金杆菌的影响[J].微生物学通报,1980,7 (7):7-10.
    贺延龄.废水的厌氧生物处理.北京:中国轻工业出版社,1998.
    霍贞,王芬,季民.污泥破解技术的研究与进展[J].工业水处理,2005,25(9):16-19.
    侯有明.菜田生物群落与叶菜类主要害虫生态控制研究[D].华南农业大学博士论文,1999.
    黄勤清,黄志鹏,关春鸿,黄必旺.苏云金芽胞杆菌WB9菌株的分离[J]、生化特性及
    培养基优化.福建农林大学学报,2006,35(4):346-351.
    黄天培,邱思鑫,黄志鹏,黄必旺,关雄.苏云金杆菌摇瓶发酵培养基[J].福建农林大学学报,2002,31(3):317-319.
    黄天培,杨梅,姚帆,黄张敏,俞晓敏,黄志鹏,黄必旺.蜡质芽胞杆菌aiiA基因的克隆及融合表达[J].福建农林大学学报,2006,35(3):292-297.
    黄志鹏.苏云金芽胞杆菌WB9的研究[D].福建:福建农林大学博士论文,2005:9-10,56-60.
    贾冬舒.利用生物技术从啤酒酵母泥中提取生物蛋白质的研究[J].浙江工业大学学报, 2003,31(2):212-215.
    江英英,李海星,曹郁生.响应面法优化γ-氨基丁酸发酵培养基[J],食品科技,2007,5:44-49.
    金玉来.苏云金杆菌7216菌株的摇瓶发酵试验[J].工业微生物,1994,24(3):35-40.
    兰钊,宋玉凤,韩宇,马光庭.玉米发酵酒精废液培养苏云金芽胞杆菌的研究[J].上海化工,2009,34(3):11-14.
    雷发懋,卢娜,王跃强,周顺桂.王颖.微生物转化淀粉废水制备生物灭蚊剂[J].生态环境,2008,17(3):931-935.
    李光德,朱鲁生,徐玉新,王玉军,姜咏栋.啤酒废水长期灌溉对地下水的影响[J].农业环境保护,1998,17(3):129-13l.
    李芳,陈家骅,黄慧婷.苏云金芽胞杆菌菌株94的培养基优化及对4种鳞翅目幼虫的毒力[J].福建农业大学学报,1997,26(1):73-76.
    李凤玲,乔宏,刘园. AOP-X臭氧消毒器对水中细菌杀灭效果的实验研究[J].中国卫生检验杂志,2005,15(4):484-485,493.
    李海燕,朱延明,马凤鸣.植物抗虫基因工程的研究进展[J].东北农业大学学报,2000,31 (4):399-405.
    李洪亮,田野.浅谈啤酒废酵母的综合利用[J].酿酒科技,2006(2):39-41.
    李家瑞,翁飞,朱宝珂.工业企业环境保护.北京:冶金工业出版社,1992,160-166.
    李剑芳,邬敏辰,夏文水.β-甘露聚糖酶高产菌株选育及产酶条件的研究[J].食品与发酵工业,2005,31(9):9-13.
    李今煜,陈聪,关雄.苏云金芽胞杆菌发酵培养基的筛选[J].福建农林大学学报,2003,32(4):490-492.
    李军,任健,王洪臣,甘一萍,周军,张帅.初沉污泥水解酸化试验研究[J].北京工业大学学报,2008,34(12):1304-1308.
    李科德,曾庆孝.啤酒废酵母泥综合利用的研究[J].食品与发酵,2007,33(2):63-67.
    李科林,孟范平,王平,吴晓,胡曰利.啤酒工业废水处理与利用技术研究进展[J].中南林学院学报,1999,(1):71-75.
    李培睿,杨天佑,李宗义,秦广雍,霍裕平.活性污泥凝絮体的形成过程研究[J].河南师范大学学报,2007,35(1):150-152.李荣森.微生物防治害虫.北京:科学出版社,1983,274-278.
    李世广,杨莉,林华峰,张磊,沈宗海,许发钱.两种重要储粮害虫的无公害防治技术研究[J].中国农学通报,2005,21(5):133-135.
    李世国,戴美学,严芝学,李跃,徐中瑞.苏云金杆菌SD-5菌株发酵生理学研究及生产[J].生物技术,2001,11(1):16-18.
    李世杰,方善玲,彭华松,刘华梅,李青.苏云金杆菌有氧控制发酵[J].生物技术,2000,10(3):34-37.
    李世杰,方尚玲,刘华梅,王志林.苏云金杆菌深层发酵补料分批培养工艺研究[J].湖北农业科学,2001,11:39-41.
    李稳宏,刘永强,孙晓红,刘源发.苏云金杆菌在外环流气升式反应器中发酵工艺研究[J].化学工程,2000,28(3):42-44.
    李欣,陈守文,冀志霞,喻子牛.豆粕的不同酶解液发酵苏云金芽胞杆菌对Zwittermicin A产量的影响[J].国外医药抗生素分册,2008,29(1):24-27.
    李兴革,刘颖.双酶法啤酒酵母营养酱油的研制[J].酿酒,1998,5:34-35.
    李孱,白景华,蔡昭铃,欧阳藩.细菌素发酵培养基的优化及动力学初步分析[J].生物工程学报,2001,17(2):187-192.
    李延云.啤酒废弃物的综合利用[J].酿酒,1999,5:31.
    李志江,戴凌燕,盛艳.啤酒酵母泥胞壁多糖的提取[J].酿酒科技,2005,12:77-79.
    廖湘萍,付三乔,易华蓉,杨翠珍.苏云金杆菌液态发酵培养基的优化[J].湖北农业科学,2007,46(4):571-572.
    林剑.苏云金芽胞杆菌在味精废水培养与发酵特性[J].生物技术,1998,8(5):32-35.
    林剑.利用味精废水深层培养苏云金芽胞杆菌[J].化工环保,1999,19:100-103.
    林志伟,孙冬梅,宋金柱,杨凤军.苏云金杆菌BⅢ菌株生物学特性初探[J].黑龙江农业科学,2003,(4):11-13.
    刘勃,董梅,石磊.酸化水解在啤酒废水处理中的应用[J].山东环境,1999,4:49-50.
    刘飞,夏立秋,丁学知,易勇,莫湘涛,魏薇.营养因子对苏云金芽胞杆菌4.0718产
    杀虫蛋白Cry1和Cry2的影响[J].微生物学通报,2008,35(8):1230-1234.
    刘海滨,杨家华.大麦芽根发酵培养苏云金杆菌的初步研究[J].中国生物防治,1995,11(3):111-113.
    刘红叶,程晓如.污水生化处理中污泥减量技术的应用[J].广州环境科学,2005,20(4):6-8,29.
    刘森林,宗敏华,娄文勇.苏云金杆菌补料高密度培养的研究[J].工业微生物,2000,30(4):41-44.
    刘小杰,何国庆,陈启和.康氏木霉ZJ5纤维素酶发酵培养基的优化[J].浙江大学学报,2003,37(5):623-628.
    刘艳萍,邵林广.城市污水消毒技术的研究进展[J].节能环保,2005,8:8-9.
    刘勇,郝赞,张书廷.低强度超声波与酸、碱协同对污泥溶胞的影响[J].环境科学学报,2009,29(4):683-688.
    卢娜,周顺桂,常明,倪晋仁.玉米浸泡液制备苏云金杆菌生物杀虫剂的影响因素研究[J].环境工程学报,2007,9(1):126-130.
    罗刚,周顺桂,王少林,倪晋仁.利用污泥制备微生物灭蚊剂的研究[J].应用基础与工程科学学报,2008,16(4):465-471.
    马玉林,沈元,王荷生.城市污水处理消毒后回用效果观察[J].医学动物防制,2005,21(12):903-904.
    满春生,黄江丽,张晓杰,汪印,李洪学.利用啤酒废水培养SCP的可行性研究[J].吉林化工学院学报,1993,10(2):21-27.
    欧宏宇,贾士儒. SAS软件在微生物培养条件优化中的应用[J].天津轻工业学院学报,2001,1:14-17,27.
    欧阳俊.一种固体发酵苏云金杆菌的简易方法[J].昆虫天敌,1999,21(1):18-20.
    彭丽靖,杨润昌.臭氧技术在水处理中的应用及发展[J].湖南环境生物职业技术学院学报,2006,12(1):28-31.
    权桂芝,赵淑津.生物防治技术的应用现状[J].天津农业科学,2007,13(3):12,14.
    曲春波,史贤明.利用啤酒废水小球藻异养培养[J].微生物学报,2009,49(6):780-785.
    闰宁,蔡晶,芮尊元.啤酒废水的水解-好氧处理技术(H/0工艺) [J].上海环境科学,2001,20(5):235-236.
    申烨华,孙君,周茂林,徐强,李宝璋.苏云金芽胞杆菌HD-1发酵工艺研究[J].西北大学学报,2001,31(5):396-398.
    申烨华(a),孙珺,张粉艳,李宝璋.苏云金杆菌发酵培养基的研究[J].西北大学学报,2000,30(1):32-35.
    申烨华(b),孙珺,黄岳元,曹文波,李宝璋.苏云金杆菌在环隙气升式内环流反应器中深层发酵特性研究[J].化学工程,2000,28(5):29-31.
    施银桃,夏东升,李海燕,曾庆福.臭氧氧化法处理染料废水研究[J].化工环保,2004,24:20-22.
    史应武,赵思峰,李国英,王钦英,孙庆辉,翁晓梅.新疆棉铃虫病原微生物分离及其高效杀虫微生物的筛选[J].石河子大学学报,2003,7(2):115-117.
    史应武,赵思峰,李国英.新疆苏云金杆菌35高效菌株液体深层发酵培养基的筛选[J].食品与生物技术学报,2007,26(1):106-110.
    疏秀林,施庆珊,冯静,欧阳友生,陈仪本.γ-聚谷氨酸发酵培养基的Plackett-Burman法优化[J].生物技术通报,2007,4:173-177.
    宋晓春,弓爱君,姚伟芳,卢娜,刘琪.生物农药苏云金芽胞杆菌发酵原料综述[J].农药市场信息,2006,12:17-19.
    孙翠霞(a),弓爱君,闫海,姚伟芳,宋晓春.苏云金芽胞杆菌高浓度液体发酵培养基的优化研究[J].化学与生物工程,2006,23(9):38-39.
    孙翠霞(b),弓爱君,姚伟芳,邱丽娜,曹艳秋.苏云金芽胞杆菌固态发酵培养基的优化[J].化学与生物工程,2006,23(8):34-36.
    孙金荣,刘武明.啤酒生产废水的综合治理探讨[J].环境保护,1995,(11):8-10.
    唐凌云,王世梅,周立祥.利用废弃毛发生产生物农药苏云金杆菌的研究[J].农业环境科学,2008,27(3):1248- 1253.
    唐孝宣.抗生素感染菌的制服[J].抗生素,1980,5(4):1-3.
    田禹,王宝贞.臭氧活性炭联用技术发展状况[J].哈尔滨工业大学学报,1998,30(2) :67-72.
    王本辉,傅金祥,李彤岩,姜海. CAST工艺在阜新啤酒厂生产废水处理中的应用[J].沈阳建筑工程学院学报,2003,19(4):312-315.
    王程辉,章克昌,卢晓清.利用酒糟废液培养苏云金杆菌的研究[J].酿酒,2001,28(2):81-83.
    王津红,吴卫辉,陈月华,任改新.中国苏云金芽胞杆菌的分布与cry基因的多样性[J].微生物学通报,2001,28(3):50-55.
    王容燕,冯书亮,范秀华,曹伟平,胡明峻.对金龟子幼虫有杀虫活性的苏云金杆菌HBF-1菌株发酵培养基优选[J].华北农学报,2003,18(院庆专辑):96-98.
    王善利,马景芝,袁勤生. Bt培养基配比及伴胞晶体纯化条件的优化[J].华东理工大学学报,2006,32(3):285-289.
    王世梅,梁剑茹,周立祥.利用城市污泥生产苏云金杆菌生物农药[J].中国环境科学,2006,26(1):77-81.
    王晓霞,邱兆富,范吉,应维琪,吕树光.超声波处理剩余污泥有机物、氮和磷的释放特性研究[J].环境污染与防治,2009,31(3):66-69.
    王学聘,戴莲韵.用黄酒滤渣生产苏云金杆菌的研究[J].林业科学研究,1990,3(5):466-469.
    王亚军,姚善泾,吴天星.响应面法优化Saccharomyces cerevisiae FL-1培养基[J].化学反应工程与工艺,2003,19(4):300-305.
    王亚炜,魏源送,肖本益,刘俊新.微波-过氧化氢联合作用处理污泥的影响因素[J].环境科学学报,2009,29(4):697-702.
    王永菲,成国.响应面法的理论与应用[J].民族大学学报,2005,14(3):236-240.
    吴继星,陈在佴,谢天健,钟连胜.苏云金杆菌高效培养基优选模型的研究[J].生物防治通报,1994,10(3):110-113.
    吴继星,陈在佴,张志刚.苏云金杆菌WG2001工程菌发酵培养基的筛选[J].微生物学杂志,2005,25(3):91-94.
    吴继星,陈在佴.苏云金杆菌“79007”菌株发酵工艺的研究[J].微生物学杂志,2006,26(3):5-8.
    吴丽云,关雄. Bt发酵生产新型原料的应用进展[J].中国农业科技导报,2008,10(6):29-34.
    肖厚贞,名槐. SAS在物理化学实验数据处理中的应用[J].实验室研究与探索,2009,28(5):75-76.
    徐宏革,袁志明,蔡全信,杨国军,刘娥英,张用梅.苏云金杆菌Z113菌株发酵培养
    基的筛选[J].武汉大学学报(杀虫微生物专刊),1998,35-39.
    徐宏革,全信,袁志明,刘娥英,张用梅.苏云金杆菌Z113菌株伴胞晶体特性及其杀
    虫活性[J].中国病毒学(杀虫微生物专刊),2000,15:102-106.
    徐怀东,钟月华,伍勇,肖泽仪.我国啤酒废水处理工艺进展[J].四川环境,2003,22(3):27-29,32.
    许文. AF=I-500型医院污水处理设备应用条件的选择[J].中国消毒志,1996,13(l):49-50.
    杨德明,鄢亚玲,彭琴. LMB优势菌处理生活污水技术探讨[J].云南冶金,2006,35(3):70-74.
    杨建州,林健,张洪勋,齐鸿雁.味精工业高浓度有机废水培养苏云金芽胞杆菌的研究[J].应用与环境生物学报,1999,5:197-199.
    杨建州,温官,张洪勋,吴芳良.味精废水发酵培养苏云金芽胞杆菌的研究[J].环境污染治理技术与设备,2000,1(6):35-40.
    扬建州(a),张松鹏.味精废水培养苏云金芽胞杆菌中的预处理研究[J].环境污染治理技术与设备,2002,3(8):18-21.
    扬建州(b),张松鹏.利用味精废水发酵生产苏云金芽胞杆菌的发酵条件研究[J].食品与发酵工业,2002,28(4):28-32.
    杨梅,张峰,苏新华.苏云金芽胞杆菌LLB19发酵培养基的优化[J].福建师范大学学报,2009,25(2):75-81.
    杨自文,吴宏文,王开梅,谢天健,钟连胜,岳书奎.从土壤中高效分离苏云金杆菌的方法[J].中国生物防治,2000,16(1):26-30.
    杨自文,岳书奎.苏芸金杆菌MP-342菌株发酵工艺技术[J].东北林业大学学报,2001,29(1):138-146.
    余波.不同氮源的发酵培养基对苏云金杆菌HD-1生长的影响[J].江西教育学院学报,2002,23(6):37-39.
    余健秀,汤慕瑾,徐建敏,庞义.苏云金杆菌小试生产发酵影响因子的研究[J].中国生物防治,2002,18(1):17-20.
    于秀娟,张熙琳,王宝贞,闰伟波.臭氧一生物活性炭工艺去除水中有机物污染物[J].环境污染与防治,2000,22(4):1-3.
    喻艳菁,丁国际,邱慧琴,王涌,焦正.超声处理对剩余污泥的粒径和溶出物的影响[J].环境科学学报,2009,29(4):703-708.
    喻子牛.苏云金杆菌[M].北京:科学出版社,1990,305.
    喻子牛,代大生. 7216杀虫菌高菌数发酵培养基的优选[J].湖北农业科学,1985,(11):12-15.
    喻子牛.苏云金芽胞杆菌制剂的生产和应用[M].北京:农业出版社,1993.
    喻子牛.苏云金芽胞杆菌制剂[M].北京:农业出版社,1993,66-105.
    袁惠民,杜绿君.啤酒技术及管理.北京:中国轻工业出版社,1994.
    袁志明,张用梅,刘娥英,陈宗胜,蔡昌建.不同培养基对苏云金杆菌以色列变种生
    长和发育的影响[J].工业微生物,1993,23(2):13-18.
    靳亮,王泽立,童应凯,杨永涛,祝静静,孙翠霞.响应面法优化卑霉素发酵培养基的研究[J].生物技术通报,2007,2:155-162.
    赵秋雁,赵晓虹,吴保国. Bt L-93菌株培养基的正交试验及培养代谢[J].东北林业大学学报,1998,26(4):63-65.
    张大皓,谭天伟,王炳武.响应面试验设计优化脂肪酶发酵培养基[J].北京化工大学学报,2006,33(2):41-45.
    张国权,吕小欢,罗志刚.均匀设计的方法与应用[J].华南农业大学学报,1998,19(2):91-96.
    张国柱.酿酒工业废水的治理技术[J].环境保护,1992,(12):9-11.
    张家学,陈守文,孙明,喻子牛.苏云金芽胞杆菌不同发酵阶段的补糖发酵[J].无锡轻工大学学报,2005,24(1):11-14.
    张敬平,沈元,龙凤兴,肖勇,薛强,宗荣芬.次氯酸钠和二氧化氯消毒液对城市污水消毒效果的研究[J].医学动物防制,2005,2l(l0):705-708.
    张景丽,顾平.污泥消毒技术的应用及进展[J].中国给水排水,2008,24(2):20-24.
    张俊亭,李治祥,张克强,黄士忠.微生物杀虫剂苏云金杆菌液体发酵技术的研究[J].农业环境保护,1998 ,17 (6):248 -250.
    张玲. Bt杀虫剂研究进展[J].中国生物工程杂志,2005(增):91-94.
    张灵玲,林晶,骆兰,方昉,黄天培,徐金汉,吴光远,王庆森,关雄.叶面分离Bt及对茶树主要害虫高毒力菌株的筛选[J].茶叶科学,2005,25(1):56-60.
    张森林,黄明.酸化-序列活性污泥法处理TMP生产废水[J].给水排水,1995,(8):20-21.
    张韶华,石利民,金萍.辐照对污泥消毒效果的观察[J].职业与健康,2002,18(12):77.
    张世江.效益型资源化啤酒废水处理技术应用及效果[J].环境保护科学,1993,19(3):61-64.
    张水平,董呈杰,袁非亮.臭氧在水处理中的应用[J].工业安全与环保,2005,31(8):19-20.
    张为农.跨国公司对我国农药市场垄断的加强与提高我国农药工业竞争力的对策[J].农药市场信息,2009(18):13-16.
    张迎明,赵继红,伊三悌,杨君,刘从彬.利用啤酒废水制备微生物絮凝剂研究[J].安徽农业科学, 2008,36(34):15200-15201,15244.
    张志国.应用在食品工业中的臭氧消毒灭菌技术[J].食品科技,2000,5(3):57-58.
    张崇岱.啤酒污水处理的几个问题评述[J].工业用水与废水,2000,31 (1):1-2.
    张义萍,张伟国.利用SAS软件优化L2精氨酸发酵培养基[J].化学与生物工程,2006,23(2):44-46.
    郑爱榕,赵立清,詹力扬,陈清花.用啤酒废水养殖螺旋藻研究[J].海洋科学,2004,28(7):26-31.
    郑舒文,段辉,林剑,徐世艾.味精废水综合处理的研究[J].微生物学杂志,2001,21(3):31-33.
    郑毅,周虓,黄勤清,关雄.产耐温蛋白酶苏云金芽胞杆菌FS140液体发酵条件优化[J]. 应用与环境生物学报,2007,13(5):708-712.
    周长波,张振家,曾庆荣,张扬.啤酒废水的综合治理[J].工业水处理,2001,21(11):44-46.
    周军,叶长明,黄翔峰,陈绍伟.合流制排水系统溢流污水消毒处理[J].郑州轻工业学院学报,2007,22(1):24-26.
    周晓兰,郑毅,邓春梅,余敏忠,林建华.利用味精废水生产苏云金芽胞杆菌生物农药[J].海峡科学,2009,8:3-6,10.
    朱健辉,杜连祥,路福平,刘晓兰,王萍.纳豆激酶液态发酵工艺优化[J].食品与发酵工业,2005,31(8):15-18.
    褚以文.微生物培养基优化方法及其OPTI优化软件[J].国外医药抗生索分册,1999,20(2):58-60,66.
    邹连生.啤酒副产品及废弃物的开发利用[J].四川食品与发酵,1999,(3):21-24.
    左永泉.啤酒废水处理技术的应用[J].环境工程,2000,18(1):34 -36.
    Abdel-Hameed A,Carlberg G,El-Tayeb O M. Studies on Bacillus thuringiensis H-14 strains isolated from Egypt. III. Selection of media for delta-endotoxin production[J]. World Journal of Microbiology and Biotechnology,1990,6:313-317.
    Abdel-Hameed,A ,Carlberg,G. & El-Tayeb,O.M. Studies on Bacillus thuringiensis H-14 strains isolated in Egypt. IV. Characterization of fermentation conditions for δ-endotoxin production[J].World Journal of Microbiology and Biotechnology 1991,7:231-236.
    Adams T T,Eiteman M A,Adang M J. Bacillus thuringiensis subsp,kurstaki spore production in batch culture using broiler litter extracts as complex media[J]. Bioresource Technology,1999,67:83-87.
    Adjalle K D(a),Brar S K,Tyagi R D,Valéro J R,Surampalli R Y. Photoprotection of Bacillus thuringiensis fermented wastewater and wastewater sludge based biopesticides using additives[J]. Acta Tropica,2009,111(1):7-14.
    Adjalle K D(b),Tyagi R D,Brar S K,Valero J R,Surampalli R Y. Recovery of entomotoxicity cmponents from Bacillus thuringiensis fermented wastewater and sludge: Ultrafiltration scale-up approach[J]. Separation and Purification Technology,2009,69:275-279.
    Anderson T B. Effects of carbon:nitrogen ratio and oxygen on the growth kinetics of Bacillus thuringiensis and yield of bioinsecticidal crystal protein. MSC thesis,University of Western Ontario,1990,Canada. áodore K,Panda T. Application of response surface methodology to evaluate the influence of temperature and initial pH on the production of b-1,3-glucanase and carboxymethyl cellulase from Trichoderma harzianum[J]. Enzy.Micro.Technol,1995,17:1043-1049.
    Arcas J,Yanforno O,Arra′ras E,Ertola R. A new medium for growth and delta-endotoxin production by Bacillus thuringiensis var. kurstaki[J]. Biotechnology Letters,1984,6:495-500.
    Arcas J,Yantorno O,Ertola R. Effect of high concentration of nutrients Bacillus thuringiensis on cultures[J]. Biotechnology Letters,1987,9(2):105-110.
    Aronson A I. The two faces of Bacillus thuringiensis: insecticidal proteins and post exponential survival[J]. Molecular Biotechnology,1993,7:489-496.
    Avignone Rossa C,Yantorno O M,Arcas J A & Ertola RJ. Organic and inorganic nitrogen source ratio effects on Bacillus thuringiensis var. israelensis delta-endotoxin production[J]. World Journal of Microbiology and Biotechnology,1990,6:27-31.
    Avignone-Rossa C,Arcas J,Mignone C. Bacillus thuringiensis sporulation andδ-endotoxin production in oxygen limited and non-limited cultures[J]. World Journal of Microbiology and Biotechnology,1992,8:301-304.
    Avignone-Rossa C,Mignone C F. Bacillus thutingiensis growth and toxicity,basic andapplied considerations[J]. Molecular Biotechnology,1995,4:55-71.
    Avignone-Rossa C,Mignone C. Delta-endotoxin activity and spore production in batch and fed-batch cultures of Bacillus thuringiensis[J]. Biotechnol Lett,1993,15:295-300.
    BarnabéS,Brar S K,Tyagi R D,Beauchesne I,Surampalli R Y. Pre-treatment and bioconversion of wastewater sludge to value-added products-Fate of endocrine disrupting compounds[J]. Science of The Total Environment,2009,407(5):1471-1488.
    Beegle C C,Rose R I,Ziniu Y. Mass production of Bacillus thuringiensis and B. sphaericus for microbial control of insect pests. In: Biotechnology for Biological Control of Pests and Vectors. Maramorosch,K. (Ed.),CRC Press,Boca Raton,FL,1987,195-216.
    Ben Rebah F,Tyagi R D & Pre′vost D. Acid and alkaline treatments for enhancing the growth of Rhizobia in sludge[J].Can J Microbiol,2001,47(6):467-474.
    Benoit T G,Wilson G R & Baygh C L. Fermentation during growth and sporulation of Bacillus thuringiensis HD-1 [J]. Letters in Applied Microbiology,1990,10:15-18.
    Bhatnagar R K. Plant biology:insect resistance. Activity report of the International Center for Genetic[J]. Engineering and Biotechnology,1997,97-101.
    Bhatnagar N B. Modulation of CryIVA toxin expression by glucose in Bacillus thuringiensis israeliensis[J]. Biochem Biophys Res Commun,1998,252:402-406.
    Bien J B,Kempa E S,Bien J D. Influence of ultrasonic field on structure and parameters of sewage sludge for dewatering process[J]. Water Science and Technology,1997,36(4): 287-291.
    Bioardi J L & Ertola R J. Rhizobium biomass production in batch and continuous culture with a malt-sprouts medium[J]. MIRCEN Journal,1985,1163-1171.
    Box G E P,Behnken D W. Some new three level designs for the study of quantitative variables[J]. Technometrics,1960,(2):455- 475.
    Brar S K,Verma M,Tyagi R D,Vale′ro J R,Surampalli R Y & Banerji S K. Comparative rheology and particle size analysis of various types of Bacillus thuringiensis fermented sludges[J]. Journal of Residue Science and Technology,2004,1:231-237.
    Brar S K,Verma M,Tyagi R D,Valéro J R,Surampalli R Y. Sludge based Bacillus thuringiensis biopesticides: viscosity impacts[J]. Water Research,2005a,39:3001-3011.
    Brar S K,Verma M,BarnabéS,Tyagi R D,Valéro J R,Surampalli R Y. Impact of Tween 80 during Bacillus thuringiensis fermentation of wastewater sludges[J]. Process Biochemistry,2005b,40:2695-2705.
    Brar S K,Verma M,Tyagi R D,Valéro J R,Surampalli R Y.Screening of different adjuvants for wastewater/wastewater sludge-based Bacillus thuringiensis formulations[J]. J Econ Entomol,2006a,99(4):1065-1079.
    Brar S K,Verma M,Tyagi R D ,Vale′roa J R,Surampalli R Y. Efficient centrifugal recovery of Bacillus thuringiensis biopesticides from fermented wastewater and wastewater sludge[J]. Water Research,2006b,40:1310-1320.
    Brar S K,Verma M,Tyagi R D,Valéro J R,Surampalli RY. Entomotoxicity,protease and chitinase activity of Bacillus thuringiensis fermented wastewater sludge with a high solids content[J]. Bioresource Technology,2009,100:4317-4325.
    Byung Chul Kang,Sang Yup Lee and Ho Nam Chang. Enhanced spore production of Bacillus thuringiensis by fed-batch culture[J]. Biotechnology Letters,1992,14(8):721-726.
    Cai M,Liu J & Wei Y. Enhanced biohydrogen production from sewage sludge with alkaline pretreatment[J]. Environment Science and Technology,2004,38:3195-3202.
    Chang Min,Shun-Gui Zhou,Na Lu,Jin-ren Ni. Starch processing wastewater as a new medium for production of Bacillus thuringiensis[J]. World Journal of Microbiology and Biotechnology,2007,9491-9497.
    Chilcott C N & Pillai J S. The use of coconut wastes for the production of Bacillus thuringiensis var. israelensis[J]. MIRCEN Journal,1985,1327-1332.
    Conner R M & Hansen P A. Effects of valine,leucine and isoleucine on the growth of Bacillus thuringiensis and related bacteria[J]. Journal of Invertebrate Pathology,1967,9:12-18.
    Chen J S,Hong Y wu W T. Fed-batch culture of Bacillus thuringiensis based on motile intensity[J]. J Ind Microbiol Biotechnol,2003,30:677-681.
    Chu C P,Lin W W,Lee D J,Chang B V & Peng X F. Thermal treatment of waste activated sludge using liquid boiling[J]. Journal of Environmental Engineering,2002,128:1100-1103.
    Demain A L. Catabolite regulation in industrial microbiology,in: Vonek Z,Krumhanze V,Sikyta B (Eds.). Overproduction of Microbial Products,Academic Press,London,1982:3-20.
    Desai S Y and Shethna Y I. Production and formulation of Bacillus thuringiensis var. israelensis and B. sphaericus[J]. Indian J. Med. Res.,1991,93:318-323.
    Dharmstiti S C,Pantuwatana S & Bhumiratana A. Production of Bacillus thuringiensis var. israelensis and Bacillus sphaericus strain 1593 on media using a byproduct from a monosodium glutamate factory[J]. Journal of Invertebrate Pathology,1985,46:231-238.
    Dhouha Ghribi,Nabil Zouari,Hassen Trabelsi,Samir Jaoua. Improvement of Bacillus thuringiensis delta-endotoxin production by overcome of carbon catabolite repression through adequate control of aeration[J]. Enzyme and Microbial Technology,2007,40:614-622.
    Dipak Vora and Shethna Y I. Enhanced growth,sporulation and toxin production by Bacillus thuringiensis subsp. kurstaki in oil seed meal extract media containing cystine[J]. World Journal of Microbiology & Biotechnology,1999,15:747-749.
    Dulmage H T. Production of delta-endotoxin by eighteen isolates of Bacillus thuringiensis serotype 3 in fermentation media[J]. J. Invertebr. Pathol,1971,18:353-358.
    Egli TH & Quayle J R. Influence of the carbon: nitrogen ratio of the growth medium on the cellular composition and the ability of the methylotrophic yeast Hansenula polymorpha to utilize mixed carbon sources[J]. Journal of General Microbiology,1986,132:1779-1788.
    Eiichi Mizuki,Minoru Maeda,Rie Tanaka,Dae-Weon Lee,Miki Hara,Tetsuyuki Akao,Satoko Yamashita,Ho-San Kim,Tokio Ichimatsu and Michio Ohba. Bacillusthuringiensis: A Common Member of Microflora in Activated Sludges of a Sewage Treatment Plant[J]. Current Microbiology,2001,42(6):422-425.
    Ejiofor A O and Okafor N. Production of mosquito larvicidal Bacillus thuringiensis serotype H-14 on raw material media from Nigeria[J]. J. Appl. Bacteriol,1989,67:5-9.
    Ejiofor A O. Production of Bacillus thuringiensis serotype H-14 as bioinsecticide using a mixture of spent brewer’s yeast and waste cassava starch as fermentation medium[J]. Discovery and Innovation,1991,3(2):85-88.
    Faloci M M,Yantomo O M,Marino H A,Arcas A J and Ertola R J. Effect of the media composition on the growth parameters and biological properties of Bacillus thuringiensis var. israelensis delta-endotoxin[J]. World Journal of Microbiology and Biotechnology,1990,6(1):32-38.
    Farrera R R,Perez-Guevara F & De La Torre M. Carbon: nitrogen ratio interacts with initial concentration of total solids on insecticidal crystal protein and spore production in Bacillus thuringiensis HD-73[J]. Applied Microbiology and Biotechnology,1998,49:758-765.
    Fisher S H. Utilization of amino acids and other nitrogen containing compounds. In: Bacillus subtilis and Other Gram-Positive Bacteria. Sonenshein A L,Hoch J A,Losick R (Eds.),American Society for Microbiology,Washington,1993.
    Foda M S,Salama H S and Selim M. Factors affecting growth physiology of Bacillus thuringiensis[J]. Appl Microbiol Biotechnol,1985,22:50-52.
    Gangurde R P,Shethna Y I. Growth,sporulation and toxin production by Bacillus thuringiensis subsp. israelensis and Bacillus sphaericus in media based on mustard-seed meal[J]. World Journal of Microbiology and Biotechnology,1995,11:202-205.
    Genc N,Yonsel S,Dagasan L & Onar A N. Wet oxidation:a pretreatment procedure for sludge[J]. Waste Management,2002,22:611-616.
    Géraldine A,VAN DER A,SOPHIE T,Florence H,Jacques M. Plasmid exchanges among members of the Bacillus cereus group in foodstuffs[J]. International Journal of FoodMicrobiology,2007,113(2):164-172.
    Ghribi D,Zouari N,Jaoua S. Improvement of bioinsecticide production through adaptation of Bacillus thuringiensis cells to heat treatment and NaCl addition[J]. J Appl Microbiol,2005,98(4):823-831.
    Ghribi D,Zouari N,Trigui W,Jaoua S. Use of sea water as salts source in starch- and soya bean-based media,for the production of Bacillus thuringiensis bioinsecticides[J]. Process Biochemistry,2007,42:374-378.
    Goldberg I,Sneh B,Battat E and Klein D. Optimization of a medium for a high yield production of spore-crystal preparation of Bacillus thuringiensis effective against the Egyptian cotton leaf worm Spodoptera littoralis Boisd[J]. Biotechnology Letters,1980,2:419-426.
    Guilherme A. Moreira,Gabriela A. Micheloud,Alejandro J. Beccaria,Héctor C. Goicoechea. Optimization of the Bacillus thuringiensis var. kurstaki HD-1 δ-endotoxins production by using experimental mixture design and artificial neural networks[J]. Biochemical Engineering Journal,2007,35(1):48-55.
    Hounsa C G,Aubry J M,Dubourguier H C. Application of factorial and Doehlert design for optimization of pectate lyase production by a recombinant Escherichia coli[J]. Appl. Microbiol. Biotechnol,1996,45:764-770.
    Hsu Yuh-Lih,Wen-Teng Wu. A novel approach for scaling-up a fermentation system[J]. Biochemical Engineering Journal,2002,11:123-130.
    Hu B,Chen SL. Pretreatment of methanogenic granules for immobilized hydrogen fermentation[J]. Int J Hydrogen Energy,2007,32(15):3266-3273.
    Ichimatsu T,Mizuki E,Nishimura K,Akao T,Saitoh H,Higuchi K,Ohba M . Occurrence of Bacillus thuringiensis in fresh waters of Japan[J]. Curr Microbiol,2000,40(4):217-220.
    Iriarte J,Porcar M,Lecadet M,Caballero P. Isolation and characterization of Bacillus thuringiensis strains from aquatic environments in Spain[J]. Curr Microbiol,2000,40(6):402-408.
    Javier E Q. Foreword of proceedings of the second international workshop. Taiwan: In:Talekar N S,(ed.). Diamondback Moth and 0ther Crucifer Pests. Proceedings of the Second International Workshop. Taiwan:Asian Vegetable Research and Development Center. 1992.
    Jeong J W,Snay J,Ataai M M. A mathematical model for examining growth and sporulation processes of Bacillus subtilis[J]. Biotechnology Bioengineering,2004,35(2):160-184.
    Jong J Z,Wu W T,Tzeng Y M. pH control for fed-batch culture of Bacillus thuringiensis[J]. Biotechnol Biotec,1994,8(7):483-486.
    Jong J Z,Hsiun D Y,Wu W T. Fed-batch culture of Bacillus thuringiensis for thuringiensin production in a tower type bioreactor[J]. Biotechnol Bioeng,1995,48:207-213.
    Jorand F,Zartarian F,Thomas F,Block J C,Bottero j Y,Villemin G,Urbain V and manem J. chemical and structural (2d) linkage between bacteria within activated sludge flocs[J]. Water Reseach.,1995,29(7): 1639-1647.
    Juarez P,Orejas J. Oxygen transfer in a stirred reactor in laboratory scale[J]. Latin American Applied Research,2001,31:433-439.
    Jyoti K K,Pandit A B. Water disinfection by acoustic and hydrodynamic cavitation[J]. Biochem. Eng. J,2000,1:3486.
    Kalaimahan Theodore,Tapobrata Panda. Application of response surface methodology to evaluate the influence of temperature and initial pH on the production ofβ-1,3-glucanase and carboxymethylcellulase from Trichoderma harzianum[J]. Enzyme Microb.Technol,1995,17:1043-1049.
    Kalil S J,Maugeri F,Rodrigues M I. Response surface analysis and simulation as a tool for bioprocess design and optimization [J]. Process Biochemistry,2000,35:539–550.
    Kang B C,Lee S Y,Chang H N. Enhanced spore production of Bacillus thuringiensis by fed-batch culture[J]. Biotechnol Lett,1992,14:721-726.
    Kenneth W,Nickerson,Igrant S T,Julian and Lee Bulla J R. Physiology of Spore forming Bacteria Associated with Insects: Radior espirometric Survey of Carbohydrate Metabolism In the 12 Serotypes of Bacillus thuringiensis[J]. Applied Microbiology,1974,129-132.
    Khanh Dang V S,Yan R D,Tyagi J R,Valéro R Y,Surampalli. Induced production of chitinase to enhance entomotoxicity of Bacillus thuringiensis employing starch industry wastewater as a substrate[J]. Bioresource Technology,2009,100(21):5260-5269.
    KUO W,CHAK K. Identification of novel cry-type genes from Bacillus thuringiensis strains on the basis of restriction fragment length polymorphism of the PCR-amplified DNA[J]. Appl. Environ. Microbiol,1996,62:1369-1377.
    Lachhab K,Tyagi R D,Valéro J R. Production of Bacillus thuringiensis biopesticides using wastewater sludge as a raw material: effect of inoculum and sludge solids concentration[J]. Process Biochemistry,2001,37(2):197-208.
    Leifson E. Bacterial spores [J]. Journal of Bacteriology,1931,21:331-356.
    Lin Sheng H,Chi M Lin,Hong G Leu. Operating characteristics and kinetic studies of surfactant wastewater treatment by Fenton oxidation[J]. Water Research,1999,33(7):1735-1741
    Lin Shu-Sung,Mirat D Gurol. Catalytic decomposition of hydrogen peroxide on iron oxide:kinetics,mechanism and implications[J]. Environment Science Technology,1998,32(10):1417-1423.
    Lisansky S G,Quinlan R,Tassoni G. The Bacillus thuringiensis Production Handbook. CPL Press,1993. 121-124.
    López-y-López V E. Mayra de la Torre. Redirection of metabolism during nutrient feeding in fed-batch cultures of Bacillus thuringiensis[J]. Appl Microbiol Biotechnol,2005,67:254-260.
    Lopez J M,Peter Fortnagel. Nitrofurantion Promps the Stringent Response in Bacillus subtillis[J]. Journal of General Microbiology,1981,126:491-496.
    Luthy P,Cordier J L & Fischer H M. Bacillus thuringiensis as a bacterial insecticide: basic considerations and application. In: Microbial and Viral Pesticides,New York,NY:Marcel Dekker Inc.,1982,35-74.
    Maeda M,Mizuki E,Nakamura Y,Hatano T,Ohba M. Recovery of Bacillus thuringiensis from marine sediments of Japan[J]. Curr Microbiol,2000,40(6):418-422.
    Maeda M,Mizuki E,Hara M,Tanaka Rie,Akao T,Yamashita S and Ohba M. Isolation of Bacillus thuringiensis from intertidal brackish sediments in mangroves[J]. Microbiol Res.,2001,156(2):195-198.
    Mantzavinos D,Psillakis E. Enhancement of biodegradability of industrial wastewaters by chemical oxidation pretreatment[J]. Journal of Chemical Technology and Biotechnology,2004,79:431-454.
    Mar(?)′a Guadalupe Maldonado-Blanco,Gustavo Sol(?)′s-Romero and Luis Jesu′s Gala′n Wong. The effect of oxygen tension on the production of Bacillus thuringiensis subsp. israelensis toxin active against Aedes aegypti larvae[J]. World Journal of Microbiology & Biotechnology,2003,19:671-674.
    Maria de Lourdes,Tirado Montiel,Tyagi R D,ValeroJ R. Wastewater treatment sludge as a raw material for the production of Bacillus thuringiensis based biopesticides[J]. Water Research,2001,35(16):3807-3816.
    Mason T J,Newman A P,Phull S S,Pollet B,Hutt K R. The use of ultrasound to enhance water treatment[J]. Proceedings of Hydrotop 94. Colloque Mieux Gere L’Eau,1994,2:508.
    Mausam Verma,Satinder K Brar,Tyagi R D,Vale′roa J R,Surampalli,R Y. Wastewater sludge as a potential raw material for antagonistic fungus (Trichoderma sp.):Role of pre-treatment and solids concentration[J]. Water Research,2005,39:3587-3596.
    Melek (?)zkan,Filiz B Dilek,ülküYetis,Gülay (?)zcengiz. Nutritional and cultural parameters influencing antidipteran delta-endotoxin production[J]. Research in Microbiology,2003,154:49-53.
    Mignone C F & Avignone-Rossa C. Analysis of glucose carbon fluxes in continuous cultures of Bacillus thuringiensis[J]. Applied Microbiology and Biotechnology,1996,46:78-84.
    Mihaela I Stefan,James R Bolton. Degradation pathways during the treatment of methyl tert-butyl ether by the UV/H_2O_2 process[J]. Environment Science Technology,2000,34(4):650-658.
    Mirta M,Faloci,Osvaldo M,Yantorno,Horacio A. Marino,Jorge A. Arcas and Rodolfo J. Ertola. Effect of the media composition on the growth parameters and biologicalproperties of Bacillus thuringiensis var. israelensis delta-endotoxin[J]. World Journal of Microbiology and Biotechnology,1990,6:32-38.
    Mohammedi S,Bala Subramanian S,Yan S,Tyagi R D and Valéro J R. Molecular screening of Bacillus thuringiensis strains from wastewater sludge for biopesticide production[J]. Process Biochemistry,2006,41(4):829-835.
    Mohan S V,Babu V L,Sarma P N. Effect of various pretreatment methods on anaerobic mixed microflora to enhance biohydrogen production utilizing dairy wastewater as substrate[J].Bioresource Technol,2008,99(1):59-67.
    Monroe R E. Protein turnover and the formation of protein inclusions during sporulation of Bacillus thuringiensis[J]. Biochem. J,1961,81:225-232.
    Montgomery D C. Design and Analysis of Experiments. Wiley,New York,1976,356.
    Morris O N,Kanagaratnam P,Converse V. Suitability of 30 agricultural products and as nutrient sources for laboratory production of Bacillus thuringiensis subsp. aizawai (HD133) [J]. J Invertebr Pathol,1997,70:113-120.
    Montiel M D,Tyagi R D,Valero J R. Wastewater treatment sludge as a raw material for the production of Bacillus thuringiensis based bioinsecticides[J]. Wat Res.,2001,35:3807-3816.
    Mu Y,Yu H Q,Wang G. Evaluation of three methods for enriching H2 producing cultures from anaerobic sludge[J]. Enzyme Microb Technol,2007,40(4):947-953.
    Muller J A,Winter A,Strunkmann G. Investigation and assessment of sludge pretreatment processes[J]. Water Science and Technology,2004,49:97-104.
    Mummigatti S G,Raghunathan A N. Influence of media composition on the production of δ-endotoxin by Bacillus thuringiensis var. thuringiensis[J]. J Invertebr Pathol,1990,55:147-151.
    Nabil Zuoari and Samir Jaoua. Production and characterization of metalloproteases synthesized concomitantly withδ-endotoxin by Bacillus thuringiensis subsp. kurstaki strain grown on gruel-based media[J]. Enzyme and Microbial Technology,1999,25:364-371.
    Nabil Zouari,Safouane Ben Sik Ali,Samir Jaoua. Production of delta-endotoxins by Bacillus thuringiensis strains exhibiting various insecticidal activities towardslepidoptera and diptera in gruel and fish meal media[J]. Enzyme and Microbial Technology,2002,31:411-418.
    Neyens E,Baeyens J,Creemers C. Alkaline thermal sludge hydrolysis[J]. Journal of Hazardous Materials,2003a,97:295-314.
    Neyens E,Baeyens J,Weemaes M & De Heyder B. Pilotscale peroxidation (H_2O_2) of sewage sludge[J]. Journal of Hazardous Materials,2003b,98:91-106.
    Nickerson K W and Bulla L A.. Physiology of spore forming bacteria associated with insects,minimal nutrition requirements for growth,sporulation and parasporal crystal formation of Bacillus thuringiensis[J]. Appl. Microbiol,1974,28:124-128.
    Nickerson K W & Bulla L A. Jr. Lipid metabolism during bacterial growth,sporulation and germination:an obligate nutritional requirement in Bacillus thuringiensis for compounds that stimulate fatty acid synthesis[J]. Journal of Bacteriology,1975,123:598-603.
    Obeta J A & Okafor N. Production of Bacillus sphaericm strain 1593 primary powder on media made from locally obtainable Nigerian agricultural products[J]. Canadian J Microbiology,1983,29(6):704-709.
    Obeta J A N & Okafor N. Medium for the production of primary powder of Bacillus thuringiensis subsp. israelensis[J]. Applied and Environmental Microbiology,1984,47,863-867.
    Orhan Ozcan,Bulent Icgen,Gulay Ozcengiz. Pretreatment of poultry litter improves Bacillus thuringiensis based biopesticides production[J]. Bioresource Technology,2010,101:2401-2404.
    Ozbek B & Gayik S. The studies on the oxygen mass transfer coefficient in a bioreactor[J]. Process Biochemistry,2001,36:729-741.
    Ozkan M,Dilek F B,Yetis U & Ozcengiz G. Nutritional and cultural parameters influencing antidipteran delta-endotoxin production[J]. Research in Microbiology,2003,154:49-53.
    Parajo J C,Santos V,Vazquez M. Optimization of carotenoid production by Phaffia rhodozyma cells grown on xylose[J]. Process Biochem,1998,33:181-187.
    Pearson D,Ward O P. Effect of culture conditions on growth and sporulation of Bacillus thuringiensis subsp. israelensis and development of media for production of the protein crystal endotoxin[J]. Biotechnol Lett,1988,10:451-456.
    Pham T T H,Brar S K,Tyagi R D,Surampalli R Y. Optimization of fenton oxidation pretreatment for B. thuringiensise based production of value added products from wastewater sludge[J]. Journal of Environmental Management,2010,91:1657-1664.
    Plackett R L,Burman JP. The design of optimum multifactorial experiments[J]. Biometrika,1946,(33):305-325.
    Poopathi S,Kumar K A. Novel fermentation media for production of Bacillus thuringiensis subsp. israelensis[J]. J. Econ. Entomol,2003,96:1039-1044.
    Prabakaran G,Balaraman K. dvelopment of a cost-effiective medium for the large scale production of Bacillus thuringiensis var israelensis[J]. Biological Control,2006,36:288-292.
    Prabakaran G(a),Hoti S L,Manonmani A M,Balaraman K. Coconut water as a cheap source for the production ofδ-endotoxin of Bacillus thuringiensis var. israelensis,a mosquito control agent[J]. Acta Tropica,2008,105:35-38.
    Prabakaran G L(b),Hoti. Egg yolk enhances early sporulation and toxicity of Bacillus sphaericus H5a5b for small-scale production of a mosquito control agent[J]. Acta Tropica,2008,108:50-53.
    Prabakaran G(c),Hoti S L . Inflence of amino nitrogen in the culture medium enhances the production of-endotoxin and biomass of Bacillus thuringiensis var. israelensis for the large-scale production of the mosquito control agent[J]. J Ind Microbiol Biotechnol,2008,35:961-965. Preeti C Sangave,Aniruddha B Pandit . Ultrasound and enzyme assisted biodegradation of distillery wastewater[J]. Journal of Environmental Management,2006,80:36-46.
    Rajalakshmi S & Shethna Y I. The effect of amino acids on growth,sporulation and crystal formation in Bacillus thuringiensis var. thuringiensis[J]. Journal of the Indian Institute of Science,1977,59(12):169-176.
    Razo E,Pe(?)rez F,de la Torre M. Scale-up of Bacillus thuringiensis fermentation based onoxygen transfer[J]. J Ferment Bioeng,1997,83:545-548.
    Rodriguez M M & De La Torre M. Effect of the dilution rate on the biomass yield of Bacillus thuringiensis and determination of its rate coefficients under steady-state conditions[J]. Applied Microbiology and Biotechnology,1996,45:546-550.
    Rogoff M H & Yousten A A. Bacillus thuringietzsis:microbial considerations[J]. Armual Reuiezu of Microbiology[J],1969,23:357-386.
    Rojas-Avelizapa L I,Cruz-Camarillo R,Guerrero M.I,Rodríguez-Vázquez R and Ibarra J E. Selection and characterization of a proteo-chitinolytic strain of Bacillus thuringiensis,able to grow in shrimp waste media[J]. World Journal of Microbiology and Biotechnology,1999,15(2):299-308.
    Rossa A C,Mignone C.δ-endotoxin activity and spore production in batch and fed-batch cultures of Bacillus thuringiensis[J]. Biotechnol. Lett,1993,15:295-300.
    Rowe G E,Margaritis A. Bioprocess developments in the production of bioinsecticides by Bacillus thuringiensis[J]. CRC Crit Rev Biotechnol,1987,6:87-127.
    Rowe G E & Margaritis A.. Endocellular fatty acid composition during batch growth and sporulation of Bacillus thuringiensis kurstaki[J]. Journal of Fermentation and Bioengineering,1994,77:503-507.
    Rowe G E,Margaritis A.. Bioprocess design and economic analysis for the commercial production of environmentally friendly bioinsecticides from Bacillus thuringiensis HD-1 kurstaki[J]. Biotechnol. Bioeng,2004,86 (4):377-388.
    Sachdeva V, Tyagi R D,Valéro J R. Production of biopestcides as a novel method of wastewater sludge utilization/disposal[J]. Water Science and Technology,2000,42(9):211-216.
    Sachidanandham R,Kunthala Jayaraman. Formation of spontaneous asporogenic variants of Bacillus thuringiensis subsp.galleriae in continuous cultures[J]. Appl Microbiol Biotechnol,1993,40:504-507.
    Sachidanandham R,Jenny K,Fiechter A Jayaraman K. Stabilization and increased production of insecticidal crystal proteins of Bacillus thuringiensis subsp. galleriae in steady and transient state continuous cultures[J]. Appl Microbiol Biotechnol,1997,47: 12-17.
    Salama H S,Foda M S & E1-Sharaby A. Potency of spore-δ-endotoxin complexes of Bacillus thuringiensis against some cotton pests[J]. Z. Angew. Entomol,1981,91:388-398.
    Salma H S,Foda M S,Dulmage H T,El- Shraby A. Utilization of fodder yeast and agro-industrials in production of spores and biologically active endotoxins from Bacillus thuringiensis[J]. Zentralblatt fuer Microbiologie,1983a,138:553-563.
    Salma H S,Foda M S,Dulmage H T,El- Shraby A. Novel fermentation medium for production of delta-endotoxin from Bacillus thuringiensis[J]. Journal of Invertebrate Pathology,1983b,41:8-19.
    Sambroo K J,Russell D W. Molecullar Cloning: A Laboratory Manual,3nd. Cold Spring Harbor NY:Cold Spring Harbor Laboratory,2001.
    Sarrafzadeh M H and J M Navarro. The effect of oxygen on the sporulation,δ-endotoxin synthesis and toxicity of Bacillus thuringiensis H14[J]. World Journal of Microbiology and Biotechnology,2006,22:305-310.
    Sasaki K,Jiaviriyaboonya S,Rogers P L. Enhancement of sporulation and crystal toxin production by corn steep liquor feeding during intermittent fed-batch culture of Bacillus sphaericus 2362[J]. Biotechnol. Lett,1998,20:165-168.
    Selinger P S S,Dawson and Khachatourians G G . Behavior of Bacillus thurinyiensis var. kurstaki under continuous phased cultivation in a cyclone fermentor[J]. Appl Microbiol Biotechnol,1988,28:247-253.
    Serap Ozcan,David S. Jackson. A response surface analysis of commercial corn starch annealing[J]. Cereal Chemistry,2003,80:241-243.
    Scherrer P S & Sommerville H J. Membrane fractions from the outer layers of spores of Bacillus thuringiensis with toxicity to lepidopterous larvae[J]. Eur. J. Biochern,1977,72:479-490.
    Scherrer P,Leithy P and Trumpi B. Production ofδ-endotoxin by Bacillus thuringiensis as a function of glucose concentration[J]. Appl Microbiol,1973,25:644-646.
    Sikdar D P,Majumdar M K,Majumdar S K. Effect of minerals on the production of the delta-endotoxin by Bacillus thuringiensis subsp. israelensis[J]. Biotechnol Lett,1991,13(7):511-514.
    Smith R A. Effect of strain and medium variation on mosquito toxin production by Bacillus thuringiensis var. israelensis[J]. Canadian Journal of Microbiology。1982,28:1089-1092.
    Song F,Zhang J,Gu A,Wu Y,Han L,He K,Chen Z,Yao J,Hu Y,Li G,Huang D. Identification of cry1I-type genes from Bacillus thuringiensis strains and characterization of a novel cry1I-type gene[J]. Appl. Environ. Microbiol,2003,69:5207-5211.
    Starzak M,Bajpai RK. A structured model for vegetative growth and sporulation in Bacillus thuringiensis[J]. Appl Biochem Biotech,1991,28:699-718.
    Stephanie L,Meadows,Chris Gennings,Hans W,CarterJ and Dong-Soon Bae. Experimental Designs for Mixtures of Chemicals Along Fixed Ratio Rays[J]. Environmental Health Perspectives,2002,110:979-983.
    Stowe R A,Mayer R P. Efficient screening of process variables[J].Ind Eng Chem,1966,58 (2):36-40.
    Subbiah Poopathi S. Abidha. Biodegradation of poultry waste for the production of mosquitocidal toxins[J]. Bioresource Technology,1999,67:83-87.
    Subbiah Poopathi S.,Abidha. Use of feather-based culture media for the production of mosquitocidal bacteria[J]. Biological Control,2007,43(1):49-55.
    Tirado montiel M L,Tyagi R D,Valero J R . Wastewater treatment sludge as a raw material for the production of Bacillus thuringiensis based biopesticides[J]. Water Research,2001,35(16):3807-3816.
    Tirado Montiel M L,Tyagi R D,Valéro J R,Surampalli R Y. Production of biopesticides using wastwater sludge as a raw material-effect of process parameters[J]. Water Science and Technology,2003,48(8):239-246.
    Travers R S,Martin P A W,Reichelderfer C F. Selective process for efficient isolation of soil Bacillus species[J]. Appl Environ Microbiol,1987,53:1263-1266.
    Tyagi V S,Foko S,BarnabéA S Vidyarthi A S,Valero J R,Surampallir R Y. Simultaneous production of biopesticide and alkaline proteases by Bacillus thuringiensis usingsewage sludge as raw material[J]. Water Sci Technol,2001,46 (10):247-254.
    Tzeng Y M,Young Y H. Production of thuringiensin from Bacillus thuringiensis using a net-draft-tube modified air lift reactor[J]. World J Microb Biot,1996,12(1):32-37. Verma M,Brar S K,Tyagi R D,Surampalli R Y,Vale′ro JR. Dissolved oxygen as
    principal parameter for conidia production of biocontrol fungi Trichoderma viride in a non-Newtonian wastewater[J]. J Ind Microbiol Biotechnol,2006,33:941-952.
    Verma M,Brar SK,Tyagi RD,Vale′ro JR,Surampalli RY. Wastewater sludge as a potential raw material for antagonistic fungus (Trichoderma sp.): role of pre-treatment and solids concentration[J]. Water Reseach,2005,39(15):3587-3596.
    Vidyarthi A S,Desrosiers M,Tyagi R D,Valéro J R. Foam control in biopesticide production from sewage sludge[J]. J Ind Microbiol Biotechnol,2000,(25):86-92.
    Vidyarthi A.S,Tyagi R D and Valéro J R. Effect of surface active agents on the production of biopesticides using wastewater sludge as a raw material[J]. Water Sci Technol,2001,44 (10):253-259.
    Vidyarthi A.S,Tyagi R D,Vale′ro J R & Surampalli R Y. Studies on the production of Bacillus thuringiensis based biopesticides using wastewater sludge as a raw material[J]. Water Research,2002,36:4850-4860.
    Wang B Z. Purification of Polluted Water with Ozonation and Biological Activated Carbon[J]. AQUA,1986,(6):51-54.
    Wang Jianlong,Wei Wan. Comparison of different pretreatment methods for enriching hydrogen-producing bacteria from digested sludge[J]. International Journal of Hydrogen Energy,2008,33:2934-2941.
    Wang C C,Lee C M. Acrylic acid removal by acrylic acid utilizing bacteria from acrylonitrile-butadiene-styrene resin manufactured wastewater treatment system[J]. Water Science & Technology,2006,53(6):181-186.
    Wang M Y,Doong S R. A pH-based fed-batch process for the production of a chimeric recombinant infectious bursal disease virus (IBDV) structural protein (rVP2H) in insect cells[J]. Process Biochem,2000,35:877-884.
    Wakisaka Y,Masaki E and Nishimoto Y. Formation of crystallineδ-endotoxin or poly-B-hydroxybutyric acid granules by asporogenous mutants of Bacillusthuringiensis[J]. Appl. Environ. Microbiol,1982,43:1473-1480.
    Weavers L K,Hoffmann M R. Sonolytic decomposition of ozone in aqueous solution: mass transfer effects[J]. Environ. Sci. Technol,1998,32 (24):3941.
    Weinberg E D,Mineral element control of microbial secondary metabolism,in: Weinberg E D (Ed.),Microorganisms and Minerals,Dekker,New York,1977,289-316.
    Wood J M,Bremer E,Laszlo N. Osmosensing and osmoregulatory compatible solute accumulation by bacteria comparative[J]. Biochem Physiol,2001,130:437-460.
    Wu W T & Wu J Y. Airlift reactor with net draught tube[J]. Journal of Fermentation and Bioengineering,1990,70:359-361.
    Wu ZL,Guo WY,Qiu JZ,Huang TP,Li XB,Guan X. Cloning and localization of vip3A gene of Bacillus thuringiensis[J]. Biotech. Lett,2004,26:1425-1428.
    Yamane T and Shimizu S. Fed-bach techniques in microbial processes[J]. Adv. Biochem. Eng.,1984,30:148-192.
    Yang X M and Wang S S. Development of Bacillus thuringiensis fermentation and process control from a practical perspective [J].Appl.Biochem,1998,28:95-98.
    Yang X M & Wang S S. Phase-specific optimization of multiple endotoxin-protein production with genetically engineered Bacillus thuringiensis[J]. Biotechnology and Applied Biochemistry,2000,31:71-76.
    Yasemin I(?)gen,Bülent I(?)gen,Gülay (?)zcengiz. Regulation of crystal protein biosynthesis by Bacillus thuringiensis: II. Effects of carbon and nitrogen sources[J]. Research in Microbiology,153,2002,605-609.
    Yezza A(a),Tyagi RD,Valèro JR,Surampalli R Y and Smith J. Scale-up of biopesticide production processes using wastewater sludge as a raw material[J]. J Ind Microbiol Biotechnol,2004,31(12):545-552.
    Yezza A(b),Tyagi R D,Valéro J R,Surampalli R Y. Production of Bacillus thuringiensis based biopesticides in batch and fed-batch cultures using wastewater sludge as a raw material[J]. J Chem Technol Biotechnol,2004,80:502-510.
    Yezza B(a),Tyagi R D,Jose′R. Vale′ro,Rao Y. Surampalli. Influence of pH control agents on entomotoxicity potency of Bacillus thuringiensis using different raw materials[J].World Journal of Microbiology & Biotechnology,2005,21:1549-1558.
    Yezza A(b),Tyagi R D,Jose′R. Vale′ro1 and Rao Y. Surampalli. Wastewater sludge pre-treatment for enhancing entomotoxicity produced by Bacillus thuringiensis var. kurstaki[J]. World Journal of Microbiology & Biotechnology ,2005, 21: 1165-1174.
    Yezza A,Tyagi R D,Valéro J R and Surampalli R Y. Bioconversion of industrial wastewater and wastewater sludge into Bacillus thuringiensis based biopesticides in pilot fermentor[J]. Bioresource Technology,2006,97(15):1850-1857.
    Yezza A,Tyagi R D ,Vale′ro J R,Surampalli R Y. Correlation between entomotoxicity potency and protease activity produced by Bacillus thuringiensis var. kurstaki grown in wastewater sludge[J]. Process Biochemistry ,2006,41:794-800.
    Zeynep Tokcaer,Emine Bayraktar,Mehmetog(?)lu U¨lku¨,Gu¨lay O¨zcengiz Gu¨rdal Alaeddinog(?)lu N. Response surface optimization of antidipteran delta-endotoxin production by Bacillus thuringiensis subsp. israelensis HD 500[J]. Process Biochemistry,2006,41:350-355.
    Zhan X B,Zhu L,Wu J R,Zhen Z Y,Wei J. Production of polysialic acid from fed-batch fermentation with pH control[J]. Biochem Eng J,2002,11:201-204.
    Zhou Jing-Wen,Chang Ya-Fei,Xu Zheng-Hong,Yu Zi-Niu,Chen Shou-Wen. Production of thuringiensin by fed-batch culture of Bacillus thuringiensis subsp. darmstadiensis 032 with an improved pH-control glucose feeding strategy[J]. Process Biochemistry,2007,42:52-56.
    Zouari N,Dhouib A,Ellouz R,Jaoua S. Nutritional requirements of a Bacillus thuringiensis subsp. strain and use of gruel hydrolysate for the formulation of a new medium for delta-endotoxin production[J]. Appl Biochem Biotechnol,1998,69:41-52.
    Zouari N(a),Jaoua S. The effect of complex carbon and nitrogen,salt,Tween-80 and acetate on delta-endotoxin production by a Bacillus thuringiensis subsp kurstaki[J]. J Ind Microbiol Biotechnol,1999,23:497-502.
    Zouari N(b),Jaoua S. Production and characterization of metalloproteases synthesized concomitantly with delta-endotoxin by Bacillus thuringiensis subsp. kurstaki straingrown on gruel-based media[J]. Enzyme Microb Technol,1999,25:364-371.
    Zouari N(a),Ben Sik Ali S,Jaoua S. Production of delta-endotoxin by several Bacillus thuringiensis strains exhibiting various entomocidal activities towards lepidoptera and diptera in gruel and fish-meal media[J]. Enzyme Microbiol Technol,2002,31:411-418.
    Zouari N(b),Achour O,Jaoua S. Production of delta-endotoxin by Bacillus thuringiensis subsp. kurstaki and overcome of catabolite repression,by using highly concentrated gruel and fish meal media in 2 and 20 dm3 fermenters[J]. J Chem Technol Biotechnol,2002,77:877-882.
    Zuo K,Wu W T. Semi-realtime optimization and control of a fed-batch fermentation system[J]. Computers and Chemical Engineering,2000,24:1105-1109.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700