用户名: 密码: 验证码:
利用化学和机械协同作用的CVD金刚石抛光机理与技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金刚石是集多种优越的物理、化学、光学和热学性能于一身的材料极品。它不但是自然界已知材料中硬度最大、摩擦系数最小、导热性能最好的材料,而且具有优良的电绝缘性、较宽的透光波段、优秀的半导体特性和化学惰性,被视为21世纪最有发展前途的工程材料,具有广泛的应用前景和巨大的市场潜力。化学气相沉积(CVD)金刚石的出现打破了天然金刚石数量稀少、尺寸过小及价格昂贵等限制,使金刚石的应用不再局限于传统的刀具和模具领域,逐渐向光学、热学、电子半导体及声学等高科技领域发展。然而由于其生长机制的限制,CVD金刚石晶粒粗大,表面粗糙度和精度较差,无法满足上述领域对金刚石超光滑、高精度和低损伤的表面质量要求。平坦化技术已经成为CVD金刚石应用于高新技术领域的关键技术之一。
     金刚石的高硬度和良好化学稳定性给目前常用的加工技术带来了挑战。机械抛光加工效率极低,容易引入裂纹和划痕等损伤;化学作用较强的激光抛光、电火花加工和化学刻蚀等方法会遇到加工表面质量较差、残留有变质层等问题。借助化学和机械的协同作用去除金刚石材料将为CVD金刚石的高效、超精密和低损伤抛光提供新思路。为此,探索化学和机械协同作用下金刚石的微观去除机理,研究化学机械协同作用抛光的相关技术是实现CVD金刚石平坦化的关键。
     本文从化学热力学和化学动力学理论入手,研究化学和机械协同作用去除金刚石材料的相关理论,分别采用摩擦化学抛光技术和化学机械抛光技术为粗、精加工技术实现CVD金刚石高效、超精密、低损伤的抛光。主要的研究工作如下:
     (1)通过化学反应热力学和化学动力学分析,论证过渡金属催化金刚石向石墨转化的可行性,揭示金刚石向石墨转化的金属催化机制,提出摩擦化学抛光盘材料应具备未配对电子、垂直对准原则、高温硬度和高温抗氧化性等基本条件;研究化学和机械协同作用下金刚石氧化的化学动力学理论,建立化学机械抛光金刚石的化学动力学模型。揭示金刚石的表面结构、机械摩擦引入的晶格畸变和氧化剂的氧化性是金刚石氧化的驱动力。
     (2)根据摩擦化学抛光盘的材料要求,采用机械合金化结合真空热压烧结技术制备FeNiCr合金基抛光盘。表征FeNiCr合金基抛光盘材料的硬度、抗氧化性能及抛光性能。结果表明:FeNiCr合金基抛光盘材料的硬度和高温抗氧化性能均优于304不锈钢和高速钢。抛光时材料去除率达到3.7μm/min,远高于TiAl合金基、304不锈钢和高速钢三种抛光盘的抛光效率。根据理论分析和试验研究,摩擦化学抛光机理是,金刚石在摩擦热和金属催化作用下先转化为石墨,然后以机械、扩散或氧化的形式去除。
     (3)研制高效稳定的抛光液是化学机械抛光CVD金刚石的前提。根据理论分析和试验研究,在K2FeO4、KMnO4、Na2MoO4、K2Cr2O7、CrO3、KIO4、H2O2、(NH4)2S2O8等八种氧化剂中,K2FeO4抛光效果最好。另外,最佳磨料为粒径2μm的碳化硼磨料,最佳抛光盘为玻璃盘。在此基础上,分析高铁酸钾抛光液的氧化性、物理和化学稳定性,通过实验确定较佳的氧化剂浓度、磷酸浓度和催化剂分别为15g/100ml水、4-7.5ml/100ml水和粒径30nm的催化剂T粉末。采用X射线衍射、拉曼光谱及XPS光电子能谱分析研究抛光后CVD金刚石的表面成分,揭示化学机械抛光CVD金刚石的材料去除机理。结果表明,抛光后金刚石表面存在C-C、C-OH、C-O-C、C=O和O=C-OH等多种形式官能团。化学机械抛光CVD金刚石的材料去除机理是:高铁酸钾在酸性条件下将水氧化为自由基氧,自由基氧吸附在CVD金刚石和固体催化剂表面,逐步氧化金刚石表面碳原子。磨粒的机械划擦作用使金刚石产生一层厚度约为2nm畸变层,保证化学反应的持续进行。
     (4)搭建局部加热式化学机械抛光试验台和小尺寸晶片摩擦力在线测量装置,研究化学机械抛光温度、压力、抛光盘转速、氧化剂浓度对材料去除率及摩擦力的影响规律。根据理论分析和试验研究,合理的摩擦化学抛光工艺为:抛光压力为6.5Mpa,抛光盘转速为11000r/min:合理的化学机械抛光工艺为:抛光压力为266.7kPa,抛光盘转速为70r/min,抛光头转速为23r/min,抛光温度为50℃。化学机械抛光CVD金刚石的摩擦系数在0.060~0.065范围内变化,为混合摩擦状态。采用优化的抛光工艺抛光后,CVD金刚石表面粗糙度可达到Ra0.187nm,表面没有划痕和损伤。
Diamond possesses excellent physical, thermal, optical and chemical properties, such as highest hardness, good chemical inertness, high thermal conductivity, high elasticity modulus, large electrical resistance, wide electronic gap, wide-range transparency and low friction coefficient. As a21st century engineering material, it has many promising applications and potential markets. The debut of CVD (Chemical vapor deposition) diamond will break through the limitations of rare, expensive and small size natural diamond, and greatly expands the application field of diamond from the traditional tool, mold to the fields of optical, thermal, electronic semiconductors, acoustics, and so on. However, the columnar growth of CVD diamond results in a polycrystalline nature and the grain sizes increase with film thickness. Therefore, if CVD diamonds are to be used in these fields, it is extremely important for their surfaces to be precisely machined and highly polished.
     The extreme hardness and good chemical inertness of a CVD diamond bring a great challenge to its polishing methods:The traditional mechanical polishing method yields extremely low polishing rate and may cause micro scratches on the polished surface. Other methods including laser polishing, electrical discharge machining and chemical etching may introduce markable damage layer to diamond surface. Nevertheless, Chemical and mechanical polishing is expected to provide new ideas in planarizing CVD diamonds with untrapresicion and damage-free surface. It is necessary to investigate the mechanical removal mechanism and develop a chemically assisted mechanical polishing and planarization technique for CVD diamonds.
     Base on the theory of chemical thermodynamics and kinetics, this study focues on polishing CVD diamonds with tribochemical polishing (TCP) method and chemical and mechanical polishing (CMP) method by investigating material removal mechanism involved in the two methods. Main contents and results are as follows:
     (1) According to the analysis of chemical thermodynamics and kinetics, diamond could convert into graphite with the catalysis of transition metals. Based on this analysis, the study investigates the catalytic mechanisms of TCP and dentifies four requirements for the polishing plate, i.e. unpaired d electrons, vertical alignment rule, high hardness and oxidation resistance at elevated temperature. Based on the thermokinetic analysis of diamond oxidation, the study proposes a chemical thermokinetic model and predicts that mechanical scratching, surface energy and strong oxidizing reaction are responsible for material removal in the CMP process of diamond polishing.
     (2) Based on the requirements for TCP process, an FeNiCr alloy polishing plate is designed and prepared by using the mechanical alloying and hot-press sintering techniques. The FeNiCr alloy polishing plate has higher hardness and oxidation resistance than stainless steel304and high-speed steel. It provides a material removal rate of3.7μm/min in CVD diamond polishing, which is higher than that of stainless steel304plate, high-speed steel plate and TiAl alloy plate. The study futher interprets the material removal mechanism in the TCP process as diamond first converts into graphite and other non-diamond carbons under the heating and the catalytic actions of the transition metal, then the graphite and non-diamond carbons are then removed by mechanical friction, oxidation and diffusion into the polishing plate.
     (3)Slurry preparation is necessary for the CMP process. According to the standard electrode potentials of common oxidants, eight oxidants including K2FeO4、KMnO4、 Na2MoO4、K2Cr2O7、CrO3、KIO4、H2O2、(NH4)2S2O8are chosen to prepare CMP slurries. Theoretical analysis and experimental results show that K2Fe04is the best oxidant, and2μm boron carbide abrasive and glass plate are the best abrasive and polishing plate, respectively. The physical and chemical stability and oxidability of the slurries are also investigated. The study identifies that K2FeO4and phosphoric acid have their ideal concentrations of15g/100ml and7.5ml/100ml, respectively. Catalyst T shows the best catalytic effect in the CMP process. X-ray diffraction spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy are used to analyze the surface chemical composition of CVD diamonds and investigate the mechanisms of material removal. The results shows that the "C-O","C-OH","C-O-C","C=O" and "O=C-OH" groups form on diamond surface. The study illustrates the step by step carbon oxidation process as:radical oxygen is formed as a result of potassium ferrate decomposition in the acid solution, and then oxidizes carbon by adsorbing onto the surface of diamond and solid catalyst. The mechanical scratching action of an abrasive produces a damage layer with a thickness of about2nm to promote the oxidation process of the diamond carbon.
     (4) In order to study the influences of temperature, polishing pressure, the rotational speed of polishing head and the concentration of oxidant on material removal rate and friction, a local heating device and a friction measurement device are designed and fabricated for the CMP processes. The study finds that an ideal polishing pressure of6.5MPa and rotational speeds of polishing plate of11000r/min in TCP process, and an ideal polishing pressure of266.7kPa, polishing temperature of50℃, rotational speeds of polishing plate and head of 70r/min and23r/min in CMP process, respectively, with the coefficient of friction in the range of0.060~0.065. With the utilization of the polishing process, CVD diamonds are polished with surface roughness of0.187nm with no surface scratches nor damages.
引文
[1]May P W. Diamond thin films:a 21st-century material [J]. Philosophical transactions of the royal,2000,358:473-495.
    [2]Matsumoto S, Sato Y, Tsutsumi M. Growth of diamond particles from methane-hydrogen gas [J]. J. Mater. Sci,1982,17(11):3106-3112.
    [3]Suzuki K, Iwai M, Uematsu T, et al. Material removal mechanism in dynamic friction polishing of diamond [J]. Key Engineering Materials,2003,238-239:235-240.
    [4]徐振浩,计时鸣,张利.CVD金刚石的发展趋势及其行业前景分析[J].商场现代化,2010,14:88-89.
    [5]Element Six. Diamond makes quantum computing add up [EB/OL]. [2010.3.9]. http://www.e6.com.
    [6]BBC Research. Diamond, Diamond-like and CBN Films & Coating Products[EB/OL].[2010.7]. http://www. bccresearch. com/report/AVM025G. html.
    [7]河北激光研究所.[EB/OL]. http://www.he-diamond.com/chinese/cnindex.htm.
    [8]北京天地东方超硬材料有限公司.[EB/OL]. http://www.td-diamond.com.cn/products.
    [9]Joshua Davis. The new diamond age. [EB/OL]. [2010.9.11]. http://www.wired.com/wired/ archive/11.09/diamond_pr.html.
    [10]陈光华,张阳.金刚石薄膜的制备与应用[M].北京:化学工业出版社,2004:2-5.
    [11]蒋六翔.金刚石薄膜研究进展[M],北京:化学工业出版社,1991.
    [12]董长顺,玄真武,石岩等.化学气相沉积(CVD)金刚石技术及产业分析[J].新材料产业,2008,(8):49-54.
    [13]Eckhard W. CVD Diamond Loudspeakers [J]. Fraunhofer IAF,2002:58-59.
    [14]Nakahata H, Fujii S, Higaki K, et al. Diamond-based surface acoustic wave devices [J]. Semiconductor Science and Technology,2003,18(3):96-104.
    [15]FujiiS, Seki Y, Yoshida K, etal. Daimond wafer for SAW application [J]. IEEE Ultrasonic Symposium,1999:183-186.
    [16]Diamond Materials. An extreme material for extreme applications.[EB/OL].http: www.cvd-diamond.com.
    [17]Song Jen-Hao, Sung James C, Chang Hsiao-Kuo, Kan Ming-Chi. SAW Filter with AlN on Diamond [EB]. http://www.advanceddiamond.com.
    [18]Alix Gicquel, Khaled Hassouni, Francois Silva, et al. CVD diamond films:from growth to applications [J].Current Applied Physics,2001,1:479-496.
    [19]Gustavo Pastor-Moreno. Electrochemical Applications of CVD Diamond [D], Bristol: University of Bristol,2002.7.
    [20]Ding Guifu, Yao Jinyuan, Yu Aibin, et al. Patterning of diamond films by RIE and its MEMS applications [J]. Proceedings of SPIE,2000,4174:451-461.
    [21]Michael A. Huff, Dwain A. Aidala, James E. Butler. MEMS applications using diamond thin films [J]. Solid State Technology,2006,78,45-49.
    [22]Zhu Xiangwei, Aslam D M. CVD diamond thin film technology for MEMS packaging [J]. Diamond & Related Materials,2006,15:254-258.
    [23]Latto M N, Jason Riley D, and May P W. Impedance studies of boron-doped CVD diamond electrodes [J].Diamond and Related Materials,2006,9(3-6):1181-1183.
    [24]Bahram Jalali. Teaching silicon new tricks [J]. Nature Photonics,2007,1:193-195.
    [25]The Diamond Chip for computers.http://diamond-microchips.com/
    [26]宋健民.鑽石的热生电及电吸熟效應:尖端奈米科技的奇踱[J].物理双月刊,2002,24(4):579-599.
    [27]Lee S T, Lifshitz Y. Materials science:The road to diamond wafers [J]. Nature.2003, 424:500-501.
    [28]戴达熿,周克松等.金刚石薄膜沉积制备工艺与应用[M].北京:冶金工业出版社,2001.6.
    [29]Windischmann H. CVD diamond wafers for thermal management application in electronic packaging[C].1998 International Conference on Multichip Modules and High Density Packaging, Reston,1998, IEEE:224-228.
    [30]Mollart T P, Wort C J H, Pickles C S J, et al. CVD diamond optical components, multi-s Optical components pectral properties and performance at elevated temperatures [J]. Proceedings of SPIE,2001,4375:180-198.
    [31]Harris D C. Frontiers in infrared window and dome materials[J].Proceedings of SPIE, 1995,2552:325-335.
    [32]Paolo Dore, Alessandro Nucara, Daniele Cannavo. Infrared properties of chemical-vapor deposition polycrystalline diamond windows[J]. Applied Optics,1998,37 (24): 5731-5736.
    [33]Thomas M E and Tropf W J. Optical properties of diamond [J]. Proceedings of SPIE, 1994,2286:144-151.
    [34]Robert Bogue, Okehampton. Diamond sensors:the dawn of a new era? [EB]. http: www.emeral dinsight.com.
    [35]Harris D C. Properties of diamond for window and dome applications [J]. Proceedings of SPIE,1994,2286:218-228.
    [36]韩荣耀.CVD金刚石膜钝头体飞行温度与压力的仿真研究[D].南京航空航天大学,2007,1-10.
    [37]Element Six. CVD diamond film. [EB/OL]. http://www.e6cvd.com/cvd.
    [38]Gorelov Y A, Lohr J, Borchard P, et al. Characteristics of diamond windows on the 1 MW,110 GHz Gyrotron Systems on the DIII-D Tokamak[C]. General Atomics Report GA-A24047.
    [39]Heinrich Blumer, Sasa Zelenika, Jakob Ulrich, et al. CVD Diamond Vacuum Window for Synchrotron Radiation Beamlines [EB]. www. diamond-materials.de.
    [40]http://www.israelidiamond.co.il/cn/News. aspx?boneID=918&objID=3856.
    [41]http://en.wikipedia.org/wiki/Syntheticdiamond.
    [42]http://www.ehime-u.ac.jp/research/news/detail.html?new_rec=8793.
    [43]Eversole W G. Synthesis of Diamond. US Patent,3030188 [P],1962.4.
    [44]周文成.CVD钻石膜复合抛光及微加工之加工机制与加工表明性状研究[D].台湾:淡江大学,2007.
    [45]Hird J R, Field J E. Diamond polishing [J]. Royal Society of London Proceedings Series A,2004,460:3547-3568.
    [46]Tang C J, Neves A J, Fernandes A J S, Gracio J, Ali. A new elegant technique for polishing CVD diamond films [J]. Diamond and Related Materials,2003,12(6):1411-1416.
    [47]Zaitsev A M, Kosaca G, Richarz B, et al. Thermochemical polishing of CVD diamond films [J]. Diamond and Related Materials,1998,7:1108-1117.
    [48]Yoshikawa, Masanori. Development and performance of a diamond-film polishing apparatus with hot metals [J]. Proceedings of SPIE,1990,1325:210-221.
    [49]刘敬明,蒋政,张恒大,吕反修,唐伟忠.大面积CVD金刚石膜的热铁板抛光[J].北京科技大学学报,2001,23(1):42-44.
    [50]Ramesham R, Rose M F. Polishing of polycrystalline diamond by hot nickel surface [J].Thin solid films,1998,320(2):223-227.
    [51]Thornton A G and Wilks J. The polishing of diamonds in the presence of oxidising agents [J].Diamond Research,1974:39-42.
    [52]Malshe A P, Brown W D, Naseem H A, and Schaper LW. Method of planarizing polycrystalline diamonds, planarized polycrystalline diamonds and products made therefrom. United States Patent,5472370 [P],1995.
    [53]Peters C G, Emerson W B, and Nefflen K F. Journal of Research of the Natioanl Bureau of Standards.1947,38:449-464.
    [54]Wilks, Wilks. Polycrystalline diamond (PCD), in properties and applications of diamond [M]. Butterworth-Heinemann:Oxford,1991.
    [55]Spur G, Appel S. Wire EDM cutting of PCD [J]. Industry Diamond Review.1997,4:124-130.
    [56]Olsen, R H, Aspinwall, D K, and Dewes, R C. Electrical discharge machining of conductive CVD diamond tool blanks [J]. Journal of Materials Processing Technology, 2004,155-156:1227-1234.
    [57]王成勇,郭钟宁,陈君.旋转电极电火花抛光金刚石膜[J].中国机械工程学报,2004,38:168-171.
    [58]Guo Z N, Huang Z G, and Wang C Y. Smoothing CVD diamond films by wire EDM with high travelling speed [J]. Key Engineering Materials,2004,257-258:489-494.
    [59]Guo Z N, Wang C Y, and Kuang T C. Investigation into polishing process of CVD diamond films [J]. Materials and Manufacturing Processes,2002,17(1):45-55.
    [60]Guo Z N, Wang C Y, Zhang F, and Kuang T C. Polishing of CVD diamond films [J].Key Engineering Materials,202-203:165-170.
    [61]Chen R F, Zuo D W, Sun Y L, Lu W Z, Li D S, Wang M. Investigation on the Machining of Thick Diamond Films by EDM Together with Mechanical Polishing[J]. Advanced Materials Research,2007,24-25:377-382.
    [62]季国顺,张永康.激光抛光化学气相沉积金刚石膜[J].激光技术,2003,4:106-109.
    [63]Ozkan A M., Malshe A P, Brown W D. Sequential multiple-laser-assisted polishing of free-standing CVD diamond substrates [J]. Diamond and Related Materials,1997,6: 1789-1798.
    [64]Hireta A, Tokura H, Yoshikawa M. Smoothing of chemically vapour deposited diamond films by ion beam irradiation [J].Thin Solid Films,1992,212:43-48.
    [65]Kiyohara S, Mori K, Miyamato I, Taniguchi J. Oxygen ion beam assisted etching of single crystal diamond chips using relative oxygen gas [J]. Journal of Materials Science: Materials in Electronics,2001,12:477-481.
    [66]Toyoda N, Hagiwara N, Matsuo J, Yamada I. Surface treatment of diamond films with Ar and O2 cluster ion beams [J]. Nuclear Instruments and Methods in Physics Research B,1999,148:639-644.
    [67]Sirineni G M R, Naseem H A, Malshe A P, Brown W D. Reactive ion etching of diamond as a means of enhancing chemically-assisted mechanical polishing efficiency[J]. Diamond and Related Materials,1997,6:952-958.
    [68]Hermanns H B, Long C, Weiss H. ECR plasma polishing of CVD diamond films [J]. Diamond and Related Materials,1996,5:845-849.
    [69]Zheng Xianfeng, Ma Zhibin, Zhang Lei, Wang Jianhua. Investigation on the etching of thick diamond film and etching as a pretreatment for mechanical polishing [J]. Diamond and Related Materials,2007,16(8):1500-1509.
    [70]Man W D, Wang J H, Wang C, Wang S G, Xiong L W. Planarizing CVD diamond films by using hydrogen plasma etching enhanced carbon diffusion process [J]. Diamond and related materials,2007,16(8):1455-1458.
    [71]马泳涛,孙玉静,陈五一.热铁盘法高速抛光CVD金刚石[J].北京航空航天大学学报,2008,34(4):413-416.
    [72]Wang C Y, Zhang F L, Kuang T C, Chen C L. Chemical/mechanical polishing of diamond films assisted by molten mixture of LiNO3 and KNO3 [J].Thin Solid Films,2006,496: 698-702.
    [73]Malshe A P, Park B S., Brown W D, et al. A review of techniques for polishing and planarizing chemically vapor-deposited (CVD) diamond films and substates[J]. Diamond and Related Material,1999,8:1198-1213.
    [74]Grillo S E, Field J E, van Bouwelen F M. Diamond polishing:the dependency of friction and wear on load and crystal orientation[J]. Phys. D:Appl. phys,2000,33(6):985-990
    [75]Pierson H 0. Handbook of Carbon, Graphite, Diamond and Ful-lerene:properties, processing and applications [M]. Noyes:ParkRidge,1993.
    [76]Grodzinski P. Diamond technology:production methods for diamond and gem stones [M]. London:N. A. G. Press Ltd.,1953.
    [77]Yoshikawa M. Development and performance of a diamond-film polishing apparatus with hot metals [J]. Diamond Optics III SPIE,1990,1325:210-221.
    [78]Tokura H, Yang C F, Yoshikawa M. Study on the polishing of chemically vapour deposited diamond film [J].Thin Solid Films,1992,212:49-55.
    [79]Choi S K, Jung D Y, Kweon S Y and Jung S K. Surface characterization of diamond films polished by thermomechanical polishing method [J].Thin Solid Films,1996,279 (1-2): 110-114.
    [80]Chou W C, Chao C L, Chien H H, Ma K J and Lin H Y. Investigation of thermo-chemical polishing of CVD Diamond film [J].Key Engineering Materials,2007,329:195-200.
    [81]Johnson C E. Chemical polishing of diamond [J]. Surface and Coating Technology,1994, 68:374-377.
    [82]McCormack M, Jin S, Graebner J, Tiefel I, Kammlott G. Low-temperature thinning of thick chemically vapor deposited diamond films with a molten Ce-Ni alloy [J]. Diamond and related materials,1994,3:254-258.
    [83]Yoshikawa M, Okuzumi F. Hot-iron-metal machnie for CVD diamond films and characteristics of the polished surface [J].Surface and Coatings Technology,1996, 88:197-203.
    [84]邱思齐.CVD鑽石膜表面抛光技术之研究—热化学抛光及化学辅助楼械抛光[D].国立台湾大学,台湾,2004.
    [85]蒋中伟,张竟敏.金刚石热化学抛光的机理研究[J].光学精密工程,2002,10(1):50-55.
    [86]Weima J A, Fahrne W R and Job R. Experimental investigation of the parameter dependency of the removal rate of thermochemically polished CVD diamond films [J]. Journal of Solid State Electrochemistry,2001,5(2):112-118.
    [87]Weima J A, Job R, Fahrner W R and Zaitsev A M. Low energy carbonaceous and graphite phases on the surfaces of thermochemically polished chemical vapor deposited diamond films [J]. Journal of Applied Physics,2000,87(9):4553-4557.
    [88]Weima J A, von Borany J, Kreissig U, and Fahrne W R. Quantitative analysis of carbon distribution in steel used for thermochemical polishing of diamond films [J]. Journal of The Electrochemical Society,2001,148(11):G607-G610.
    [89]Suzuki K, Yasunaga N, Seki Y, Ide A, Watanabe N, and Uematsu T. Dynamic friction polishing of diamond utilizing sliding wear by rotating metal disc[J].Proceeding of ASPE,1996,482-485.
    [90]Iwai M, Uematsu T, Suzuki K and Yasunaga N. High efficiency polishing of PCD with rotating metal disc [J]. Proc. of ISAAT2001,2001,231-238.
    [91]Chen Y, Zhang L C, Arsecularatne J A. Polishing of polycrystalline diamond by the technique of dynamic friction. Part 2:Material removal mechanism [J]. International Journal of Machine Tools & Manufacture,2007,47(10):1615-1624.
    [92]Chen Y, Zhang L C, Arsecularatne J A, Zarudi I. Polishing of polycrystalline diamond by the technique of dynamic friction, part 3:Mechanism exploration through debris analysis[J]. International Journal of Machine Tools & Manufacture,2007,47(15): 2282-2289.
    [93]Chen Y, Zhang L C. Polishing of polycrystalline diamond by the technique of dynamic friction, part 4:Establishing the polishing map[J]. International Journal of Machine Tools & Manufacture,2009,49(3-4):309-314.
    [94]Chen Y, Nguyen T, Zhang L C. Polishing of polycrystalline diamond by the technique of dynamic friction—Part 5:Quantitative analysis of material removal[J]. International Journal of Machine Tools and Manufacture,2009,49:515-520.
    [95]Zhou L, Huang S T, Xu L F. An efficient super-high speed polishing method for CVD diamond films [J]. International Journal of Refractory Metals and Hard Materials,2011,29: 698-704.
    [96]Tolansky S, in:Physical Properties of Diamond, Ed. R. Berman, Oxford:Clarendon Press, 1965.
    [97]Kuhnle J, Weis O. Mechanochemical superpolishing of diamond using NaNO3 or KNO3 as oxidizing agents[J]. Surface Science,1995,340(1-2):16-22.
    [98]Bhushan B, Subramaniam V V, Malshe A, Gupta B K and Ruan J. Tribological properties of polished diamond films [J]. Journal of Applied Physics,1993,74(6):4174-4180.
    [99]Hocheng H and Chen C C. Chemical-assisted mechanical polishing of diamond film on wafer[J]. Materials science forum,2006,505-507:1225-30.
    [100]Ollison C D, Brown W D, Malshe A P, Naseem H A and Ang S S. A comparison of mechanical lapping versus chemical-assisted mechanical polishing and planarization of chemical vapor deposited (CVD) diamond [J]. Diamond and Related Materials,1999,8(6):1083-1090.
    [101]Cheng C Y, Tsai H Y, Wu C H, Liu P Y, Hsieh C H and Chang Y Y. An oxidation enhanced mechanical polishing technique for CVD diamond films [J]. Diamond and Related Materials,2005,14(3-7):622-625.
    [102]陈启晟.化学辅助机械式抛光鑽石膜之研磨液作用[D].台湾,国立清华大学,2005.
    [103]Hsieh C H, Tsai H Y, Lai H T and Lin H Y. Comparison between mechanical method and chemical-assisted mechanical method for CVD diamond film polishing [J]. Proceedings of SPIE,2002,4936:337.
    [104]Haisma J, Van der Kruis F, Spierings B, Oomen J M. Damage-free tribochemical polishing of diamond at room temperature:a finishing technology[J]. Precision engineering, 1992,14(1):20-27.
    [105]Horio Ken-Ichiro, Hyohdoh Makoto, Kasai Toshio. Smoothing of single-crystal diamond with some soft powders [J].The Japan Society for Abrasive Technology,2000(44): 408-413.
    [106]Derry T E, Makau N W. Carbon atom exchange between the diamond surface and lubricant during polishing[J].Diamond & Related Materials,2006,15:160-163.
    [107]Hah S R, Fischer T E. Tribochemical polishing of silicon nitride[J]. Journal of the Electrochemical Society,1998,145(5):1708-1714.
    [108]Zhu Zhize, Muratov Viktor, Fischer Traugott E. Tribochemical polishing of silicon carbide in oxidant solution[J]. Wear,1999,225-229:848-856.
    [109]王季陶.现代热力学及热力学学科全貌[M].上海:复旦大学出版社,2005,105-107.
    [110]大连理工大学无机化学教研室.无机化学[M],北京:高等教育出版社,2001.6.
    [111]Butenko Y V, Kuznetsov V L, Chuvilin A L, Kolomiichuk V N, Stankus S V, Khairulin R A, et al. Kinetics of the graphitization of dispersed diamonds at "low" temperatures [J].Jouenal of Apllied Physics,2000,88(7):4380-4387.
    [112]Davies G, Evans T. Graphitization of diamond at zero pressure and at a high pressure[C]. Proc R Soc Lond A,1972,328:413-427.
    [113]Andreev V D. Spontaneous graphitization and thermal disintegration of diamond at T>2000K [J]. Physics of the solid state,1999,41(4):627.
    [114]Qian J, Pantea C, Huang J, Zerda T W, Zhao Y. Graphitization of diamond powders of different sizes at high pressure-high temperature[J]. Carbon,2004,42:2691-2697.
    [115]Shimada S, Tanka H, Higuchi M, et al. Thermo-chemical wear mechanism of diamond tool in machining of ferrous metals[J]. Annals of the CIRP,2004,53(1):57-60.
    [116]Howes V R. The graphitization of diamond [J]. Proceedings of the Physical Society, 1962,80:648-653.
    [117]Li Chengming, Chen Liangxian, Wang Limei, Liu Jinlong, Hei Lifu, Lu Fanxiu. The properties of free-standing diamond films after plasma high temperature treatment of the rapid heating [J]. Diamond & Related Materials,2011,20:492-495.
    [118]Paul E 1, Evans C J, Mangamelli A, McGlauflin M L, Polvanit R S. Chemical aspects of tool wear in single point diamond turning [J]. Precision Engineering,1996, 18:4-19.
    [119]Chen G C, Zhou Z Y, Li B, Zhou Y L, Askri J, Li C M, Tang W Z, Tong Y M, Lu F X, Behaviour of self-standing CVD diamond film with different dominant crystalline surfaces in thermal-iron plate polishing [J]. phys. lett,2006,23(8):2266-2268.
    [120]Wang S B, Sun Y J, Tian S. Surface graphitization analysis of cerium-polished HFCVD diamond films with micro-raman spectra [J]. Journal of Rare Earths,2008,26(3): 362-366.
    [121]Jin S, Graebner J E, Tiefel T H, Kammlott G W and Zydzik G J. Polishing of CVD diamond by diffusional reaction with manganese powder [J]. Diamond and Related Materials,1992, 1 (9):949-953.
    [122]Huang S T, Zhou L, Xu L F, Jiao K R. A super-high speed polishing technique for CVD diamond films [J]. Diamond and Related Materials,2010,19:1316-1323.
    [123]Furushiro N, Higuchi M, Yamaguchi T, Shimada S, Obata K, Polishing of single point diamond tool based on thermo-chemical reaction with copper [J]. Precision Engineering, 2009,33(4):486-491.
    [124]Field J E. Appendix:tables of properties. In The properties of natural and synthetic diamond [M]. London:Academic Press,1992:667-698.
    [125]Harrison J A, Colton R J, Investigation of the atomic-scale friction and energy dissipation on diamond using molecular dynamics [J]. The solid films,1995,60: 205-211.
    [126]Gogotsi Y G, Kailer A, Nickel K G. Pressure-introduce phase transformations in diamond [J]. Journal of Applied Physics,1998,4(3):1299-1304.
    [127]Wang C Y, Chen C, Song Y X. Mechanochemical polishing of single crystal diamond with mixture of oxidizing agents [J].Key Engineering Materials,2006,315-316:852-855.
    [128]Iwai M, Suzuki K, Uematsu T, Yasunaga N. A study on dynamic friction polishing of diamond, lnd report:Application to polishing of single crystal diamond[J]. Journal of the Japan Society for Abrasive Technology,2002,46(2):82-87.
    [129]谢有赞.金刚石理论与合成技术[M].湖南科学技术出版社,长沙,1993.
    [130]Johnson O. Catalysis and the interstitial-electron model for metals [J], J. Res. Inst. Catalysis, Hokkaido Univ.1973,21(1):1-54.
    [131]Lee J K, Anderson M W, Gray F A, et al. Oxidation of CVD diamond powders[J]. Diamond and Related Materials,2004,13:1070-1074.
    [132]John P, Polwart N, Troupe C E, Wilson J I B. The oxidation of (100) textured diamond [J]. Diamond and Related Materials,2002,11:861-866.
    [133]Tokuda Norio, Umezawa Hitoshi, Ri Sung-Gi, Yamabe Kikuo, Okushi Hideyo, Yamasaki Satoshi. Roughening of atomically flat diamond (111) surfaces by a hot HNO3/H2SO4 solution [J]. Diamond & Related Materials,2008,17:486-488.
    [134]Tokuda Norio, Takeuchi Daisuke, Ri Sung-Gi, Umezawa Hitoshi, Yamabe Kikuo, Okushi Hideyo, Satoshi Yamasaki. Flattening of oxidized diamond (111) surfaces with H2SO4/H2O2 solutions [J]. Diamond & Related Materials,2009,18:213-215.
    [135]Charrier G, Levy S, Vigneron J, Etcheberry A, Simon N. Electroless oxidation of boron-doped diamond surfaces:comparison between four oxidizing agents; Ce4-,MnO4-, H202 and S2O82- [J]. Diamond & Related Materials,2011,20:944-950.
    [136]姜兆华.应用表面化学与技术[M].哈尔滨工业大学出版社,哈尔滨,2002.3.
    [137]王光祖,贾英伦.金刚石表面的化学状态对其性能的影响[J].工具金刚石,2002(2)34-39.
    [138]Saw K G, du Plessis J. Diamond growth on faceted sapphire and the charged cluster model [J]. Journal of Crystal Growth,2005,279:349-356.
    [139]Ley Lothar. Preparation of low index single crystal diamond surfaces for surface science studies, Diamond & Related Materials,2011,20:418-427.
    [140]Gerhard Heinicke Rer. nat. habil, Tribochemistry [M]. Berlin:Akademie-verlag,1984: 31-40.
    [141]Gutman E M. Mechanochemistry of solid surfaces [M]. Singapore:World scientific publishing Co. Ptc. Ltd,1994:1-15.
    [142]王季陶.现代热力学即热力学学科全貌[M].天津:复旦大学出版社,2005.9:51-53.
    [143]SUN Z M. Mechanical Properties of MA-Pulse Discharge Sintered TiAl and the Effect of Chromium Addition [J]. Technical Bulletin of the Tohoku National Industrial Research Institute,1999,23:44-50.
    [144]Shagiev M R, Senkov O N, Salishchev G A, et al. High temperature properties of a submicrocrystalline Ti-47Al-3Cr alloy produced by mechanical alloying and hot isostatic pressing [J]. Journal of Alloys and Compounds,2000,313:201-208.
    [145]Jin Z J, Yuan Z W, Kang R K, et al. Fabrication and characterization of FeNiCr Matrix-TiC composite for polishing CVD diamond film [J]. Journal of Material Science and Technology,2009,25(3):319-324.
    [146]苑泽伟.CVD金刚石膜摩擦化学抛光技术研究[D].大连:大连理工大学,2008.12.
    [147]Lee W, Kwun S I. The effects of process control agents on mechanical alloying mechanisms in the Ti-Al system [J]. Journal of Alloys and Compounds,1996,240(1-2): 193-199.
    [148]Zolotukhin A, Kopylov P G, Ismagilov R R, et al. Thermal oxidation of CVD diamond [J]. Diamond and Related Materials,2010,19:1007-1011.
    [149]Joshi A, Nimmagadda R, Herrington J. Oxidation kinetics of diamond, graphite, and chemical vapor deposited diamond films by the thermal gravimetry [J]. Journal of Vacuum Science & Technology A,1990,8(3):2137-2142.
    [150]Luo Jianfeng, Dornfeld David A. Effects of Abrasive Size Distribution in Chemical Mechanical Planarization:Modeling and Verification [J]. IEEE Transactions on Semiconductor Manufacturing,2003,16(3):469-476.
    [151]张朝辉,杜永平,常秋英,等.化学机械抛光中抛光垫作用分析[J].北京交通大学学报,2007,31(1):18-21.
    [152]杨春维,王栋,李金英,等.Fenton高级氧化工艺中苯酚对亚甲基蓝退色反应的影响[J].环境科学学报,2006,26(2):193-196.
    [153]Cao Jiasheng, Zhang Wei-xian, Brown Derick G, et al. Oxidation of Lindane with Fe(Ⅱ)-Activated Sodium Persulfate [J]. Environmental Engineering Science,2008, 25(2):221-228.
    [154]滕欣荣.表面物理化学[M].北京:化学工业出版社,2009.8:115.
    [155]Walshr J, Herzog A H. Process for polishing semiconductor materials:US,3170273 [P]. 1965,02,23.
    [156]Sharma Virender K. Oxidation of inorganic contaminants by ferrates (Ⅵ, Ⅴ, and Ⅳ)-kinetics and mechanisms:A review [J]. Journal of Environmental Management,2011, 92(4):1051-1073.
    [157]Wood Robert H. The Heat Free Energy and Entropy of Ferrate (Ⅵ) Ion [J]. Joural of the American Chemical Science,1958,8:2038-2041.
    [158]王立立,曲久辉,王忠秋,等.高铁稳定性及其影响因素的研究[J].东北电力学院学报,1999,19(1):6-9.
    [159]宋华,王园园.高铁酸钾在中性、酸性介质中的稳定性[J].化学通报,2008,9:696-700.
    [160]宋华,宋亚瑞,柳艳修,等.高铁酸钾在不同介质中的稳定性[J],化学通报,2005,68:1-5.
    [161]庄玉贵,颜文强,许冬梅,等.高铁酸盐稳定剂的筛选[J].福建师范大学福清分校学报,2006,2:40-43.
    [162]陈志刚,陈杨,陈爱莲.硅晶片化学机械抛光中的化学作用机理[J].半导体技术,2006,31(2):112-114.
    [163]Ghodbane S, Ballutaud D, Omnes F, et al. Comparison of the XPS spectra from homoepitaxial {111},{100} and polycrystalline boron-doped diamond films [J]. Diamond and Related Materials,2010,19:630-636.
    [164]Yang Min, Marino Matthew J, Rojan Vincent J, et al. Quantification of oxygenated species on a diamond-like carbon (DLC) surface[J].Applied Surface Science,2011, 257:7633-7638.
    [165]黄惠忠.表面化学分析[M].上海:华东理工大学出版社,2007.1.
    [166]李娜.高铁酸钾同时去除微污染水中有机物和重金属的研究[D].太原:太原理工大学,2010.10.
    [167]Gaisinskaya A, Akhvlediani R, Edrei R, et al. Chemical composition, thermal stability and hydrogen plasma treatment of laser-cut single-crystal diamond surface studied by X-ray Photoelectron Spectroscopy and Atomic Force Microscopy [J]. Diamond and Related Materials,2010,19:305-313.
    [168]Simon N, Charrier G, Etcheberry A. Electroless oxidation of diamond surfaces in ceric and ferricyanide solutions:An easy way to produce "C-O" functional groups [J]. Electrochimica Acta,2010,55:5753-5759.
    [169]Scarfo A, Manno V, Rogers C, et al. In situ measurement of pressure and friction during CMP of contoured wafers [J]. Journal of the Electrochemical Society,2005,152: 477-481.
    [170]Matsuo H, Ishikawa A, Kikkawa T. Role of frictional force on the polishing rate of Cu chemical mechanical polishing [J]. Japanese Journal of Applied Physics,2004,43(4): 1813-1819.
    [171]温诗铸.摩擦学原理[M].北京:清华大学出版社,1990.
    [172]Zong W J, Li D, Cheng K, et al. The material removal mechanism in mechanical lapping of diamond cutting tools [J]. International Journal of Machine Tools & Manufacture, 2005,45:783-788.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700