用户名: 密码: 验证码:
Fe_3O_4微/纳米磁性材料的合成、自组装及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微/纳米磁性材料具有独特的结构和优异的性能,有望在电子、信息、自动控制、生物医药等学科领域得到广泛的应用。近几十年来,微/纳米结构磁性材料的制备与性能-直是材料领域的研究热点之一,设计开发具有独特形貌及特殊性能的微/纳米磁性材料是众多研究者的追求目标。
     本论文以二茂铁为铁源前驱物、醇/酮为反应介质体系,采用中温溶剂热合成技术,通过调变溶剂体系组成、添加剂种类,优化反应实验参数,成功实现了具有多种形貌特征磁铁矿(Fe3O4)微/纳米晶体及其碳基复合材料的可控制备。利用X-射线衍射(XRD)、57Fe穆斯堡尔谱、扫描电子显微镜(SEM)、场发射扫描电子显微镜(FESEM)、透射电子显微镜(TEM)、傅里叶变换红外光谱(FT-IR)、振动样品磁强计(VSM)等分析技术手段,对微/纳米Fe3O4及其碳基复合材料的物相、组成、形貌、结构进行了系统表征,探讨了不同形貌Fe3O4微米晶的生长机制,研究了合成的Fe3O4及其复合材料的磁性能、以及在电化学电容器和吸附分离领域的基础应用。主要研究结果如下:
     1.采用无模板溶剂热技术,以二茂铁为前驱物,成功制得了系列多级分枝结构的星状Fe3O4微米晶体。通过调变反应温度、溶剂种类、前驱物浓度以及反应时间等实验参数,优化了Fe3O4微米晶体生长的反应条件。在350-450℃反应温度范围内,分别选用异丙醇、丙酮、甲醇等为溶剂,利用不同溶剂分子对Fe3O4微晶各界面作用力的差异,调变[100]/[111]晶面的相对生长速率,实现了不同形貌、高度规则对称的六臂二级分枝结构、柱状分枝六角星、金字塔状分枝六足星等Fe3O4微米晶体的可控制备。以上Fe3O4微米晶的形状及磁晶呈现各向异性,与块体磁铁矿相比,具有较高的饱和磁化强度(Ms,90-128emu-g-1)和较大的矫顽力(Hc,223-238Oe)。电化学循环伏安测试表明,Fe3O4六足微米星材料的电化学性能优于通常化学共沉淀法制备的Fe3O4纳米粒子,具有更高的比电容量。
     2.利用表面活性剂与不同混合溶剂体系的协同作用,在异丙醇-水及异丙醇-水-表面活性剂溶剂体系中,通过不同构型表面活性剂与Fe304特殊晶面的相互作用强弱差异,调控晶面的相对生长速率,实现了不同形貌、不同尺寸的Fe3O4微/纳米晶体的可控制备,得到了Fe304微纳米八面体(1-2μm)、凹面八面体(2-3μm)、镂空八面体(2-5μm)、微米立方体(1-2μm)等单晶结构,以及由Fe3O4纳米颗粒组装的微米球(1-2μm)多晶磁性材料。研究表明,混合溶剂的组成、水量及表面活性剂的分子结构是影响Fe3O4晶体生长动力学的重要因素。这些微/纳米晶体材料的静磁性能与其尺寸大小和形貌特征密切相关。以上结果表明,在水和表面活性剂参与下,基于异丙醇溶剂的中温溶剂热合成路线可方便实现Fe3O4晶体的形貌控制合成。
     3.利用溶剂蒸发诱导组装技术,以晶体硅片为基板、高沸点有机溶剂为介质,通过控制溶剂蒸发过程,实现了Fe3O4六足星状微米晶体的一维线形有序自组装,扫描电镜下首次观察到各向异性的微米级晶体“手拉手”排列;以单晶硅片或涂覆碳膜的铜网为基板、无水乙醇为溶剂,通过缓慢挥发,实现了Fe3Q4微米球的规模化有序组装,可形成一维长程链状(SEM观察)及封闭的环状(TEM观察)自组装结构,为自组装技术应用于磁性微纳米器件的构筑提供了有价值的数据。
     4.采用溶剂热合成技术,分别以碳纳米管(CNTs)、氧化石墨烯(GEO)及活性炭(AC)为基体材料,在炭材料表面成功引进磁性纳米粒子,制得Fe304纳米颗粒修饰的碳纳米管(Fe3O4/CNTs)、氧化石墨烯负载高度分散的Fe304纳米颗粒(Fe3O4/GEO)、以及活性炭负载Fe3O4微/纳米球Fe3O4三种复合磁性碳材料。研究了合成过程中溶剂的种类、铁前驱物组成、原料配比、反应温度、反应时间等工艺参数对不同磁性组装体形成的影响,探讨了复合材料的形成机制。磁性能及电化学性能测试表明,随着炭基体性质及其表面负载Fe3O4粒子的尺寸大小、形貌特征与负载量的不同,所制备的三种磁性复合碳材料的饱和磁化强度(Ms)和矫顽力(Hc)显著不同,它们作为超级电容器的正、负极材料表现出不同的氧化、还原规律。此外,磁性活性炭对室温吸附有机污染物罗丹明B显示出较高的吸附脱除效率和良好的再生循环使用性能。
     5.以单晶硅为硅源和基板,利用醇-水混合溶剂热体系、二茂铁为铁源,制备得到了含硅的FeSiO3一维纳米材料,长度可达数十微米,平均直径介于20-30nm,具有较窄的尺寸分布。研究了合成反应温度、溶剂组成、反应物浓度等因素对产物形貌的影响,探讨了该一维纳米线的生长机制。FeSiO3一维纳米材料的可控合成为其在固态化学和纳米科学与技术领域的研究及应用创造新机遇。
Owing to the unique structure and excellent properties, micron/nano-magnetic materials are expected to be widely used in electronics, information, automatic control, biomedical and other fields. In the past decades, the preparation of micron/nano-magnetic materials with desired structures and properties has received intensive research interests in the field of materials. More and more researchers are pursuing to design and to develop nano/micron-magnetic materials with controlled structure, unique morphology and outstanding property.
     The work in the present thesis mainly focuses on the fabrication of magnetite (Fe3O4) micron/nano-crystals with various novel morphologies via solvothermal synthesis technique. During this process, ferrocene was used as iron source and alcohols/acetone as solvent. By means of manipulating the solvent composition, types of additives, as well as optimization of the experimental parameters, controllable preparation of magnetites and magnetic composites was achieved. The as-prepared products were characterized by using X-ray diffraction, room temperature57Fe Mossbauer spectrum and electron microscopy (SEM, FESEM, TEM), vibrating sample magnetometer (VSM) and FT-IR techniques. Based on the detailed study of the Fe3O4crystals growth process, the possible growth mechanism of Fe3O4micron crystals with different shapes were proposed. Furthermore, the magnetic properties of Fe3O4crystals and their carbon-based composites, the applications in supercapacitor and adsorption/separation have been investigated. The main results are summarized as follows:
     (1) We demonstrated that hierarchical branched hexapod magnetite crystals with different morphologies could be prepared through template-free solvothermal route. The reaction condition for Fe3O4hexapod crystal growth is optimized by tuning experimental parameters, including solvent composition, reaction temperature, concentration of ferrocene, as well as reaction duration. In the temperature range of350-450℃, the microstructures of these hexapod Fe3O4micron crystals changed dramatically with the physicochemical properties of the solvents employed such as isopropanol, acetone and methanol. The detailed characterizations reveal that the controllable preparation of highly ordered symmetrical six-arm branched structure, columnar branched hexagonal star, pyramidal branching hexapod Fe3O4micron crystals can be attributed to the changes of fcc Fe3O4nuclei interfacial force derived from different solvent molecules, leading to the modulation of facet [100]/[111] relative growth rate and yielding different morphologies. All these Fe3O4micron crystals, compared to the bulk magnetite, exhibit ferromagnetic behaviors with relatively high saturation magnetization value (Ms,90-128emu·g-1) and coercivity (Hc,223-238Oe) due to their shape anisotropy. The cyclic voltammetry tests show that the electrochemical performance of Fe3O4micron hexapods is superior to that of Fe3O4nanoparticles prepared by general chemical coprecipitation, especially holding a higher specific capacitance.
     (2). By taking advantage of the synergistic effect between surfactants and solvent systems, including isopropanol-water and isopropanol-water-surfactant systems, well-defined Fe3O4micron crystals with tailorable size and shape have been successfully fabricated after6h aging at350-400℃by adjusting the experimental conditions. These Fe3O4single crystals are consisted of micrometer scaled octahedrons (1-2μm across), concave octahedrons (2-3μm), octahedral frameworks (2-5μm) and cubes (1-2μm), in addition, polycrystalline microspheres (1-2μm) assembled by Fe3O4nanoparticles were also obtained. From the point of view of crystallography, the diversity of Fe3O4micron crystals should be originated from the varying interaction strength between the surface active agent with different configurations and Fe3O4special facet, the content of water combined with the structure of surfactant is found to play an important role in controlling the kinetic growth process. Moreover, it has also been found that these micrometer sized magnetites exhibit different ferromagnetic properties depending on their sizes and shapes. The results clearly demonstrate that isopropanol-based solvothermal synthesis of magnetite in the presence of water and surfactant is a versatile approach to Fe3O4crystal morphogenesis.
     (3). Based on the controllable preparation of magnetite crystals, self-organization of magnetite crystals has been achieved by evaporation-mediated assembly strategy. Quasi one-dimensional "hand-in-hand" self-assembly of the well-defined single crystallined Fe3O4hexapods has been observed for the first time. Besides, the as-made Fe3O4microspheres were assembled into long "necklace" with ethanol as solvent under slow evaporation process. The self-assembled structures of both long-range one-dimensional chain (SEM observation) and a closed ring (TEM observation) can be formed on silicon substrate or TEM copper mesh coated with carbon film. These interesting results could help to lay the foundation for further device applications.
     (4). Using one-pot solvothermal synthesis approach, three carbon materials, including carbon nanotubes (CNTs), graphene oxides (GEO) and activated carbon (AC) were decorated with magnetite nanoparticles, and their potential applications in various technological fields were tested. The synthesis parameters, such as the types of solvents and iron precursor, the ratio of raw materials, temperature and reaction time, etc. have been investigated systematically, the formation mechanisms of the composites are also discussed. It has been found that the nature of the carbon matrix and the amount of magnetite nanoparticles deposited on them could affect their magnetic property and electrochemical performance severely, for example the saturation magnetization value (Ms), the coercivity (Hc), as well as the oxidation-reduction function when being used as supercapacitor positive or negative materials. In addition, magnetic activated carbon has been verified to be an excellent adsorbent which exhibits a higher adsorption removal efficiency and good recycling performance for the removal of Rhodamine B in aqueous liquid at room temperature.
     (5). Furthermore, iron silicate (FeSiO3) nanowires have been synthesized on silicon substrate via a one-pot solvothermal route without using additional surfactant or template, in which ferrocene serves as iron source and silicon substrate as silicon source, alcohol-water mixture as solvent. The iron silicate nanowires have a width of20-30nm and a length of several ten micrometers. The influences of reaction temperature, solvent composition and concentration of precursor on the morphology of the products have been investigated in detail. A possible growth mechanism of iron silicate nanowires is proposed. We believe that the successful synthesis of iron silicate nanowires with simple method may provide new opportunity for the research and application of this novel1D material in the nanoscience and nanotechnology.
引文
[1]Lu A H, Salabas E L, Schuth F. Magnetic nanoparticles:synthesis, protection, functionalization, and application [J]. Angew. Chem. Int. Ed.,2007,46(8):1222-1244.
    [2]Jun Y W, Seo J W, Cheon J. Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences [J]. Acc. Chem. Res.,2008,41(2):179-189.
    [3]彭卿,李亚栋.功能纳米材料的化学控制合成、组装、结构与性能[J].中国科学B辑:化学,2009,39(10):1028-1052.
    [4]赵朝辉,姚素薇,张卫国.纳米Fe304磁性颗粒的制备及应用现状[J].化工进展,2005,24(8):865-868.
    [5]陶可,窦红静,孙康.铁的氧化物纳米颗粒及其组装体的化学制备[J].化学进展,2006,18(11):460-1467.
    [6]于文广,张同来,张建国,等.纳米四氧化三铁的制备和形貌[J].化学进展,2007,19(6):884-892.
    [7]冯琳,宋延林,万梅香,等.磁性氧化铁纳米粒子的研究进展[J].科学通报,2001,46(16):1321-1325.
    [8]Laurent S, Forge D, Port M, et al. Magnetic iron oxide nanoparticles:synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications [J]. Chem. Rev.,2008, 108(6):2064-2110.
    [9]Cornell R M, Schwertmann U. The Iron Oxides:Structure, Properties, Reactions, Occurrence and Uses [M]. Vch:Germany,2003.
    [10]Zhang L, He R, Gu H C. Synthesis and kinetic shape and size evolution of magnetite nanoparticles [J]. Mater Res Bull,2006,41(2):260-267.
    [11]胡大为,王燕民.合成四氧化三铁纳米粒子形貌的调控机理和方法[J].硅酸盐学报,2008,36(10):1488-1493.
    [12]Li Z, Sun Q, Gao M Y. Preparation of water-soluble magnetite nanocrystals from hydrated ferric salts in 2-pyrrolidone:mechanism leading to Fe3O4 [J]. Angew. Chem., Int. Ed.,2005,44(1):123-126.
    [13]Xiong Y, Ye J, Gu X Y, et al. Synthesis and assembly of magnetite nanocubes into flux-closure rings [J]. Journal of Physical Chemistry C,2007,111(19):6998-7003.
    [14]奥汉德利R C著,周永洽译.现代磁性材料原理和应用[M].北京:化学工业出版社,2002.
    [15]Liu X M, Fu S Y, Xiao H M. Fabrication of octahedral magnetite microcrystals [J]. Mater. Lett.,2006, 60(24):2979-2983.
    [16]Wang J, Chen Q W, Zeng C, et al. Magnetic-field-induced growth of single-crystalline Fe3O4 nanowires [J]. Adv. Mater.,2004,16(2):137-140.
    [17]Kim D, Lee N, Park M, et al. Synthesis of uniform ferrimagnetic magnetite nanocubes [J]. J. Am. Chem. Soc.,2009,131(2):454-455.
    [18]Burda C, Chen X, Narayanan R, et al. Chemistry' and properties of nanocrystals of different shapes [J]. Chem. Rev.,2005,105(4):1025-1102.
    [19]Peng X G. Mechanisms for the shape-control and shape-evolution of colloidal semiconductor nanocrystals [J]. Adv. Mater.,2003,15(5):459-463.
    [20]Wang Z L. Structural analysis of self-assembling nanocrystal superlattices [J]. Adv. Mater.1998, 10(1):13-30.
    [21]焦华,杨合情,宋玉哲,等.Fe3O4八面体微晶的水热法制备与表征[J].化学学报,2007,65(20):2336-2342.
    [22]常玉芬,沈国良,宁桂玲,等.异丙醇体系中多形态氧化铝纳米粒子的制备研究[J].材料科学与工程学报,2004,22(2):172-174.
    [23]Wang C Y, Zhu G M, Chen Z Y, et al. The preparation of magnetite Fe3O4 and its morphology control by a novel arc-electrodeposition method [J]. Mater. Res. Bull.,2002,37(15):2525-2529.
    [24]Kumar R V, Koltypin Y, Xu X N, et al. Fabrication of magnetite nanorods by ultrasound irradiation [J]. J. Appl. Phys.,2001,89(11):6324-6328.
    [25]Muraliganth T, Murugan A V, Manthiram A. Facile synthesis of carbon-decorated single-crystalline Fe3O4 nanowires and their application as high performance anode in lithium ion batteries [J]. Chem. Commun.,2009,47:7360-7362.
    [26]赵涛,孙蓉,冷静,等.液相法制备(亚)铁磁性纳米材料[J].化学进展,2007,19(11):1704-1709.
    [27]Wan J, Tang G, Qian Y. Room temperature synthesis of single-crystal Fe3O4 nanoparticles with superparamagnetic property [J]. Appl. Phys. A,2007,86(2):261-264.
    [28]任欢鱼,刘勇健,牛亚丰.醇-水共热法制备Fe3O4磁流体[J].化工进展,2003,22(1):49-52.
    [29]温燕梅,卢泽勤.聚乙醇-Fe3O4粒子的制备[J].化学研究与应用,2002,14(5):563-565.
    [30]周菊英,徐柳苏,盘荣俊.一种制备纳米Fe304的新方法及其磁性能研究[J].电子元件与材料,2007,26(7):60-62.
    [31]Yu W G, Zhang T L, Zhang J G, et al. The synthesis of octahedral nanoparticles of magnetite [J]. Mater. Lett.,2006,60(24):2998-3001.
    [32]Chen S Y, Feng J, Guo X F, et al. One-step wet chemistry for preparation of magnetite nanorods [J]. Mater. Lett.,2005,59(8-9):985-988.
    [33]Fievet F, Lagier J P, Blin B, et al. Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles [J]. Solid State Ionics,1989, 32:198-205.
    [34]赵振声,吴明忠,何华辉.多元醇还原法制备高纯度金属磁粉[J].磁性材料及器件,1998,29(3):1-4.
    [35]Xia Y, Yang P, Sun Y, et al. One-dimensional nanostructures:synthesis, characterization and applications [J]. Adv. Mater.,2003,15(5):353-389.
    [36]Mayers B, Xia Y. Formation of tellurium nanotubes through concentration depletion at the surfaces of seeds [J]. Adv. Mater.,2002,14(4):279-282.
    [37]Xiong Y, Xia Y. Shape-controlled synthesis of metal nanostructures:the case of palladium [J]. Adv. Mater.,2007, 19(20):3385-3391.
    [38]刘飚,官建国,张清杰.多元醇法制备纳米Fe3O4及其静磁性能的研究[J].功能材料,2006,37(12):2001-2002.
    [39]Zhong L S, Hu J S, Liang H P, et al. Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment [J]. Adv. Mater.,2006,18(18):2426-2431.
    [40]刘奕,陈云,曾宇平,等.Fe304纳米材料的低温溶剂控制合成及其磁性质[J].中国科学,2009,39(2):121-128.
    [41]冯守华.水热与溶剂热合成化学[J].吉林师范大学学报,2008,29(3):7-11.
    [42]施尔畏,夏长泰,王步国,等.水热法的应用与发展[J].无机材料学报,1996,1](2):193-206.
    [43]Wang X, Zhuang J, Peng Q, et al. A general strategy for nanocrystal synthesis [J]. Nature,2005, 437(7055):121-124.
    [44]王定胜,彭卿,李亚栋.单分散纳米晶的合成、组装及其介孔材料的制备[J].中国科学G辑.2008,38(11):1434-1454.
    [45]Liang X, Wang X, Zhuang J, et al. Synthesis of nearly monodisperse iron oxide and oxyhydroxide nanocrystals [J]. Adv. Funct. Mater.,2006,16(14):1805-1813.
    [46]Lian S Y, Kang Z H, Wang E B, et al. Convenient synthesis of single crystalline magnetic Fe3O4 nanorods [J]. Solid State Commun,2003,127(9-10):605-608.
    [47]Kumar R V, Koltypin Y, Xu X N, et al. Fabrication of magnetite nanorods by ultrasound irradiation [J]. J. Appl. Phys.,2001,89(11):6324-6328.
    [48]Lian S Y, Wang E B, Gao L, et al. Growth of single-crystal magnetite nanowires from Fe3O4 nanoparticles in a surfactant-free hydrothermal process [J]. Solid State Commun,2004, 132(6):375-378.
    [49]Peng Z A, Peng X G. Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes:nucleation and growth [J]. J. Am. Chem. Soc.,2002,124(13):3343-3353.
    [50]Wan J, Chen X, Wang Z, et al. A soft-template-assisted hydrothermal approach to single-crystal Fe3O4 nanorods [J]. J. Crys. Growth.,2005,276(3-4):571-576.
    [51]Tang Y, Chen Q W. A simple and practical method for the preparation of magnetite nanowires [J]. Chem. Lett.,2007,36(7):840-841.
    [52]Qi H P, Ye J, Tao N, et al. Synthesis of octahedral magnetite microcrystals with high crystallinity and low coercive field [J]. J. Crys. Growth.,2009,311(2):394-398.
    [53]Jia C J, Sun L D, Luo F, et al. Large-scale synthesis of single-crystalline iron oxide magnetic nanorings [J]. J. Am. Chem. Soc.,2008,130(50):16968-16977.
    [54]Geng B Y, Ma J Z, You J H. Controllable synthesis of single-crystalline Fe3O4 polyhedra possessing the active basal facets [J]. Crystal Growth Des.,2008,8(5):1443-1447.
    [55]Gu L, Shen H X. Facile one-pot synthesis of multi-armed Fe3O4 nanocrystals [J]. J. Alloys Comp., 2009,472(1-2):50-54.
    [56]钱逸泰,谢毅,唐凯斌.非氧化物纳米材料的溶剂热合成[J].中国科学院院刊,2001,(1):26-28.
    [57]Si S F, Li C H, Wang X, et al. Magnetic monodisperse Fe3O4 nanoparticles [J]. Cryst. Growth Des., 2005,5(2):391-393.
    [58]Pinna N, Grancharov S, Beato P, et al. Magnetite nanocrystals:nonaqueous synthesis, characterization, and solubility [J]. Chem. Mater.,2005,17(11):3044-3049.
    [59]Zou G F, Xiong K, Jiang C, et al. Fe3O4 Nanocrystals with novel fractal [J]. J. Phys. Chem. B,2005, 109(39):8356-18360.
    [60]Zou G F, Xiong K, Jiang C, et al. Magnetic Fe3O4 nanodisc synthesis on a large scale via a surfactant-assisted process [J]. Nanotechnology,2005,16(9):1584-1588.
    [61]Zhu Y F, Zhao W R, Chen H R, et al. A simple one-pot self-assembly route to nanoporous and monodispersed Fe3O4 particles with oriented attachment structure and magnetic property [J]. J. Phys. Chem. C,2007,111 (14):5281-5285.
    [62]Zhao L J, Zhang H J, Xing Y, et al. Morphology-controlled synthesis of magnetites with nanoporous structures and excellent magnetic properties [J]. Chem. Mater.,2008,20(1):198-204.
    [63]Cho S B, Noh J S, Park S J, et al. Morphological control of Fe3O4 particles via glycothermal process [J]. J. Mater. Sci.,2007,42(13):4877-4886.
    [64]Zhang W D, Xiao H M, Zhu L P, et al. Template-free solvothermal synthesis and magnetic properties of novel single-crystalline magnetite nanoplates [J]. J. Alloys Comp.,2009,477(1-2):736-738.
    [65]Zhu L P, Xiao H M, Zhang W D, et al. One-pot template-free synthesis of monodisperse and single-crystal magnetite hollow spheres by a simple solvothermal route [J]. Crys. Growth Des.,2008, 8(3):957-963.
    [66]Cao S W, Zhu Y J, Ma M Y, et al. Hierarchically nanostructured magnetic hollow spheres of Fe3O4 and γ-Fe3O4:preparation and potential application in drug delivery [J]. J. Phys. Chem. C,2008, 112(6):1851-1856.
    [67]Wu M Z, Xiong Y, Jia Y S, et al. Magnetic field-assisted hydrothermal growth of chain-like nanostructure of magnetite [J]. Chem. Phys. Lett.,2005,401(4-6):374-379.
    [68]Jun Y W, Choi J S, Cheon J. Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes [J]. Angew. Chem. Int. Ed.,2006,45(21):3414-3439.
    [69]Peng X G, Manna L, Yang W D, et al. Shape control of CdSe nanocrystals. Nature,2000, 404(6773):59-61.
    [70]Manna L, Scher E C, Alivisatos A P. Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals [J].J. Am. Chem. Soc.,2000,122(51):12700-12706.
    [71]Rockenberger J, Scher E C, Alivisatos A P. A new nonhydrolytic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides [J]. J. Am. Chem. Soc.,1999,121(49): 11595-11596.
    [72]Hyeon T, Lee S S, Park J, et al. Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process [J]. J. Am. Chem. Soc.,2001,123(51):12798-12801.
    [73]Cheon J, Kang N J, Lee S M, et al. Shape evolution of single-crystalline iron oxide nanocrystals [J]. J. Am. Chem. Soc.,2004,126(7):1950-1951.
    [74]Park J, An K J, Hwang Y S, et al. Ultra-large-scale syntheses of monodisperse nanocrystals [J]. Nat. Mater.,2004,3(12):891-895.
    [75]Jana N R, Chen Y F, Peng X G. Size- and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach [J]. Chem. Mater.,2004,16(20):3931-3935.
    [76]Park J, Lee E, Hwang N M, et al. One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles [J]. Angew. Chem. Int. Ed.,2005,44(19):2872-2877.
    [77]Sun S H, Zeng H. Size-controlled synthesis of magnetite nanoparticles [J]. J. Am. Chem. Soc.,2002. 124(28):8204-8205.
    [78]Sun S H, Zeng H, Robinson D B, et al. Monodisperse MFe2O4 (M= Fe, Co, Mn) nanoparticles [J]. J. Am. Chem. Soc.,2004,126(1):273-279.
    [79]Li Z, Chen H, Bao H B, et al. One-pot reaction to synthesize water-soluble magnetite nanocrystals [J]. Chem. Mater.,2004,16(8):1391-1393.
    [80]Lu X Y, Niu M, Qiao R R, et al. Superdispersible PVP-coated Fe3O4 nanocrystals prepared by a "one-pot" reaction [J]. J. Phys. Chem. B,2008,112:14390-14394.
    [81]Li Z, Wei L, Gao M Y, et al. One-pot reaction to synthesize biocompatible magnetite nanoparticles [J]. Adv. Mater.,2005,17(8):1001-1005.
    [82]Li Z, Sun Q, Gao M Y. Preparation of water-soluble magnetite nanocrystals from hydrated ferric salts in 2-pyrrolidone:Mechanism leading to Fe3O4 [J]. Angew. Chem. Int. Ed.,2005,44(1):123-126.
    [83]Yin Y, Alivisatos A P. Colloidal nanocrystal synthesis and the organic-inorganic interface [J]. Nature, 2005,437(7059):664-670.
    [84]Zhang L, Dou Y H, Gu H C. Sterically induced shape control of magnetite nanoparticles [J]. J. Cryst. Grow.,2006,296(2):221-226.
    [85]Xia Y, Rogers J A, Paul K E, et al. Unconventional methods for fabricating and patterning nanostructures [J]. Chem. Rev.,1999,99(7):1823-1848.
    [86]刘欢,翟锦,江雷.纳米材料的自组装研究进展[J].无机化学学报,2006,22(4):585-597.
    [87]Majetich S A, Sachan M. Magnetostatic interactions in magnetic nanoparticle assemblies:energy, time and length scales [J]. J. Phys. D:Appl. Phys.,2006,39(21):R407-R422.
    [88]Xia Y N, Yin Y D, Lu Y, et al. Template-assisted self-assembly of spherical colloids into complex and controllable structures [J]. Adv. Funct. Mater.,2003,13(12):907-918.
    [89]Murray C B, Kagan C R, Bawendi M G. Self-organization of CdSe nanocrystallites into 3-dimensional quantum-dot superlattices [J]. Science,1995,270(5240):1335-1338.
    [90]Lin X M, Samia A C S. Synthesis, assembly and physical properties of magnetic nanoparticles [J]. J. Mag. Mag. Mater.,2006,305(1):100-109.
    [91]Fried T, Shemer G, Markovich G. Ordered two-dimensional arrays of ferrite nanoparticles [J]. Adv. Mater.,2001,13(15):1158-1161.
    [92]Shevchenko E V, Talapin D V, Murray C B, et al. Structural characterization of self-assembled multifunctional binary nanoparticle superlattices [J]. J. Am. Chem. Soc.,2006,128(11):3620-3637.
    [93]Song Q, Ding Y, Wang Z L, et al. Formation of orientation-ordered superlattices of magnetite magnetic nanocrystals from shape-segregated self-assemblies [J]. J. Phys. Chem. B,2006, 110(50):25547-25550.
    [94]Aizenberg J, Black A J, Whitesides G M. Controlling local disorder in self-assembled monolayers by patterning the topography of their metallic supports [J]. Nature,1998,394(6696):868-871.
    [95]Choi I S, Weck M, Xu B, et al. Mesoscopic, templated self-assembly at the fluid-fluid interface [J]. Langmuir,2000,16(7):2997-2999.
    [96]Choi I S, Bowden N, Whitesides G M. Macroscopic, hierarchical, two-dimensional self-assembly [J]. Angew. Chem. Int. Ed.,1999,38(20):3078-3081.
    [97]Bowden N, Terfort A, Carbeck J, et al. Self-assembly of mesoscale objects into ordered two-dimensional arrays [J]. Science,1997,276(5310):233-235.
    [98]Bowden N, Oliver S R J, Whitesides G M. Mesoscale self-assembly:capillary bonds and negative menisci [J]. J. Phys. Chem. B,2000,104(12):2714-2724.
    [99]Shchukin D G, Radtchenko I L, Sukhorukov G B. Micron-scale hollow polyelectrolyte capsules with nanosized magnetic Fe3O4 inside [J]. Mater. Lett.,2003,57(11):1743-1747.
    [100]Shchukin D G, Sukhorukov G B. Nanoparticle synthesis in engineered organic nanoscale reactors [J]. Adv. Mater.,2004,16(8):671-682.
    [101]Son S J, Reichel J, He B, et al. Magnetic nanotubes for magnetic-field-assisted bioseparation, biointeraction, and drug delivery [J]. J. Am. Chem. Soc.,2005,127(20):7316-7317.
    [102]Correa-Duarte M A, Grzelczak M, Salgueirilo-Maceira V, et al. Alignment of carbon nanotubes under low magnetic fields through attachment of magnetic nanoparticles [J]. J. Phys. Chem. B,2005, 109(41):19060-19063.
    [103]闫梨,黄英,李玉青.金属及其氧化物磁性纳米线阵列的制备与操控[J].稀有金属材料与工程,2008,37(7):1139-1143.
    [104]Bachmann J, Jing J, Knez M, et al. Ordered Iron Oxide Nanotube Arrays of Controlled Geometry and Tunable Magnetism by Atomic Layer Deposition [J]. J. Am. Chem. Soc.,2007, 129(31):9554-9555.
    [105]于翠艳,于彦龙,孙宏宇,等.单晶Ni纳米线阵列的制备与磁性能[J].高等学校化学学报,2007,28(12):2239-2241.
    [106]唐海涛,陈国华.磁场诱导有序排列和自组装的研究进展[J].材料导报,2006,20(2):102-105.
    [107]Sahoo Y, Cheon M, Wang S, et al. Field-directed self-assembly of magnetic nanoparticles [J]. J. Phys. Chem. B,2004,108(11):3380-3383.
    [108]Liu M, Lagdani J, Imrane H, et al. Self-assembled magnetic nanowire arrays [J]. Appl. Phys. Lett., 2007,90(10):103105.
    [109]Park J I, Jun Y W, Choi J S, et al. Highly crystalline anisotropic superstructures via magnetic field induced nanoparticle assembly [J]. Chem. Commun.,2007,47:5001-5003.
    [110]Hu M J, Lu Y, Zhang S, et al. High yield synthesis of bracelet-like hydrophilic Ni-Co magnetic alloy flux-closure nanorings [J]. J. Am. Chem. Soc.,2008,130(35):11606-11607.
    [111]Wang H, Chen Q W, Sun L X, et al. Magnetic-field-induced formation of one-dimensional magnetite nanochains [J]. Langmuir,2009,25(12),7135-7139.
    [112]Qi H P, Chen Q W, Wang M S, et al. Study of self-assembly of octahedral magnetite under an external magnetic field [J]. J. Phys. Chem. C,2009,113(40):17301-17305.
    [113]杨松.磁性中空/多孔纳米复合微球的制备、功能化及机理研究[D].合肥:中国科学技术大学.2009.
    [114]刘冰,王德平,黄文旵,等.核壳结构磁性复合纳米粒子的制备及研究进展[J].材料导报,2007,21(F05):185-188.
    [115]Hong X, Li J, Wang M J, et al. Fabrication of magnetic luminescent nanocomposites by a layer-by-layer self-assembly approach [J] Chem. Mater.,2004,16(21):4022-4027.
    [116]Caruntu D, Cushing B L, Caruntu G, et al. Attachment of gold nanograins onto colloidal magnetite nanocrystals [J]. Chem. Mater.,2005,17(13):3398-3402.
    [117]文德,刘妙丽.自组装制备磁性复合微球聚集体[J].西南民族大学学报·自然科学版,2009,35(2):327-331.
    [118]Caruso F, Spasova M, Susha A, et al. Magnetic nanocomposite particles and hollow spheres constructed by a sequential layering approach [J]. Chem. Mater.,2001,13(1):109-116.
    [119]Huang Z B, Tang F Q. Preparation, structure, and magnetic properties of mesoporous magnetite hollow spheres [J]. J. Colloid Interface Sci.,2005,281:432-436.
    [120]Li X H, Zhang D H, Chen J S. Synthesis of amphiphilic superparamagnetic ferrite/block copolymer hollow submicrospheres [J]. J. Am. Chem. Soc.,2006,128(26):8382-8383.
    [121]Jin J, Iyoda T, Cao C S, et al. Self-assembly of uniform spherical aggregates of magnetic nanoparticles through pi-pi interactions [J]. Angew. Chem. Int. Ed.,2001,40(11):2135-2138.
    [122]Wan M X, Wei Z X, Zhang Z M, et al. Studies on nanostructures of conducting polymers via self-assembly method [J]. Synth. Met.,2003,135(1-3):175-176.
    [123]Kroto H W, Heath J R, O'Brien S C, et al. C60-Buekminsterfullerene [J]. Nature,1985, 318(6042):162-163.
    [124]Iijima S. Helical microtubes of graphitic carbon [J]. Nature,1991,354(6348):56-58.
    [125]Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films [J]. Science,2004,306(5696):666-669.
    [126]Sun Z Y, Liu Z M, Wang Y, et al. Fabrication and characterization of magnetic carbon nanotube composites [J]. J. Mater. Chem.,2005,15(42):4497-4501.
    [127]蒋峰景,浦鸿汀,杨正龙,等.Fe304包覆碳纳米管软磁性纳米复合微粒的制备及性能[J].新型炭材料,2007,24(4):272-274.
    [128]Wan J Q, Cai W, Feng J T, et al. In situ decoration of carbon nanotubes with nearly monodisperse magnetite nanoparticles in liquid polyols [J]. J. Mater. Chem.,2007,17(12):1188-1192.
    [129]Liu Q F, Chen Z G, Liu B L, et al. Synthesis of different magnetic carbon nanostructures by the pyrolysis of ferrocene at different sublimation temperatures [J]. Carbon,2008,46(14):1892-1902.
    [130]Chen W, Pan X L, Bao X H. Tuning of redox properties of iron and iron oxides via encapsulation within carbon nanotubes[J]. J. Am. Chem. Soc.,2007,129(23):7421-7426.
    [131]Chen W, Fan Z L, Pan X L, et al. Effect of the confinement in carbon nanotubes on the activity of Fischer-Tropsch iron catalyst [J]. J. Am. Chem. Soc.,2008,130(29):9414-9419.
    [132]Li J, Tang S B, Lu L, et al. Preparation of nanocomposites of metals, metal oxides, and carbon nanotubes via self-assembly [J]. J. Am. Chem. Soc.,2007,129(30):9401-9409.
    [133]李冬杰.碳基复合材料制备及性能研究[D].天津:天津大学,2009.
    [134]Wu Z S, Ren W C, Wen L, et al. Graphene anchored with CO3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance [J]. ACS Nano,2010, 4(6):3187-3194.
    [135]Kim H Y, Seo D H, Kim S W, et al. Highly reversible Co3O4/graphene hybrid anode for lithium rechargeable batteries [J]. Carbon,2011,49(1):326-332.
    [136]Yang X Y, Zhang X Y, Ma Y F, et al. Superparamagnetic graphene oxide-Fe3O4 nanoparticles hybrid for controlled targeted drug carriers [J]. J. Mater. Chem.,2009,19(18):2710-2714.
    [137]Chandra V, Park J, Chun Y, et al. Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal [J]. ACS Nano,2010,4(7):3979-3986.
    [138]徐峰,彭长兰,吕宏霞.多糖在金属纳米材料合成中的应用[J].化学进展,2008,20(2-3):373-279.
    [139]Sun X M, Li Y D. Ag@C Core/shell structured nanoparticles:controlled synthesis, characterization, and assembly [J]. Langmuir,2005,21(13):6019-6024.
    [140]Sun X M, Li Y D. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles [J]. Angew. Chem., Int. Ed.,2004,43(5):597-601.
    [141]邱介山,孙玉峰,周颖,等.淀粉基碳包覆铁纳米胶囊的合成及其磁学性能[J].新型炭材料,2006,21(3):202-205.
    [142]Zhu Y, Zhang L, Schappacher F M, et al. Synthesis of magnetically separable porous carbon microspheres and their adsorption properties of phenol and nitrobenzene from aqueous solution [J]. J. Phys. Chem. C,2008,112(23):8623-8628.
    [143]朱路平.微纳米结构磁性材料的设计、制备及磁性能研究[D].北京:中国科学院理化技术研究所,2008.
    [144]齐海萍.磁场下Fe3O4粒子的合成及其有序组装[D].合肥:中国科学技术大学,2009.
    [145]Jun Y W, Choi J S, Cheon J W. Heterostructured magnetic nanoparticles:their versatility and high performance capabilities [J]. Chem. Commun.,2007(12):1203-1214.
    [146]杨松.磁性中空/多孔纳米复合微球的制备、功能化及机理研究[D].合肥:中国科学技术大学,2009.
    [147]颜峰.四氧化三铁磁性复合粒子的制备及应用研究[D].长春:吉林大学,2008.
    [148]Wang S Q, Zhang J Y, Chen C H. Fe3O4 submicron spheroids as anode materials for lithium-ion batteries with stable and high electrochemical performance [J]. J. Power Sources,2010, 195(16):5379-5381.
    [149]Zhang Z J, Chen X Y, Wang B N, et al. Hydrothermal synthesis and self-assembly of magnetite (Fe3O4) nanoparticles with the magnetic and electrochemical properties [J]. J. Crystal Growth,2008, 310(24):5453-5457.
    [150]Liu H, Wang G X, Wang J Z, et al. Magnetite/carbon core-shell nanorods as anode materials for lithium-ion batteries [J]. Electrochem. Commun.,2008,10(12):1879-1882.
    [151]Zhang M, Lei D, Yin X, et al. Magnetite/graphene composites:microwave irradiation synthesis and enhanced cycling and rate performances for lithium ion batteries [J]. J. Mater. Chem.,2010, 20(26):5538-5543.
    [152]Narayanan T N. ReenaMary A P, Shaijumon M M, et al. On the synthesis and magnetic properties of multiwall carbon nanotube-superparamagnetic iron oxide nanoparticle nanocomposites [J]. Nanotechnology.2009,20(5):055607-055613.
    [153]Korneva G, Ye H, Gogotsi Y, et al. Carbon nanotubes loaded with magnetic particles [J]. Nano Lett., 2005,5(5):879-884.
    [154]Lee S M, Cho S N, Cheon J. Anisotropic shape control of colloidal inorganic nanocrystals [J]. Adv. Mater.,2003,15(5):441-444.
    [155]Lee S M, Jun Y W, Cho S N, et al. Single-crystalline star-shaped nanocrystals and their evolution: programming the geometry of nano-building blocks [J]. J. Am. Chem. Soc.,2002, 124(38):11244-11245.
    [156]Zhang G, Lu X, Wang W, et al. Facile synthesis of a hierarchical PbTe flower-like nanostructure and its shape evolution process guided by a kinetically controlled regime [J]. Chem. Mater.,2007, 19(22):5207-5209.
    [157]Zhang T, Dong W, Keeter-Brewer M, et al. Site-specific nucleation and growth kinetics in hierarchical nanosyntheses of branched ZnO crystallites [J]. J. Am. Chem. Soc.,2006, 128(33):10960-16968.
    [158]Chang Y, Zeng H C. Manipulative synthesis of multipod frameworks for self-organization and self-amplification of Cu:O microcrystals [J]. Cryst. Growth. Des.,2004,4(2):273-278.
    [159]Xu J, Xue D F. Five branching growth patterns in the cubic crystal system: a direct observation of cuprous oxide microcrystals [J]. Acta Mater.,2007,55(7):2397-2406.
    [160]Liu X, Huang R, Zhu J. Functional faceted silver nano-hexapods:synthesis, structure characterizations, and optical properties [J]. Chem. Mater.,2008,20(1):192-197.
    [161]Haxhimali T, Karma A, Gonzales F, et al. Orientation selection in dendritic evolution [J]. Nat. Mater., 2006,5(8):660-664.
    [162]Wang Z Y, Zhao Z B, Qiu J S. A general strategy for synthesis of silver dendrites by galvanic displacement under hydrothermal conditions [J]. J. Phy. Chem. Solids.,2008,69(5-6):1296-1300.
    [163]Teng X, Yang H. Synthesis of platinum multipods:an induced anisotropic growth [J]. Nano Lett., 2005,5(5):885-891.
    [164]Cho K S, Talapin D V, Gaschler W, et al. Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles [J]. J. Am. Chem. Soc.,2005,127(19):7140-7147.
    [165]Zhang Q, Liu S J, Yu S H. Recent advances in oriented attachment growth and synthesis of functional materials:concept, evidence, mechanism, and future [J]. J. Mater. Chem.,2009, 19(2):191-207.
    [166]Xuan S, Hao L, Jiang W, et al. A FeCO3 precursor-based route to microsized peanutlike Fe3O4 [J]. Cryst. Growth Des.,2007,7(2):430-434.
    [167]Xi G, Wang C, Wang X. The oriented self-assembly of magnetic Fe3O4 nanoparticles into monodisperse microspheres and their use as substrates in the formation of Fe3O4 nanorods [J]. Eur. J. Inorg. Chem.,2008:425-431.
    [168]Hu M, Jiang J S, Li X. Surfactant-assisted hydrothermal synthesis of dendritic magnetite microcrystals [J]. Cryst. Growth Des.,2009,9(2):820-824.
    [169]Penn R L, Banfield J F. Imperfect oriented attachment:dislocation generation in defect-free nanocrystals [J]. Science,1998,281(5379):969-971.
    [170]Jung Y J. Building micro and nanoscale architectures with carbon nanotubes [D]. New York: Rensselaer Polytechnic Institute,2003.
    [171]Luo T, Gao L, Liu J, et al. Olivary particles:unique carbon microstructure synthesized by catalytic pyrolysis of acetone [J]. J. Phys. Chem. B,2005,109(32):15272-15277.
    [172]Jun Y W, Lee S M, Kang N J, et al. Controlled synthesis of multi-armed CdS nanorod architectures using monosurfactant system [J]. J. Am. Chem. Soc.,2001,123(21),5150-5151.
    [173]Zeng H C. Synthetic architecture of interior space for inorganic nanostructures [J]. J. Mater. Chem., 2006,16(7):649-662.
    [174]Meng L R, Chen W, Chen C, et al. Uniform a-Fe2O3 nanocrystal moniliforme-shape straight-chains [J]. Cryst. Growth Des.,2010,10(2):479-482.
    [75]Yu W G, Zhang T L, Qiao X J, et al. Effects of synthetical conditions on octahedral magnetite nanoparticles [J]. Mater. Sci. Engineer. B,2007,136(2-3):101-105.
    [176]Hofmann C, Rusakova I, Ould-Ely T, et al. Shape control of new FexO-Fe3O4 and Fe1-xMnyO-Fe3-zMnzO4 nanostructures [J]. Adv. Funct. Mater.,2008,18(11):1661-1667.
    [177]Zhu T, Chen J S and Lou X W, Shape-controlled synthesis of porous Co3O4 nanostructures for application in supercapacitors [J]. J. Mater. Chem.,2010,20(33):7015-7020.
    [178]Bardhan R, Neumann O, Mirin N, et al. Au nanorice assemble electrolytically into mesostars [J]. ACS Nano,2009,3(2):266-272.
    [179]王步国,施尔畏,仲维卓,等.几种极性有机晶体的生长习性与形成机理[J].化学学报,1997, 55(5):430-439.
    [180]郑林林,冯守爱,高峰,等.甲醇介质中溶剂热合成六方CdS 中空纳米球[J].无机材料学报,2009,24(1):61-64.
    [181]李霞章,陈志刚,陈建清,等.醇水法制备纳米粉体原理及应用[J].硅酸盐通报,2006,2:82-86.
    [182]李霞章,陈杨,陈志刚,等.基于不同醇的醇水法制备纳米Ce02 的研究[J].电子元件与材料,2006,25(3):43-45.
    [183]Shao H F, Qian X F, Yin J, et al. Controlled morphology synthesis of β-FeOOH and the phase transition to Fe2O3 [J]. J. Solid State Chem.,2005,178(10):3130-3136.
    [184]Siegfried M J, Choi K S. Directing the architecture of cuprous oxide crystals during electrochemical growth [J]. Angew. Chem. Int. Ed.,2005,44(21):3218-3223.
    [185]Banfield J F, Welch S A, Zhang H, et al. Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products [J]. Science,2000, 289(5480):751-754.
    [186]Zeng H C. Oriented attachment:a versatile approach for construction of nanomaterials [J]. Nanotechnology,2007,4(4):329-346.
    [187]刘淑娟.纳米催化材料的液相化学合成、生长机理及其性能研究[D].合肥:中国科学技术大学2009.
    [188]Redl F X, Charles T B, Papaefthymiou G C, et al. Magnetic, electronic, and structural characterization of nonstoichiometric iron oxides at the nanoscale [J]. J. Am. Chem. Soc.,2004, 126(44):14583-14599.
    [189]Park J, Joo J, Kwon S G, et al. Synthesis of monodisperse spherical nanocrystals [J]. Angew. Chem. Int. Ed.,2007,46(25):4630-4660.
    [190]Casula M F, Jun Y, Zaziski D J, et al. The concept of delayed nucleation in nanocrystal growth demonstrated for the case of iron oxide nanodisks [J]. J. Am. Chem. Soc.,2006,128(5):1675-1678.
    [191]Zhou Z, Liu G, Han D. Coating and structural locking of dipolar chains of cobalt nanoparticles [J]. ACS Nano,2009,3 (1):165-172.
    [192]Zheng R, Gu H, Xu B, et al. Self-assembly and self-orientation of truncated octahedral magnetite nanocrystals [J]. Adv. Mater.,2006,18(18):2418-2421.
    [193]Song Q, Ding Y, Wang Z L, et al. Formation of orientation-ordered superlattices of magnetite magnetic nanocrystals from shape-segregated self-assemblies [J]. J. Phys. Chem. B,2006, 110(50):25547-25550.
    [194]Kim E, Whitesides G M. Use of minimal free energy and self-assembly to form shapes [J]. Chem. Mater.,1995,7(6):1257-1264.
    [195]Disch S, Wetterskog E, Hermann R P, et al. Shape induced symmetry in self-assembled mesocrystals of iron oxide nanocubes [J]. Nano Lett.,2011,11(4):1651-1656.
    [196]Grzybowski B. Self-assembly at all scales [J]. Science,2002,295(5564):2418-2421.
    [197]Bishop K J M, Wilmer C E, Soh S, et al. Nanoscale forces and their uses in self-assembly [J]. Small, 2009,5(14):1600-1630.
    [198]石磊,刘洪波,何月德,等α-Fe3O4/Fe3O4复合负极材料的制备与电化学性能研究[J].功能材料,2010,41(1):177-179.
    [199]邓梅根.电化学电容器电极材料研[M].合肥:中国科技大学出版社,2009.
    [200]陈洁,黄可龙,刘索琴.球形纳米Fe3O4的制备及超级电容性能研究[J].无机化学学报,2008,24(4):621-626.
    [201]Du X, Wang C, Chen M, et al. Electrochemical performances of nanoparticle Fe3O4/activated carbon supercapacitor using KOH electrolyte solution [J]. J. Phys. Chem. C,2009,113(6):2643-2646.
    [202]Peng S, Sun S H. Synthesis and characterization of monodisperse hollow Fe3O4 nanoparticles [J]. Angew. Chem. Int. Ed.,2007,119(22):4233-4236.
    [203]Liu F, Cao P J, Zhang H R, et al. Novel nanopyramid arrays of magnetite [J]. Adv. Mater.,2005, 17(15):1893-1897.
    [204]Liu Z Q, Zhang D H, Han S, et al. Single crystalline magnetite nanotubes [J]. J. Am. Chem. Soc., 2005,127(1):6-7.
    [205]Li L L, Chu Y, Liu Y, et al. Solution-phase synthesis of single-crystalline Fe3O4 magnetic nanobelts [J]. J. Alloys Comp.,2009,472(1-2):271-275.
    [206]Wang Z L. Transmission electron microscopy of shape-controlled nanocrystals and their assemblies [J]. J. Phys. Chem. B.,2000,104(6):1153-1175.
    [207]Y D Li, Deng H, Li X, Peng Q, et al. Monodisperse magnetic single-crystal ferrite microspheres [J]. Angew. Chem. Int. Ed.,2005,44(18):2782-2785.
    [208]Jun Y W, Choi J S, Cheon J W. Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes [J]. Angew. Chem. Int. Ed.,2006,45(21):3414-3439.
    [209]Hu C, Gao Z, Yang X. Fabrication and magnetic properties of Fe3O4 octahedra [J]. Chem. Phys. Lett., 2006,429(4-6):513-517.
    [210]Zhang D, Zhang X, Ni X, et al. Low-temperature fabrication of MnFe3O4 octahedrons:magnetic and electrochemical properties [J]. Chem. Phys. Lett.,2006,426(1-3):120-123.
    [211]Shavel A, Rodriguez-Gonzalez B, Pacifico J, et al. Shape control in iron oxide nanocrystal synthesis, induced by trioctylammonium ions [J].Chem. Mater.,2009,21(7):1326-1332.
    [212]He T, Chen D R, Jiao X L, et al. CO3O4 nanoboxes:surfactant-templated fabrication and microstructures [J]. Adv. Mater.,2006,18(8):1078-1082.
    [213]Ould-Ely T, Prieto-Centurion D, Kumar A, et al. Manganese(II) oxide nanohexapods:insight into controlling the form of nanocrystals [J]. Chem. Mater.,2006,18(7):1821-1829.
    [214]Qiao Z P, Zhang Y, Zhou L T, et al. Shape control of PbS crystals under microwave irradiation [J]. Cryst. Growth Des.,2007,7(12):2394-2396.
    [215]Du W M, Qian X F, Niu X S, et al. Symmetrical six-horn nickel diselenide nanostars growth from oriented attachment mechanism [J]. Cryst. Growth Des.,2007,7(12):2733-2737.
    [216]Yang J, Sasaki T. Morphological control of single crystalline CO3O4 polyhedrons:selective and nonselective growth of crystal planes directed by differently charged surfactants and solvents [J]. Cryst. Growth Des.,2010,10(3):1233-1236.
    [217]Lovely G R, Brown A P, Brydson R, et al. Observation of octahedral cation coordination on the{111} surfaces of iron oxide nanoparticles [J]. Appl. Phys. Lett.,2006,88(9):093124-3.
    [218]Siegfried M J, Choi K. S. Electrochemical crystallization of cuprous oxide with systematic shape evolution [J]. Adv. Mater.,2004,16(19):1743-1746.
    [219]Li J, Zeng H C. Hollowing Sn-doped TiO2 nanospheres via Ostwald ripening [J]. J. Am. Chem. Soc. 2007,129(51):15839-15847.
    [220]Liu J, Xia H, Xue D, et al. Double-shelled nanocapsules of V2O5-based composites as high-performance anode and cathode materials for Li ion batteries [J]. J. Am. Chem. Soc.,2009, 131 (34):12086-12087.
    [221]Taguchi M, Takami S, Naka T, et al. Growth mechanism and surface chemical characteristics of dicarboxylic acid-modified CeO2 nanocrystals produced in supercritical water [J]. Cryst. Growth es.,2009,9(12):5297-5303.
    [222]Redl F X, Black C T, Papaefthymiou G C, et al. Magnetic, electronic, and structural characterization of nonstoichiometric iron oxides at the nanoscale [J]. J. Am. Chem. Soc.,2004, 126(44):14583-14599.
    [223]Song Q, Zhang Z J. Correlation between spin-orbital coupling and the superparamagnetic properties in magnetite and cobalt ferrite spinel nanocrystals [J]. J. Phys. Chem. B,2006,110(23):11205-11209.
    [224]Baughman R H, Zakhidov A A, deHeer W A. Carbon nanotubes-the route toward applications [J]. Science,2002,297(5582):787-792.
    [225]Wang Z, Zhao Z, Qiu J. In situ synthesis of super-long Cu nanowires inside carbon nanotubes with coal as carbon source [J]. Carbon,2006,44(9):1845-1847.
    [226]Lv R T. Kang F Y, Wang W X, et al. Effect of using chlorine-containing precursors in the synthesis of FeNi-filled carbon nanotubes [J]. Carbon,2007,45(7):1433-1438.
    [227]Jiang K, Eitan A, Schadler L S, et al. Selective attachment of gold nanoparticles to nitrogen-doped carbon nanotubes [J]. Nano Lett.,2003,3(3):275-277.
    [228]Chen W, Pan X L, Willinger M G, et al. Facile autoreduction of iron oxide/carbon nanotube encapsulates [J]. J. Am. Chem. Soc.,2006,128(10):3136-3137.
    [229]Kim H S, Lee H, Han K S, et al. Hydrogen storage in Ni nanoparticle-dispersed multiwalled carbon nanotubes[J]. J. Phys. Chem. B,2005,109(18):8983-8986.
    [230]Yoon B, Wai C M. Microemulsion-templated synthesis of carbon nanotube-supported Pd and Rh nanoparticles for catalytic applications [J]. J. Am. Chem. Soc.,2005,127(49):17174-17175.
    [231]Liu B, Lee J Y. Ordered alignment of CdS nanocrystals on MWCNTs without surface modification [J]. J. Phys. Chem. B,2005,109(50):23783-23786.
    [232]Du J, Fu L, Liu Z, et al. Facile route to synthesize multiwalled carbon nanotube/zinc sulfide heterostructures:optical and electrical properties [J]. J. Phys. Chem. B,2005,109(26):12772-12776.
    [233]Zhu Y W, Elim H I, Foo Y L, et al. Multiwalled carbon nanotubes beaded with ZnO nanoparticles for ultrafast nonlinear optical switching [J]. Adv. Mater.,2006,18(5):587-592.
    [234]Zhang Y. Franklin N W, Chen R J, et al. Metal coating on suspended carbon nanotubes and its implication to metal-tube interaction[J]. Chem. Phys. Lett.,2000,331(1):35-41.
    [235]Wang S, Shi X, Shao G, et al. Preparation, characterization and photocatalytic activity of multi-walled carbon nanotube-supported tungsten trioxide composites [J]. J. Phys. Chem. Solids, 2008,69(10):2396-2400.
    [236]Lv R T. Tsuge S, Gui X C, et al. In situ synthesis and magnetic anisotropy of ferromagnetic buckypaper [J]. Carbon,2009,47(4):1141-1145.
    [237]Jang J S, Yoon H S. Fabrication of magnetic carbon nanotubes using a metal-impregnated polymer precursor [J]. Adv. Mater.,2003,15(24):2088-2091.
    [238]Liu Y, Jiang W. Wang Y, et al. Synthesis of Fe3O4/CNTs magnetic nanocomposites at the liquid-iquid interface using oleate as surfactant and reactant [J]. J. Magn. Magn. Mater.,2009, 321(5):408-412.
    [239]Zhang Q, Zhu M, Li Y. The formation of magnetite nanoparticles on the sidewalls of multi-walled carbon nanotubes [J].Compos. Sci. Technol.,2009,69:633-638.
    [240]Jiang L Q, Gao L. Carbon nanotubes-magnetite nanocomposites from solvothermal processes: formation, characterization, and enhanced electrical properties [J]. Chem. Mater.,2003, 15(14):2848-2853.
    [241]Xu L, Zhang W, Ding Y, et al. Formation, characterization, and magnetic properties of Fe3O4 nanowires encapsulated in carbon microtubes [J]. J. Phys. Chem. B,2004,108(30):10859-10862
    [242]Xu L Q, Du J, Li P, et al. In situ synthesis, magnetic property, and formation mechanism of Fe3O4 particles encapsulated in ID bamboo-shaped carbon microtubes [J]. J. Phys. Chem. B,2006,110(9): 3871-3875.
    [243]Yang T Z, Shen C M, Li Z, et al. Highly ordered self-assembly with large area of Fe3O4 nanoparticles and the magnetic properties [J]. J. Phys. Chem. B,2005,109(49):23233-23236.
    [244]Tchoul M N, Ford W T, Lolli G, et al. Effect of mild nitric acid oxidation on dispersability, size, and structure of single-walled carbon nanotubes [J]. Chem. Mater.,2007,19(23):5765-5772.
    [245]Peng D L, Zhao X, Inoue S, et al. Magnetic properties of Fe clusters adhering to single-wall carbon nanotubes [J]. J. Magn. Magn. Mater.,2005,292:143-149.
    [246]Correa-Duarte M A, Grzelczak M, Salgueirino-Maceira V, et al. Alignment of carbon nanotubes under low magnetic fields through attachment of magnetic nanoparticles [J]. J. Phys. Chem. B,2005, 109(41):19060-19063.
    [247]Huang Z, Li J, Chen Q W, et al. A facile carboxylation of CNT/Fe3O4 composite nanofibers for biomedical applications [J]. Mater. Chem. Phys,2009,114(1):33-36.
    [248]章仁毅,张小燕,樊华军,等.基于碳纳米管的超级电容器研究进展[J].应用化学,2011,28(5):489-499.
    [249]成会明,仟文才.石墨烯[M].沈阳:中国科学院金属研究所,2008,33-38.
    [250]Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films [J]. Science,2004,306 (5696):666-669.
    [251]Loh K P, Bao Q, Ang P K. The chemistry of graphene [J]. J. Mater. Chem.,2010,20(12):2277-2289.
    [252]Nethravathi C, Rajamathi J T, Ravishankar N, et al. Graphite oxide-intercalated anionic clay and its decomposition to graphene-inorganic material nanocomposites [J]. Langmuir,2008, 24(15):8240-8245.
    [253]Williams G, Seger B, Kamat P V. TiO2-grphene nanocomposites UV-assisted photocatalytic reduction of graphene oxide [J]. Nano Lett.,2008,2(7):1487-1490.
    [254]Cong H P, He J J, Lu Y, et al. Water-soluble magnetic-functionalized reduced graphene oxide sheets: In situ synthesis and magnetic resonance imaging applications [J]. Small,2010,6(2):169-173.
    [255]Zhang Y, Chen B, Zhang L M, et al. Controlled assembly of Fe3O4 magnetic nanoparticles on graphene oxide [J]. Nanoscale,2011,3(4):1446-1450.
    [256]张燚,陈彪.杨祖.培,等.物理化学学报,2011,27(5):1261-1266.
    [257]Hummers W S, Offeman R J. Preparation of graphitic oxide [J]. J. Am. Chem. Soc.,1958, 80:1339-1340.
    [258]Zhan Y, Meng F, Lei Y, et al. One-pot solvothermal synthesis of sandwich-like graphene nanosheets/Fe3O4 hybrid material and its microwave electromagnetic properties [J]. Mater. Lett., 2011,65(11):1737-1740.
    [259]Lee D W, De Los Santos V L, Seo J W, et al. The structure of graphite oxide:investigation of its surface chemical groups [J]. J. Phys. Chem. B,2010,114(17):5723-5728.
    [260]He F, Fan J, Ma D, et al. The attachment of Fe3O4 nanoparticles to graphene oxide by covalent bonding [J]. Carbon,2010,48(11):3139-3144.
    [261]Schniepp H C, Li J L, Mcalllister M J, et al. Functionalized single graphene sheets derived from splitting graphite oxide [J]. J. Phys. Chem. B,2006,110(17):8535-8539.
    [262]Yang X, Zhang X, Ma Y, et al. Superparamagnetic graphene oxide-Fe3O4 nanoparticles hybrid for controlled targeted drug carriers [J]. J. Mater. Chem.,2009,19(18):2710-2714.
    [263]Li Y, Chu J, Qi J, et al. An easy and novel approach for the decoration of graphene oxide by Fe3O4 nanoparticles [J]. Appl. Sur. Sci.,2011,257(14):6059-6062.
    [264]Hojati T P, Azadmanjiri J, Simon G P. A simple microwave-based method for preparation of Fe3O4/carbon composite nanoparticles [J]. Mater. Lett.,2010,64(15):1684-1687.
    [265]Tseng R L, Wu F C, Juang R S. Liquid-phase adsorption of dyes and phenols using pinewood based activated carbons [J]. Carbon,2003,41(3):487-495.
    [266]Rodriguez P J, Lopez A M, Diaz S M, et al. Development of gold nanoparticle-doped activated carbon sorbent for elemental mercury [J]. Energy Fuels,2011,25(5):2022-2027.
    [267]Ghimbeu C M, Gadiou R, Dentzer J, et al. Influence of surface chemistry on the adsorption of oxygenated hydrocarbons on activated carbons [J]. Langmuir,2010,26(24):18824-18833.
    [268]Halford B. Cleaning Water With 'Nanorust':Magnetite nanoparticles effectively remove arsenic from water [J]. Chem. Eng. News,2006,84(46):12-12.
    [269]Hu J S, Zhong L S, Song W G, et al. Synthesis of hierarchically structured metal oxides and their application in heavy metal ion removal [J]. Adv. Mater.,2008,20(15):2977-2982.
    [270]姚洪.活性炭预处理对制备高分散负载钯催化剂的影响[D].杭州:浙江工业大学,2005.
    [271]朱江涛,黄正宏,康飞宇,等.活性竹炭对苯酚的吸附动力学[J].新型炭材料,2008,23(4):326-330.
    [272]Hameed B H. Equilibrium and kinetic studies of methyl violet sorption by agricultural waste [J]. J. Hazardous Mater.,2008,154(1-3):204-212.
    [273]李冬,陈华军.活性炭吸附水中罗丹明 B 的研究[J].陕西科技大学学报,2008,26(6):95-99.
    [274]Yang N, Zhu S, Zhang D, et al. Synthesis and properties of magnetic Fe3O4-activated carbon nanocomposite particles for dye removal [J]. Mater. Lett.,2008,62(4-5):645-647.
    [275]张春,任建敏,王媛媛,等.壳聚糖改性膨润土对罗丹明吸附特性研究[J].广州化工,2009,39(3):122-125.
    [276]Herrera F, Lopez A, Mascolo G., et al. Catalytic combustion of orange Ⅱ on hematite:surface species responsible for the dye degradation [J]. Appl. Catal. B,2001,29(2):147-162.
    [277]Wang D W, Li F, Liu M, et al.3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage [J]. Angew. Chem. Int. Ed.,2008,47(2):373-376.
    [278]Chueh Y L, Lai M W, Liang J Q, et al. Systematic study of the growth of aligned arrays of α-Fe2O3 and Fe3O4 nanowires by a vapor-solid process [J]. Adv. Funct. Mater.,2006,16(17):2243-2251.
    [279]Persson A I, Larsson M W, Stenstrom S, et al. Solid-phase diffusion mechanism for GaAs nanowire growth [J]. Nat. Mater.,2004,3(10):677-681.
    [280]Wang Z L. Characterizing the structure and properties of individual wire-like nanoentities [J]. Adv. Mater.,2000,12(17):1295-1298.
    [281]Xu X, Wang Y, Liu Z, et al. A new route to large-scale synthesis of silicon nanowires in ultrahigh vacuum [J]. Adv. Funct. Mater.,2007,17(11):1729-1734.
    [282]Chen J, Wiley B J, Xia Y. One-dimensional nanostructures of metals:large-scale synthesis and some potential applications [J]. Langmuir,2007,23(8):4120-4129.
    [283]Wang X, Li Y D. Solution-based routes to transition-metal oxide one-dimensional nanostructures [J]. Pure Appl. Chem.,2006,78(l):45-64.
    [284]Kang K, Kim S K, Kim C J, et al. The role of NiOx overlayers on spontaneous growth of NiSix nanowires from Ni seed layers [J]. Nano Lett.,2008,8(2):431-436.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700