用户名: 密码: 验证码:
LAGTP微晶玻璃显微结构、导电性能及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Li_2O-Al_2O_3-(Ge,Ti)O_2-P2O5(LAGTP)微晶玻璃具有较高的Li~+电导率、优异的抗弯强度和电化学稳定性,可望作为电解质材料在全固态锂电池中获得应用。目前,限制该材料发展和应用的析晶机理、Li~+导电通道、电导率与晶化工艺参数关系以及该微晶玻璃在锂电池中的应用等问题有待研究。论文针对上述问题展开研究,并取得如下成果:
     1.分析不同晶化制度对Li_(1.5)Al_(0.5)Ge_(1.5)(PO_4)_3微晶玻璃晶相转变、晶体生长和电导率的影响规律。发现晶化温度850°C的样品主晶相LiGe_2(PO_4)_3晶粒生长充分(约1140nm),材料电导率可达5.9×10~(-4)S/cm。
     2.研究了Li_(1+x)AlxGe_(2-x)(PO_4)_3微晶玻璃的导电机理,结果证明:该微晶玻璃有两种Li~+导电通道:第一种通道平行于LiGe_2(PO_4)_3晶胞c轴,呈方形狭长通道;第二种通道平行于R3R-AlPO4晶胞c轴,呈圆筒形通道。主晶相LiGe_2(PO_4)_3中Li原子有S1和S_2两种局部配位,Li(S1)可在导电通道内自由迁移产生离子导电;Li(S_2)只在初始位置附近发生位移振动,对电导率没有贡献。
     3.研究了Li_(1.5)Al_(0.5)(Ge1-yTiy)_(1.5)(PO_4)_3(y=0~1)微晶玻璃的析晶动力学、微观结构和电学性能。随着y的不断增大,微晶玻璃析出的主晶相由LiGe_2(PO_4)_3逐渐转变为LiTi_2(PO_4)_3、次晶相由非导电型C121–AlPO4逐渐变为导电型R3R–AlPO4、电导率由5.9×10~(-4)S/cm逐渐增加到8.8×10~(-4)S/cm、晶体生长指数由3逐渐减小为1、玻璃析晶活化能由313KJ/mol逐渐减小为276KJ/mol,晶体由三维方向同时生长过渡为一维方向生长。
     4.研究影响Li_(1.5)Al_(0.5)Ge_(1.5)(PO_4)_3微晶玻璃电导率的主要因素,结果表明对电导率影响的顺序为:主晶相相对含量>平均晶粒尺寸>孔隙率。首次建立微晶玻璃电导率与晶化工艺参数的函数关系:σ(β, T, t)=5.66+0.06β+0.13T-0.03t-0.18βt-0.16β~2-0.22T~2-0.13t~2,对制得高性能微晶玻璃的晶化工艺制度具有重要的指导作用。
     5.利用Li1.5Al0.5G1.5(PO_4)_3微晶玻璃电解质装配出全固态锂电池,并研究其变温电导率、电化学窗口、与电极材料的相容性和充放电性能,测试表明在-25~210°C温度范围内材料的电导率高于10~(-4)S/cm,电化学窗口为0~7V、与金属锂电极的界面相容性良好、充放电性能优异。
     6.利用放电等离子体烧结技术制备出大尺寸、高电导和高强度的Li_2O-Al_2O_3-TiO_2-P2O5微晶玻璃,材料电导率可达6.7×10~(-4)S/cm。
     上述研究工作解决了LAGTP微晶玻璃“组份与晶化制度的优化---显微结构---电学性能”关系规律的核心问题。论文关于Li~+导电通道结构、析晶机理、电导率与晶化参数关系、该微晶玻璃电解质在锂电池中的服役性能以及SPS技术制备微晶玻璃等研究内容具有一定创新性,对今后快离子导体材料的研究具有重要借鉴作用。
Li_2O-Al_2O_3-(Ge,Ti)O_2-P2O5(LAGTP) glass ceramics are thought to be candidateelectrolytes for all solid state lithium ionic battery because of their high lithium ionicconductivity, excellent mechanical strength and electrochemical stability. So far thereare some unsolved problem such as the crystal separation mechanism, lithium ionicconducting channel, relationship between conductivity and the heat treatmentparaments and the performances of glass ceramics assembled in lithium ionic battery.The above problems has been exhaustive studied in this thesis and the main results aresummarized as follows:
     1. The influence of crystallization paraments on phases' transformation, thecrystal growth and conductivity of Li_(1.5)Al_(0.5)Ge_(1.5)(PO_4)_3glass ceramics were carriedout, respectively. The highest conductivity (5.9×10~(-4)S/cm) at room temperature wasobtained for the specimen crystallized at850°C, with uniform crystals and densemicrostructure.
     2. The lithium ionic conducting mechanism was studied in this thesis. There aretwo kinds of Li~+conducting channels in LAGP glass ceramics. The first channel islong-narrow shape in space and is parallel with the c axis of LiGe_2(PO_4)_3phase. Thesecondary channel is columnar in shape and is parallel with the c axis of R3R-AlPO4phase. In major crystal phase LiGe_2(PO_4)_3phase, there are two occupy sites for Liatom. The Li(S1) atom can move freely in the conducting channel, forming theconductivity. However, Li(S_2) atom just can vibrate nearby it's original site, with nocontribution to the conductivity of glass ceramics.
     3. The crystallization kinetics, crystal phase's components, microstructures andconductivities of Li_(1.5)Al_(0.5)(Ge1-yTiy)_(1.5)(PO_4)_3(y=0~1) glass ceramics were studied,respectively. With increasing "y" value, the major conducting phase of glass ceramicschanged from LiGe_2(PO_4)_3to LiTi_2(PO_4)_3, the minor phase changed fromun-conducting C121-AlPO4to conducting R3R-AlPO4, the conductivity increasedfrom5.9×10~(-4)S/cm to8.8×10~(-4)S/cm, the value of Avrami index (n) decreased from3to1and the activation energy of crystallization (Ec) decreased gradually from313KJ/mol to276KJ/mol, respectively. That indicated the change from simultaneouslythree dimension to one dimension for crystal phases growth.
     4. The results showed that the influence factors on Li_(1.5)Al_(0.5)Ge_(1.5)(PO_4)_3glassceramics' conductivity follows the sequence: the relative content percentage of major phase> the average grain size of crystal phases> the porosity percentage. A functionrelationship between conductivity and the heat treatment parameters was proposedfirstly: σ(β, T, t)=5.66+0.06β+0.13T-0.03t-0.18βt-0.16β~2-0.22T~2-0.13t~2, providingtheoretical supervision to fabricate great performance of glass ceramics.
     5. The Li~+conductivities of Li_(1.5)Al_(0.5)Ge_(1.5)(PO_4)_3glass ceramics were no lessthan10~(-4)S/cm in the measure temperatures range from-25°C to210°C, with wideelectrochemical window (0~7V) and great interfacial compatibility with lithiummetals active substance. The excellent charge and discharge performance of all solidstate lithium battery assembled with LAGP glass ceramics suggested that the glassceramics have great potential applications in both military and civilian areas.
     6. Spark Plasma Sintering (SPS) has been employed to prepare large size, greatdense and high conductivity of Li_2O-Al_2O_3-TiO_2-P2O5(LATP) glass ceramics. Themaximum conductivity of glass ceramics was obtained at6.7×10~(-4)S/cm whensintering temperature was650°C.
     It is solved by the above mention research that the core issue of relationshipamong “the optimization of components and heat-treated schedules---microscopicstructures---the electric properties”. With regard to “the Li~+conducting channelstructures, the mechanism of crystallization, the establishment of relationship betweenconductivity and crystallization paraments, the battery service performance assembledby LAGP electrolyte”, the present thesis has such a certain innovation that it could beuseful for reference on studying the fast lithium ionic conducting materials.
引文
[1] P.W.麦克米伦著.微晶玻璃[M].王仞千译,北京:中国建筑工业出版社,1988.
    [2] Beall, G. H. Advances in Nucleation and Crystallisation in Glawwes. J. Am. Ceram.Soc.[J],1971(6):251-256.
    [3] Stookey. S. D.(1959b)[S]. Auslt Pat. No.46:230-239.
    [4]王承遇,陶瑛.玻璃材料手册[M].北京:化学工业出版社出版,2008.
    [5] Wolfram Holand, George Beall. Glass ceramic techonology [J]. Am. Ceram. Soc.,2002,24(5):569-573.
    [6]张常建,肖卓豪,卢安贤.透明微晶玻璃的研究现状与展望[J].材料导报.2009(7):38-43.
    [7] Thiana Berthier, Fokin Vladimir M, Edgar Zanotto D. New large grain, highlycrystalline, transparent glass ceramics [J]. J. Non-Cryst. Solids,2007,(354):1721-1730.
    [8]范春梅,孙诗兵,王为.电子束照射对BaO-SrO-TiO2-SiO2玻璃析晶性能的影响[J].硅酸盐学报,2003,31(4):410-417.
    [9]程金树,袁坚,何峰.烧结法微晶玻璃装饰板材的研制[J].玻璃,1994,21(2):1-3.
    [10]韩陈.含氟磷Li2O-Al2O3-SiO2微晶玻璃的析晶机制研究[D].浙江大学硕士论文,2006.
    [11] Zhou Lihua, Chen Daqin, Luo Wenqin. Transparent glass ceramic containing Er3+:CaF2nano-crystals prepared by sol-gel method [J]. Mater Lett,2007,61(18):3988-3994.
    [12]徐慢.玻璃基太阳能电池薄膜材料的制备及其结构和性能研究[D].武汉理工大学,2006.
    [13]姚奎,周歧发,张良莹等. PZTS系凝胶玻璃及微晶玻璃的结构研究[J].硅酸盐通报,1995,15(3):9-13.
    [14]李拓文.用铬渣为主要原料制备微晶玻璃[J].硅酸盐通报,1994,13(3):5-9.
    [15] Negro A, Bachiorrin A. Use of blast furnace slags in the perparation of glass-ceramic[J]. Ceramic.Inf.(Faenza),1978,13(9):523-530.
    [16] Salman S.M, Darwish H, Mahdy E.A. The influence of Al2O3,MgO and ZnO on thecrytallization characteristic and properties of lithium silicate glasses and glassceramics [J]. Mater. Chem. Phys.2008(112):945-953.
    [17]王艳丽,沈菊云. TiO2对堇青石微晶玻璃的分相与晶化的影响[J].玻璃与搪瓷,2000(2):21-26.
    [18] Salwa A.M, Abdel H,Bakar I.M. Effect of alumina on ceramic properties of cordieriteglass-ceramic from basalt rock [J]. J. Eur. Ceram. Soc.2007(27):1893-1897.
    [19] Myung W.C, Soo H.L, Ho S.C, Jong M.L. Properties of glasses based on theCaO-MgO-SiO2system for low-temperature co-fired ceramic [J]. Ceram. Int.,2009(35):2513-2518.
    [20] Mortier M., Bensalah A, Dantelle G., Patriarche G., Vivien D. Rare-earth dopedoxyfluoride glass ceramics and fluoride ceramics: synthesis and optical properties [J].Opt. Mater.2007(29):1263-1270.
    [21] Li Rounan, Zhu Peinan. Phlogopite-based glass ceramics [J]. J. Non-Cryst. Solids.1986,80(2):600-602.
    [22]刘新年.玻璃工艺学[M].北京:化学化工出版社,2004:5-6.
    [23]黄可龙,王兆翔,刘素琴.锂离子电池原理与关键技术[M].北京:化工工业出版社.2007.12.
    [24] Tsutomu Minami, Kazuhiro Imazawa, Masami Tanaka. Formation region andcharacterization of superionic conducting glasses in the systemsAgI-Ag2O-W2O3. Journal of Non-Crystalline Solids.1980,42:469-476.
    [25] Minami T, Katsuda T, Tanaka, M. Glassy electrolyte galvanic cells [J].Electrochemical Society,1980,127:1308-1310.
    [26] T. Minami, N. Machida. Preparation of Cu+ion-conducting CuI-CuBr-Cu2MoO4glasses and mixed-anion effect in conductivity of the glasses. JP1230448A.
    [27] J.B.Goodenough, H.Y-Hong,J.A.Kafalas,Fast Na+-ion transport in skeleton structures[J], Mat.Res.Bull.1976,11:203-220.
    [28] H.Y-Hong, Crystal structure and crystal chemistry in the system Na1+xZr2SixP3-xO12[J],Mat.Res.Bull.1976,11:173-182.
    [29] C.R. Mariappan, G. Govindaraj. Conductivity and ion dynamic studies in theNa4.7+xTi1.3-x(PO4)3.3-x(0≤x≤0.6) NASICON material [J]. Solid State Ionics,2005,176:1311-1318.
    [30]郑洪河,曲群婷,刘云伟,徐仲榆.无机固体电解质用于锂及锂离子蓄电池的研究进展II玻璃态锂无机固体电解质[J].电源技术.2007,31:1015-1020.
    [31] Fu J. Fast Li+ion conducting glass ceramics in the system Li2O-Al2O3-GeO2-P2O5[J].Solid State Ionics,1997,104(3-4):191-194.
    [22]王衍行,祖成奎,何坤,等.锂离子导电微晶玻璃的研究[J].材料导报,材料导报,2010,24(5):121-125.
    [33]许晓雄,温兆银.锂离子电池玻璃及玻璃陶瓷固体电解质材料研究[J].无机材料学报,2005,20(1):21-24.
    [34]丁飞,张晶,杨凯.锂离子无机固体电解质研究进展[J].电源技术,2007,31(6)27:496-499.
    [35]韩立国,卢安贤,李秀英.锂离子玻璃及微晶玻璃固体电解质的发展及应用[J].材料导报,2009,23(4):32-35.
    [36] Philippe Knauth. Inorganic solid Li ion conductors: An overview [J]. Solid StateIonics,2009,180:911-916.
    [36] Akitoshi Hayashi, Shigenori Hama, Fuminori Mizuno. Characterization of Li2S-P2S5glass ceramics as a solid electrolyte for lithium secondary batteries [J]. Solid StateIonics,2004,175:683-686.
    [37] Akitoshi Hayashi, Keiichi Minami, Masahiro Tatsumisago. Electrical andelectrochemical properties of the70Li2S·(30-x)P2S5·xP2O5glass-ceramic electrolytes[J]. Solid State Ionics,2008,179:128-1285.
    [38] Negro A, Bachiorrin A. Use of blast furnace slags in the perparation of glass-ceramic[J]. Ceramic.Inf.(Faenza),1978,13(9):523-530.
    [39] James E. Trevey, Yoon Seok Jung, Se-Hee Lee. Preparation of Li2S-GeSe2-P2S5electrolytes by a single step ball milling for all-solid-state lithium secondary batteries[J]. Journal of Power Sources,2010,195:4984-4989.
    [40] LEO C.J, CHOWDARI B.V.R, RAO G.V.S, et al. Lithium conducting glass ceramicwith Nasicon structure [J]. Mater. Res. Bull.,2002,37:1419-1430.
    [41] Aatiq A, Delmas C, Jazouli A.E. Structural and electrochemical study ofLi0.5Mn0.5Ti1.5Cr0.5(PO4)3[J]. Solid State Chemistry,2001,158:169-174.
    [42] Bohnke O, S. Ronchetti, Mazza D, Conductivity measurements on nasicon andnasicon-modified materials [J], Solid State Ionics.1999,122:127-136.
    [43]郑洪河,曲群婷,刘云伟,徐仲榆.无机固体电解质用于锂及锂离子电池研究进展—I锂陶瓷电解质.2007,131:349-353.
    [44] Fu J. Fast Li+ion conducting glass ceramics in the system Li2O-Al2O3-GeO2-P2O5[J].Solid State Ionics,1997,104(3-4):191-194.
    [45] Abrahams I, Hadzi F.E. Lithium ion conductivity and thermal behavior of glasses andcrystallized glasses in the system Li2O-Al2O3-TiO2-P2O5[J]. Solid State Ionics,2000,134(3-4):249-254.
    [46] Chowdari B. V. R, Subba Rao G. V, Lee G. Y. H. XPS and ionic conductivity studieson Li2O-Al2O3-(TiO2or GeO2)-P2O5glass ceramics. Solid State Ionics,2000,136~137:1067-1073.
    [47] Joykumar S. T, Binod K. Microstructural effects on the superionic conductivity of alithiated glass-ceramic [J]. Solid State Ionics,2006,177(7-8):727-732.
    [48] Joykumar S. T, Binod K. Composite effect in superionically conducting lithiumaluminium germanium phosphate based glass-ceramic [J]. J. Power Sources,2008,185(1):480-485.
    [49] Joykumar S. T, Binod K. Superionic conductivity in a lithium aluminum germaniumphosphate glass-ceramic [J]. J. Electrochem. Soc.,2008,155(12):915-920.
    [50] Xu Xiaoxiong, Wen Zhaoyin, X.Wu, Gu Zhonghua, Preparation and characterizationof lithium ion-conducting glass ceramics in the Li1+xCrxGe2-x(PO4)3system [J]. J.Am.Ceram.Soc.2007(90):2802-2808.
    [51] Xu Xiaoxiong, Wen Zhaoyin, Lithium ion conductive glass ceramics in the systemLi1.4Al0.4(Ge1+xTix)1.6(PO4)3(x=0-1.0)[J]. Solid State Ionics.2004(171):207-213.
    [52] Xu Xiaoxiong, Wen Zhaoyin, X.Wu, Gu Zhonghua, Lin Zuxiang. Preparation andCharacterization of Lithium Ion-Conducting glass ceramics in the Li1+xCrxGe2-x(PO4)3System [J]. Electrochem. Commun.2004(6):1233-1237.
    [53]杨淑珍.无机非金属材料测试实验.武汉:武汉业大学出版社[M],1990.
    [54]南京大学.粉晶X射线衍射物相分析.北京:地质出版社[M],1972.
    [55] Joykumar S. Thokchom, Nutan Gupta, Binod Kumar. Superionic Conductivity in aLithium Aluminum Germanium Phosphate Glass-Ceramic [J]. Journal of TheElectrochemical Society,2008,155: A915-A920.
    [56]何涌,张保民.独居石微晶玻璃中玻璃相含量的红外光谱定量测试[J].光谱学与光谱分析,2003,23:262-266.
    [57]曹明,郭兴忠.结晶度在Li2O-Al2O3-SiO2系玻璃析晶研究中的应用[J]硅酸盐通报.2005,3:13-17.
    [58] J. Dubois, M. Murat, A. Amroune, X. Carbonneau, R. Gardon, T.S. Kannan.High-temperature carboreduction of kaolins of different crystallinity [J]. Applied ClayScience,1998,1:1-12.
    [59] C.R. Mariappan, Chihiro Yada, Fabio Rosciano, et al. Correlation betweenmicro-structural properties and ionic conductivity of Li1.5Al0.5Ge1.5(PO4)3ceramics [J].Journal of Power Sources,2011,196:6456-6464.
    [60] Xiaoxiong Xu, Zhaoyin Wen, Xiangwei Wu, et al. Lithium Ion-Conducting Glass–Ceramics of Li1.5Al0.5Ge1.5(PO4)3-xLi2O (x=0.0-0.20) with Good Electrical andElectrochemical Properties. J. Am. Ceram. Soc.,200790:2802-2806.
    [61] Thokchom J S, Kumar B. The effects of crystallization parameters on the ionicconductivity of a lithium aluminum germanium phosphate glass-ceramic [J]. Journal ofPower Sources,2010,195:2870-2876.
    [62] Mariappan C R, Yada C, Rosciano F, Roling B. Correlation between micro-structuralproperties and ionic conductivity of Li1.5Al0.5Ge1.5(PO4)3ceramics [J]. Journal ofPower Sources,2011,96:6456-6464.
    [63] XU Xiaoxiong, WEN Zhaoyin, WU Xiangwei. Lithium Ion-Conducting glass ceramicsof Li1.5Al0.5Ge1.5(PO4)3-xLi2O (x=0.0-0.20) with Good Electrical and ElectrochemicalProperties [J]. Journal of the American Ceramic Society,2007,90(9):2802-2806.
    [64] HE Kun, WANG Yanhang, ZU Chengkui, et al. Influence of Al2O3additions oncrystallization mechanism and conductivity of Li2O-GeO2-P2O5glass ceramics [J].Physica B,2011,406:3947-395.
    [65] HE Kun, WANG Yanhang, ZU Chengkui, MA Juanrong, et al. Microstructure andIonic Conductivity of Li2O-Al2O3-GeO2-P2O5glass ceramics [J]. Chinese Journal ofInorganic Chemistry.2011,12:2484-2488.
    [66] HE Kun, WANG Yanhang, ZU Chengkui, MA Juanrong, et al. Crystallization Kineticsof Lithium Aluminum Germanium Phosphate Glass by DSC Technique [J]. Journal ofWuhan University of Technology-Materials Science Edition.2012, Vol46:3947-3950.
    [67] Jie F, Fast Li ion conducting glass ceramics in the system Li2O-Al2O3-GeO2-P2O5[J],Solid State Ionics,1997,104:191-194.
    [68] Rietveld H M. Line profiles of neutron powder-diffraction peaks for structurerefinement [J], Acta Crystallographica,1967,22:151-152.
    [69] Malmros G, Thomas J O. Least-squares structure refinement based on profile analysisof powder film indensity data measured on an automatic microdensitometer [J].Journal of Applied Crystallography,1977,10:7-11.
    [70] Young R A, Mackie P E, Vondreele R B. Application of the Pattern-FittingStructure-Refinement Method to X-Ray Powder diffraction Patterns. Journal ofApplied Crystallography [J],1977,10:262-269.
    [71] Hill R J, Howard C J. Quantitative phase annalysis from Neutron Powder DiffractionData using Rietveld Method [J]. Journal of Applied Crystallography,1987,20:467-474.
    [72]王佩玲,李香庭,陆昌伟等,现代无机材料组成与结构表征,北京:高等教育出版社,2006,12.
    [73] Albinati A and Willis B T M. The Rietveld method in neutron and X-ray PowderDiffraction [J]. Journal of Applied Crystallography,1982,15:361-374.
    [74] http://ftp.ccp14.dl.ac.uk/ccp/lutterottiluttero/laboratorio materiali/Rietveld. pdf.
    [75]傅若农,常永福.气相色谱和热分析技术.北京:国防工业出版社[M],1989.
    [76] Phang S. W, Daik R, Abdullah M G.[J]. Thin Solid Films.2005,477(1-2):125-130.
    [77] Meshrama M. R, Agrawala N. K.[J]. J. Magn. Magn. Mater.,2004,271(2-3):207-214.
    [78] Cheng-Hsiung Peng, Chyi-Ching Hwang, Jun Wan.[J]. Mater. Sci. Eng., B,2005,117(1):27-36.
    [79] Meshrama M. R, Agrawala N K.[J]. J. Magn. Magn. Mater.,2004,271(2-3):207-214.
    [80] Kemény T, Esták J. Comparision of crystallization kinetics determined by isothermaland non-isothermal methods [J]. Thermochim. Acta,1987,110(1):113-116.
    [81] Yinnon H, Uhlmann D.R. Applications of thermoanalytical techniques to the study ofcrystallization kinetics in glass-forming liquids, part I: Theory [J]. J. Non-Cryst.Solids,1983,54(2):253-275.
    [82] Kazunori Takada. METHOD FOR FORMING ELECTRODE ON CERAMIC.JP19910245598.
    [83]晓岚,李作鑫,丁文川,等.响应面法优化吹脱处理垃圾渗滤液[J].水处理技术,2011,37(3):61-64.
    [84]魏基业,王孙崯,陈英文,等.响应面法优化Fenton氧化处理高浓度丙烯酸废水[J].环境化学,2011,30(7):1303-1310.
    [85]季宏飞,许杨,李燕萍.采用响应面法优化红曲霉固态发酵产红曲色素培养条件的研究[J].食品科技,2008,8:9-13.
    [86]张润楚,郑海涛,兰燕.试验设计与分析及参数优化[M].北京:中国统计出版社.2003.
    [87]吴伟,崔光华.星点设计-效应面优化法及其在药学中的应用[J].国外医学药学分册,2000,27(5):392-399.
    [88] Cowpe J S, Astin J S, Pilkington R D, Hill A E. Application of Response SurfaceMethodology to laser-induced breakdown spectroscopy: Influences of hardwareconfiguration [J]. Spectrochimica Acta Part B,2007(62):1335-1342.
    [89] Helen K M, Iyyaswami R, Magesh G P. Modelling, analysis and optimization ofadsorption parameters for H3PO4activated rubber wood sawdust using responsesurface methodology (RSM)[J]. Colloids and Surfaces B: Biointerfaces,2009(70)35-45.
    [90] Jia Xia, Bingren Xiang, Wei Zhang. Determination of metacrate in water samplesusing dispersive liquid-liquid microextraction and HPLC with the aid of responsesurface methodology and experimental design [J]. Analytica Chimica Acta,2008,625:28-34.
    [91] Raymod H M. Response Surface Methodology-Current Status and Future Directions
    [J]. Journal of Quality Technology,1999,31(1):435-439.
    [92] Guoliang Li, Xiaolong Zhang, Jinmao You. Highly sensitive and selective pre-columnderivatization high-performance liquid chromatography approach for rapiddetermination of triterpenes oleanolic and ursolic acids and application to Swertiaspecies: Optimization of triterpenic acids extraction and pre-column derivatizationusing response surface methodology [J]. Analytica Chimica Acta,2011,688:208-218.
    [93]曾昭钧.均匀设计及其应用[M].沈阳:辽宁人民卫生出版社,1994.
    [94]郑少华,姜奉华.试验设计与数据处理[M].北京:中国建材工业出版社,2004.
    [95]徐向宏,何明珠.试验设计与Design-Expert、SPSS应用[M].北京:科学出版社出版,2010年7月.
    [96]隋允康,宇慧平.响应面方法的改进及其对工程优化的应用[M].北京:科学出版社出版,2011年2月.
    [97] Stat-Ease Inc. Design Expert Software, Educational Version8.0.6[M]. John Wiley&Sons Ltd.2012,01.
    [98]盛聚,谢武平,潘承毅.概率论与数理统计(第二版)[M].北京:高等教育出版社,1989.
    [99] Sijin Wang, Fang Chen, Jihong Wu. Optimization of pectin extraction assisted bymicrowave from apple pomace using response surface methodology [J]. Journal ofFood Engineering,2007,78:693-700.
    [100] V.I. Vitanov, N. Javaid, D.J. Stephenson. Application of response surfacemethodology for the optimisation of micro friction surfacing process [J]. Surface&Coatings Technology,2010,204:3501-3508.
    [101] J. Adamczyk, N. Horny, A. Tricoteaux. On the use of response surface methodologyto predict and interpret the preferred c-axis orientation of sputtered AlN thin films [J].Applied Surface Science,2008,254:1744-1750.
    [102] Teresa J. Cutright, Liliana Meza. Evaluation of the aerobic biodegradation oftrichloroethylene via response surface methodology [J]. Environment International,2007,33:338-345.
    [103] Pablo C. Giordano, Hugo D. Martínez, Alberto A. Iglesias. Application of responsesurface methodology and artificial neural networks for optimization of recombinantOryza sativa non-symbiotic hemoglobin [J]. Bioresource Technology,2010,101:7537-7544.
    [104]何坤. LAGP导电微晶玻璃的研究,中国建筑材料科学研究总院硕士论文.2011,03,01.
    [105]郑子山,张太中,唐子龙,沈万慈.锂无机固体电解质[J].化学进展,2003,15(2):102-106.
    [106]何坤,王衍行,祖成奎,等. Li2O-Al2O3-GeO2-P2O5微晶玻璃的微观结构和离子电导率,无机化学学报.2011,27(12):2484-2488.(SCI源刊, IF=0.7)
    [107]何坤,王衍行,祖成奎,刘永华,马眷荣. NASICON结构的锂离子导电微晶玻璃结构与电导率.无机化学学报,2012,28(9):1935-1939.
    [108]郑子山,张太中,唐子龙,沈万慈.锂离子二次电子最新进展及评述.化学世界,2004,5:270-273.
    [109] Fu J. Superionic conductivity of glass ceramics in the system Li2O-Al2O3-TiO2-P2O5[J]. Solid State Ionics,1997,96(3-4):195-198.
    [110] Aono H, Sugimoto E, Sadaoka Y., Imanaka N., Adachi G. Electrical property andsinterability of LiTi2(PO4)3mixed with lithium salt (Li3PO4or Li3BO3)[J]. Solid StateIonics,1991,47(3-4):257-280.
    [111]李文,王淼,李振华. Li2O-TiO2-SiO2-P2O5和Li2O-TiO2-Al2O3-P2O5体系锂离子固体电解质的制备及性能研究.无机化学学报,2006,22:2217-2221.
    [112] A.J. Bade, L.R. Forkna.谷林瑛,宋诗哲,许淳淳译.电化学测定方法及应用[M].北京:化学工业出版社,1998.
    [113] Aurbach D, Daroux M L, Faguy P W, et al. Identification of surface films formed onlithium in propylene carbonate solutions [J]. Journal of Electrochem Soc,1987,34:1161-1164.
    [114] Yazami R, Deschamps M. High reversible capacity carbon-lithium negative electrodein polymer electrolyte [J]. Journal of Power Sources,1995,54:411-414.
    [115]黄可龙,王兆翔,刘素琴.锂离子电池原理与关键技术[M].北京:化工工业出版社.2007.12.
    [116]马垚,周张健,姚伟志,等.放电等离子烧结(SPS)制备金属材料研究进展[J].材料导报,2008,20(7):60-65.
    [117]白玲,赵兴宇,沈卫平,等.放电等离子烧结技术及其在陶瓷制备中的应用[J].材料导报,2007,21(4):96-100.
    [118]熊焰,傅正义,王玉成.放电等离子烧结技术制备透明AlN陶瓷[J].硅酸盐学报,2005,33(6):753-758.
    [119]夏阳华,丰平,胡耀波,等. SPS技术的进展及其在硬质合金制备中的应用[J].硬质合金,2003,20(4):216-220.
    [120]冯海波,周玉,贾德昌.放电等离子烧结技术的原理及应用[J].材料科学与工艺,2003,11(3):327-240.
    [121]高濂,宫本大树.放电等离子烧结技术[J].无机材料学报,1997,2(14):129-133.
    [122] JUNG Y G,HA C G,SHIN J H,et a1.Fabrication of functionally gradedZrO2/NiCrAlY composites by plasma activated sintering using tape casting and itsthermal barrier property [J], Materials Science and Engineering,2002, A323:110-118.
    [123]张利波,彭金辉,张世敏.等离子体活化烧结在材料制备中的新应用[J].稀有金属,2000,6(24):445-449.
    [124]张东明,傅正义.放电等离子加压烧结技术特点及应用[J].武汉工业大学学报,1999,21(6):15-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700