用户名: 密码: 验证码:
金属—有机八面体和大环的构筑及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属-有机多面体和大环结构是一类人工合成的旨在模拟和学习酶催化过程和生物分子识别的重要模型。由于其内部具有高度限域空间,使得这一类化合物在进行主-客体化学及模拟酶催化研究时,显示出高度的立体选择性和特殊的微反应环境。但由于引入光响应、特定的弱作用识别位点以及催化位点等功能基团比较困难,金属-有机大环化合物在生物分子的识别传感以及特定的催化研究中的报道尚未得到充分拓展。在本论文的研究工作中,利用组装策略,将以上这些功能基团引入到金属-有机多面体和大环结构中,构筑了具有相对封闭的金属-有机八面体以及相对开放的金属-有机大环结构,并以这两类结构体系为载体,开展其在生物分子识别与模拟酶催化中的性能研究。
     1.金属-有机八面体性能研究
     (1)生物小分子识别:将荧光响应单元-喹啉基团以及生物分子识别位点-酰胺基团引入到配体PT1(1,3,5-三(2-喹啉基)苯甲酰腙)中,与过渡金属离子Co2+、Zn2+自组装得到晶体同构的八面体过渡金属笼状化合物。化合物配体中的酰胺基团只与胞苷形成双重氢键相互作用,对胞苷的紫外、荧光响应信号明显优于其他三种核糖核苷。
     (2)磁共振成像:将高自旋的稀土离子Gd3+与PT2(1,3,5-三(2-吡啶基)苯甲酰腙)自组装形成八面体稀土金属笼状化合物Gd-PT2。Gd-PT2具有很高的纵向弛豫率(r1=388.5mM-1s-1),可以应用于活体小鼠皮下组织成像。在葡萄糖、氨基葡萄糖及四种核糖核苷生物小分子中,实现了对氨基葡萄糖的专一选择性磁共振成像(MRI)。氨基葡萄糖的加入取代了配位的水分子,与Gd3+发生相互作用直接诱导磁共振响应信号的减弱。
     (3)非均相催化:将Lewis酸活化位点-Tb3+离子及弱碱单元-酰胺基团同时引入到具有一维孔道的多孔固态分子材料Tb-PT2中,实现了尺寸选择性非均相催化氰基硅烷化反应和Aldol反应。氰基硅烷化反应发生在催化剂的一维孔道并且活化单元为Tb3+离子;Aldol反应发生在八面体内部洞穴并且酰胺基团与环己酮之间存在氢键相互作用。
     2.金属-有机大环结构性能研究
     (1)手性催化:
     A.将L-脯氨酸作为手性催化中心引入到含有酰胺基团的配体PT3(1,3-二(2-毗啶基)-5-((S)-2-吡咯烷甲酰基)苯甲酰腙)中,分别与Co2+离子、Ni2+离子自组装,形成金属可调的具有单一手性的大环结构。由于该类大环化合物同时含有多个单一手性催化中心和丰富的氢键作用位点,可作为酶模拟反应器,实现了尺寸选择性均相不对称催化Aldol反应。基于其疏水性空腔强烈的空间可塑性,进一步提高了反应的非对映异构选择性(anti:syn最高为10.3:1)
     B.设计合成了基于L-脯氨酸和D-脯氨酸的两种对映体配体L-PT4和D-PT4[L-PT4(1,3-二(2-羟基-1-萘基)-5-((S)-2-吡咯烷甲酰基)苯甲酰腙);D-PT4(1,3-二(2-羟基-1-萘基)-5-((R)-2-吡咯烷甲酰基)苯甲酰腙)],与Ce3+离子自组装,形成两种中性对映体灯笼型化合物,实现了高对映选择性均相催化氰基硅烷化反应(ee值>99%)。
     (2)生物分子识别:将具有良好荧光响应基团-蒽单元和双重氢键作用位点-酰胺基团引入到配体PT7(9,10-二(2-乙酰吡啶基)蒽甲酰腙)中,与Co2+离子自组装,形成结构类似于正方形的大环化合物。该正电荷化合物含有丰富的共轭基团、多重氢键作用位点以及具有强烈的空间可塑性的亲/疏水性空腔,实现了专一选择性识别ATP。
Metal-organic polyhedra and macrocycles are important models to realize the process of enzyme catalysis and recognition. These structures discussed exhibit well-defined cavities with gated pores providing specific inner environments for selective uptaking and binding of guest molecules. Yet only a few "artificial systems" achieved the detection and imaging techniques in biological systems and the magnificent catalysis of natural enzymes. The major challenge at stake here goes beyond the introducing of an optical measurable output, the active sites and specific weak effect response sites. On the basis of this context, by combining these functional groups into metal-organic polyhedra/macrocycles with considerable stabilities, we constructed relatively enclosing metal-organic octahedra and relatively open metal-organic macrocycles for biological molecules recognition and simulating enzyme catalysis researches.
     1. Metal-organic octahedra research
     (1) Biological molecules recognition:By combining three quinoline groups as fluorophores, constituting amide groups as guest binding sites and communicators, we created metal-tunable octahedral nanocages Co-PT1/Zn-PTl [PT1(N',N",N"'-tris(quinolin-2-yl-methylene)benzene-1,3,5-tricarbohydrazide)]. Such a special two-fold hydrogen bonding pattern which only occurs between the cytidine and PT1is important for compounds Co-PT1/Zn-PTl to selectively recognize cytidine over others by both Uv-vis and luminescent responses.
     (2) MRI Contrast Agent: By combining high-spin Gd3+ions with PT2(N',N",N"'-tris(pyridin-2-yl-methylene)-benzene-1,3,5-tricarbohydrazide) to form octahedral nanocages Gd-PT2. Gd-PT2exhibited quite high longitudinal relaxivity (r1=388.5mM-1a-1), and could apply images of a living mouse hypodermis, could be described as the glucosamine-specific probes in the MR responses. The glucosamine molecules in the solution substitute the coordinated water molecules, and interact with Gd3+ions directly to induce the decreasing of MR responses.
     (3) Heterogeneous catalysis:Through incorporating having characteristic green luminescence Tb3+ions as Lewis acid sites and amide groups as guest-accessible functional weak base sites, we constructed porous molecular materials having one-dimensional channels, for size-selectively heterogeneous catalyzing the cyanosilylation and aldol reactions. The cyanosilylation reactions mostly took part in the channel of the catalysts and the aldehydes substrates were activated by the Tb3+ions, while the aldol reactions mainly occurred in the octahedral cavities and the cyclohexanone substrates possibly interacted with the amide groups through a hydrogen bond, respectively.
     2. Metal-organic macrocycles research
     (1) Chiral catalysis:
     A. Through incorporation of a L-proline moiety within ligand PT3(N',N",N"'-bis(pyridin-2-ylmethylene)-5-((S)-pyrrolidine-2-carboxamido)isophthalohydrazide) containing amide groups, we have developed a new approach to create metal-tunable homochiral triangles Co-PT3/Ni-PT3. With the asymmetric catalytic active sites to stabilize the potential transition state and the helical cavity to increase the local concentration of the substrates, triangles work as asymmetric enzyme-like catalysts prompting the well-known aldol reactions with size-and stereoselectivity [(anti:syn)max=10.3:1].
     B. By using L-/D-proline as a chiral adduct, we performed the homochiral lanterns of the two enantiomorphs L-CePT4/D-CePT4[L-PT4(N',N",N"'-bis((2-hydroxynaphthalen-1-y1)-methylene)-5-((S)-pyrrolidine-2-carboxamido)isophthalohydrazide); D-PT4(N',N",N"'-bis((2-hydroxynaphthalen-1-y1)methylene)-5-((R)-pyrrolidine-2-carboxamido)isophthalohydrazide)], having coordinatively unsaturated metal sites Ce3+. Asymmetric cyanosilylations of aromatic aldehydes were dispalyed to validate the excellent enantioselectively catalytic performance of the lanterns (eemax>99%).
     (3) Biological molecules recognition:By combining anthracene groups as fluorophores, constituting amide groups as guest binding sites and communicators, we created metal-organic squares Co-PT7[PT7(N',N",N"'-bis(1-(pyridin-2-yl)ethylidene)anthracene-9,10-dicarbohydrazide)]. These squares can be ATP-specific probes in luminescence responses as compared to other nucleotides, by utilizing the synergistic effects of electrostatic.π-stacking. hydrogen-bonding and coordinative interactions inside the cavity.
引文
[1]邹国林,李树伟.酶化学模拟研究进展[J].氨基酸和生物资源,1995,4:52-56.
    [2]Cram D J. The design of molecular hosts, guests, and their complexes [J]. Science,1988,240:760-767.
    [3]Lehn J M. Supramolecular Chemistry-Scope and Perspectives Molecules, Supermolecules, and Molecular Devices (Nobel Lecture) [J]. Angew. Chem. Int. Ed. Engl.,1988,27:89-112.
    [4]Marchetti L, Levine M. Biomimetic Catalysis [J]. ACS Catal.,2011,1:1090-1118.
    [5]Leininger S, Olenyuk B, Stang P J. Self-Assembly of Discrete Cyclic Nanostructures Mediated by Transition Metals [J]. Chem. Rev.,2000,100:853-908.
    [6]Caulder D L, Raymond K N. Supermolecules by Design [J]. Acc. Chem. Res.,1999,32:975-982.
    [7]Bilbeisi R A, Clegg J K, Elgrishi N, et al. Subcomponent Self-Assembly and Guest-Binding Properties of Face-Capped Fe4L48+ Capsules [J]. J. Am. Chem. Soc.,2012,134:5110-5119.
    [8]Miiller I M. Crystal structure refinement [M]. Oxford University,2006.
    [9]Stang P J, Olenyuk B. Self-Assembly, Symmetry, and Molecular Architecture: Coordination as the Motif in the Rational Design of Supramolecular Metallacyclic Polygons and Polyhedra [J]. Acc. Chem. Res.,1997,30:502-518.
    [10]Tranchemontagne D J, Ni Z, O'Keeffe M, et al. Reticular Chemistry of Metal-Organic Polyhedra [J]. Angew. Chem. Int. Ed.,2008,47:5136-5147.
    [11]Chakrabarty R, Mukherjee P S, Stang P J. Supramolecular Coordination:Self-Assembly of Finite Two- and Three-Dimensional Ensembles [J]. Chem. Rev.,2011,111:6810-6918.
    [12]Hiraoka S, Harano K, Shiro M, et al. Isostructural Coordination Capsules for a Series of 10 Different d5-d10 Transition-Metal Ions [J]. Angew. Chem. Int. Ed.,2006,45:6488-6491.
    [13]Liu Y, Kravtsov V C, Beauchamp D A, et al.4-Connected Metal-Organic Assemblies Mediated via Heterochelation and Bridging of Single Metal Ions:Kagome Lattice and the M6L12 Octahedron [J]. J. Am. Chem. Soc.,2005,127:7266-7267.
    [14]Fujita M, Oguro D, Miyazawa M, et al. Self-assembly of ten molecules into nanometer-sized organic host frameworks [J]. Nature,1995,378:469-471.
    [15]Kusukawa T, Fujita M. Self-Assembled M6L4-Type Coordination Nanocage with 2,2'-Bipyridine Ancillary Ligands. Facile Crystallization and X-ray Analysis of Shape-Selective Enclathration of Neutral Guests in the Cage [J]. J. Am. Chem. Soc.,2002,124:13576-13582.
    [16]Kusukawa T, Fujita M. Encapsulation of Large, Neutral Molecules in a Self-Assembled Nanocage Incorporating Six Palladium(Ⅱ) Ions [J]. Angew. Chem. Int. Ed.,1998,37:3142-3144.
    [17]Yoshizawa M, Kusukawa T, Kawano M, et al. Endohedral Clusterization of Ten Water Molecules into a "Molecular Ice" within the Hydrophobic Pocket of a Self-Assembled Cage [J]. J. Am. Chem. Soc., 2005,127:2798-2799.
    [18]Sakamoto S, Yoshizawa M, Kusukawa T, et al. Characterization of Encapsulating Supramolecules by Using CSI-MS with Ionization-Promoting Reagents [J]. Org. Lett.,2001,3:1601-1604.
    [19]Kumazawa K, Yoshizawa M, Liu H-B, et al. An Efficient Ionization Method of Electrospray Mass Spectrometry:The Development of an Aromatic-Cored Matrix That Wraps Labile Metal Complexes through Molecular Recognition [J]. Chem. Eur. J.,2005,11:2519-2524.
    [20]Nakabayashi K, Kawano M, Fujita M. pH-Switchable Through-Space Interaction of Organic Radicals within a Self-Assembled Coordination Cage [J]. Angew. Chem. Int. Ed.,2005,44:5322-5325.
    [21]Nakabayashi K, Kawano M, Kato T, et al. Manipulating the Through-Space Spin-Spin Interaction of Organic Radicals in the Confined Cavity of a Self-Assembled Cage [J]. Chem. Asian J.,2007,2: 164-170.
    [22]Ibukuro F, Kusukawa T, Fujita M. A Thermally Switchable Molecular Lock. Guest-Templated Synthesis of a Kinetically Stable Nanosized Cage [J]. J. Am. Chem. Soc.,1998,120:8561-8562.
    [23]Kusukawa T, Fujita M. "Ship-in-a-Bottle" Formation of Stable Hydrophobic Dimers of cis-Azobenzene and -Stilbene Derivatives in a Self-Assembled Coordination Nanocage [J]. J. Am. Chem. Soc.,1999,121:1397-1398.
    [24]Yoshizawa M, Kusukawa T, Fujita M, et al. Ship-in-a-Bottle Synthesis of Otherwise Labile Cyclic Trimers of Siloxanes in a Self-Assembled Coordination Cage [J]. J. Am. Chem. Soc.,2000,120: 6311-6312.
    [25]Yoshizawa M, Tamura M, Fujita M. AND/OR Bimolecular Recognition [J]. J. Am. Chem. Soc.,2004, 126:6846-6847.
    [26]Seidel S R, Stang P J. High-Symmetry Coordination Cages via Self-Assembly [J]. Acc. Chem.Res. 2002,35:972-983.
    [27]Swiegers G F, Malefetse T J. Classification of coordination polygons and polyhedra according to their mode of self-assembly.2. Review of the literature [J]. Coord. Chem. Rev.,2002,225:91-121.
    [28]Fujita M, Yazaki J, Ogura K. Preparation of a Macrocyclic Polynuclear Complex, [(en)Pd(4,4'-bpy)]4-(N03)8, Which Recognizes an Organic Molecule in Aqueous Media [J]. J. Am. Chem. Soc.,1990,112: 5645-5647.
    [29]Kryschenko Y K, Seidel S R, Arif A M, et al. Coordination-Driven Self-Assembly of Predesigned Supramolecular Triangles [J]. J. Am. Chem. Soc.,2003,125:5193-5198.
    [30]Murray H H, Raptis R G, Fackler Jr J P. Syntheses and x-ray structures of group 11 pyrazole and pyrazolate complexes. X-ray crystal structures of bis(3,5-diphenyl-pyrazole) copper(Ⅱ) dibromide, tris(.mu.-3,5-diphenylpyrazolato-N,N')trisilver(Ⅰ)-2-tetrahydrofuran, tris(.mu.-3,5-diphenylpyrazolato-N,N')trigold(Ⅰ), and hexakis-(.mu.-3,5-diphenyl-pyrazolato-N,N')hexagold(Ⅰ) [J]. Inorg. Chem.,1988, 27:26-33.
    [31]Raptis R G, Fackler Jr J P. The synthesis and crystal structure of a mixed-valence, digold(Ⅰ)/gold(Ⅲ), pyrazolato complex stable in aqua regia. The x-ray photoelectron study of homo- and heterovalent gold-pyrazolato trimers [J]. Inorg. Chem.,1990,29:5003-5006.
    [32]Hwang S.-H, Moorefield C N, Fronczek F R, et al. Construction of triangular metallomacrocycles: [M3(1,2-bis(2,2':6',2"-terpyridin-4-yl-ethynyl)benzene)3] [M= Ru(Ⅱ), Fe(Ⅱ),2Ru(Ⅱ)Fe(Ⅱ)] [J]. Chem. Commun.,2005,713-715.
    [33]Arvind K, Shih-Sheng S, Alistair J L. Directed assembly metallocyclic supramolecular systems for molecular recognition and chemical sensing [J]. Coord. Chem. Rev.,2008,252:922-939.
    [34]Michael W C, Daniel C, Garry S H. Self-assembly of discrete metallosupramolecular luminophores [J]. Coord. Chem. Rev.,2008,252:903-921.
    [35]Amijs C H, van Klink G P, van Koten G. Metallasupramolecular architectures, an overview of functional properties and applications [J]. Dalton Trans.,2006,308-327.
    [36]Fujita M, Yazaki J, Ogura K. Macrocylic polynuclear complexes [(en)M(4,4'-bpy)]4(NO3)8 (M= Pd or Pt) as "Inorganic Cyclophane." Their Ability for Molecular Recognition Tetrahedron Lett.,1991,32: 5589-5592.
    [37]Fujita M, Nagao S, Iida M, et al. Palladium(Ⅱ)-directed assembly of macrocyclic dinuclear complexes composed of (en)Pd2+ and bis(4-pyridyl)-substituted bidentate ligands. Remarkable ability for molecular recognition of electron-rich aromatic guests [J]. J. Am. Chem. Soc.,1993,115:1574-1576.
    [38]Caulder D L, Powers R E, Parac T N, et al. The Self-Assembly of a Predesigned Tetrahedral M4L6 Supramolecular Cluster [J]. Angew. Chem. Int. Ed.,1998.37:1840-1843.
    [39]Leung D H, Bergman R G, Raymond K N. Enthalpy-Entropy Compensation Reveals Solvent Reorganization as a Driving Force for Supramolecular Encapsulation in Water [J]. J. Am. Chem. Soc., 2008.130:2798-2805.
    [40]Pluth M D, Raymond K N. Reversible Guest Exchange Mechanisms in Supramolecular Host-Guest Assemblies [J]. Chem. Soc. Rev.,2007,36:161-171.
    [41]Davis A V, Fiedler D, Seeber G, et al. Guest Exchange Dynamics in an M4L6 Tetrahedral Host [J]. J. Am. Chem. Soc.,2006,128:1324-1333.
    [42]Dong V M. Fiedler D, Carl B, et al. Molecular Recognition of Iminium Ions in Water [J]. J. Am. Chem. Soc.,2006.128:14464-14465.
    [43]Davis A V, Raymond K N. The Big Squeeze:Guest Exchange in an M4L6 Supramolecular Host [J]. J. Am. Chem. Soc.,2005,127:7912-7919.
    [44]Tiedemann B E F, Raymond K N. Second-Order Jahn-Teller Effect in a Host-Guest Complex [J]. Angew. Chem. Int. Ed.,2007,46:4976-4978.
    [45]Tiedemann B E F. Raymond K N. Dangling Arms:A Tetrahedral Supramolecular Host with Partially Encapsulated Guests [J]. Angew. Chem. Int. Ed.,2006,45:83-86.
    [46]Fiedler D, Bergman R G. Raymond K. N. Stabilization of Reactive Organornetallic Intermediates Inside a Self-Assembled Nanoscale Host [J]. Angew. Chem. Int. Ed..2006.45:745-748.
    [47]Mal P, Breiner B, Rissanen K, et al. White Phosphorus Is Air-STab. Within a Self-Assembled Tetrahedral Capsule [J]. Science,2009,324:1697-1699.
    [48]Fujita M, Yu S-Y, Kusukawa T, et al. Self-Assembly of Nanometer-Sized Macrotricyclic Complexes from Ten Small Component Molecules [J]. Angew. Chem. Int. Ed.,1998,37:2082-2085.
    [49]Tashiro S, Tominaga M, Kawano M, et al. Sequence-Selective Recognition of Peptides within the Single Binding Pocket of a Self-Assembled Coordination Cage [J]. J. Am. Chem. Soc.,2005,127: 4546-4547.
    [50]Tashiro S, Tominaga M, Yamaguchi Y, et al. Folding a De Novo Designed Peptide into an a-Helix through Hydrophobic Binding by a Bowl-Shaped Host [J]. Angew. Chem. Int. Ed.,2006,45:241-244.
    [51]Lourdes B D, Reinhoudt D N, Mercedes C C. Design of fluorescent materials for chemical sensing [JJ. Chem. Soc. Rev.,2007,36:993-1017.
    [52]De Silva A P, Gunatatne H Q N, Gunnlauggson T, et al. Signaling Recognition Event with Fluorescent Sensors and Switches [J]. Chem. Rev.,1997,97:1515-1566.
    [53]刘育,尤长城,张衡益,超分子化学-合成受体的分子识别和组装[M].南开大学出版社,2001年.
    [54]吴世康,超分光化学导论—基础与应用[M].北京科学出版社,2005年.
    [55]Ramaiah D, Neelakandan P P, Nair A K, et al. Functional cyclophanes:Promising hosts for optical biomolecular recognition [J]. Chem. Soc. Rev.,2010,39:4158-4168.
    [56]Neelakandan P P, Hariharan M, Ramaiah D. Synthesis of a Novel Cyclic Donor Acceptor Conjugate for Selective Recognition of ATP [J]. Org. Lett.,7:5765-5768.
    [57]Neelakandan P P, Hariharan M, Ramaiah D. A Supramolecular ON-OFF-ON Fluorescence Assay for Selective Recognition of GTP [J]. J. Am. Chem. Soc.,2006,128:11334-11335.
    [58]Neelakandan P P, Ramaiah D. DNA-Assisted Long-Lived Excimer Formation in a Cyclophane [J]. Angew. Chem. Int. Ed.,2008,47:8407-8411.
    [59]Nair A K, Neelakandan P P, Ramaiah D. A supramolecular Cu(Ⅱ) metallocyclophane probe for guanosine 5'-monophosphate [J]. Chem. Commun.,2009,6352-6354.
    [60]Steed J W, Atwood J L超分子化学[M].北京:化学工业出版社,2006.
    [61]Hosseini M W, Blacker A J, Lehn J-M. Multiple Molecular Recognition and Catalysis. A Multifunctional Anion Receptor Bearing an Anion Binding Site, an Intercalating Group, and a Catalytic Site for Nucleotide Binding and Hydrolysis [J]. J. Am. Chem. Soc.,1990,112:3896-3904.
    [62]Davis A P. Wareham R S. A Tricyclic Polyamide Receptor for Carbohydrates in organic Media [J]. Angew. Chem. Int. Ed.,1998,37:2270-2273.
    [63]Klein E, Crump M P, Davis A P. Carbohydrate Recognition in Water by a Tricyclic Polyamide Receptor [J]. Angew. Chem. Int. Ed.,2005,44:298-302.
    [64]Ferrand Y, Crump M P, Davis A P. A Synthetic Lectin Analog for Biomimetic Disaccharide Recognition [J], Science,2007,318:619-622.
    [65]He C, Lin Z H, He Z, et al. Metal-Tunable Nanocages as Artificial Chemosensors [J]. Angew. Chem. Int. Ed.,2008,47:877-881.
    [66]Wang J, He C, Wu P, et al. An Amide-Containing Metal-Organic Tetrahedron Responding to a Spin-Trapping Reaction in a Fluorescent Enhancement Manner for Biological Imaging of NO in Living Cells [J]. J. Am. Chem. Soc.,2011,133:12402-12405.
    [67]Wu H, He C, Lin Z, et al. Metallohelical Triangles for Selective Detection of Adenosine Triphosphate in Aqueous Media [J]. Inorg. Chem.,2009,48:408-410.
    [68]Wang J Z, Brown C J, Bergman R G, et al. Hydroalkoxylation Catalyzed by a Gold (I) Complex Encapsulated in a Supramolecular Host [J]. J. Am. Chem. Soc.,2011,133:7358-7360.
    [69]Leung D H, Bergman R G, Raymond K N. Highly Selective Supramolecular Catalyzed Allylic Alcohol Isomerization [J]. J. Am. Chem. Soc.,2007,129:2746-2747.
    [70]Leung D H, Bergman R G, Raymond K N. Scope and Mechanism of the C-H Bond Activation Reactivity within a Supramolecular Host by an Iridium Guest:A Stepwise Ion Pair Guest Dissociation Mechanism [J]. J. Am. Chem. Soc.,2006 128:9781-9797.
    [71]Fiedler D, Bergman R G, Raymond K N. Stabilization of Reactive Organometallic Intermediates inside a Self-Assembled Nanoscale Host [J]. Angew. Chem. Int. Ed.,2006,45,745-748.
    [72]Leung D H, Fiedler D, Bergman R G, et al. Selective C-H Bond Activation by a Supramolecular Host-Guest Assembly [J]. Angew. Chem. Int. Ed.,2004,43:963-966.
    [73]Brown C J, Bergman R G, Raymond K N. Enantioselective Catalysis of the Aza-Cope Rearrangement by achiral Supramolecular Assembly [J]. J. Am. Chem. Soc.,2009,131:17530-17531.
    [74]Hastings C J, Fiedler D, Bergman R G, et al. Aza Cope Rearrangement of Propargyl Enammonium Cations Catalyzed By a Self-Assembled Nanozyme [J]. J. Am. Chem. Soc., 2008.130:10977-10983.
    [75]Fiedler D, Bergman R G, Raymond K N, et al. Supramolecular Catalysis of Unimolecular Rearrangements:Substrate Scope and Mechanistic Insights [J]. J. Am. Chem. Soc 2006 128: 10240-10252.
    [76]Fiedler D, Bergman R G, Raymond K N. Supramolecular Catalysis of a Unimolecular Transformation: Aza-Cope Rearrangement within a Self-Assembled Host [J]. Angew. Chem. Int. Ed..2004,43: 6748-6751.
    [77]Pluth M D, Bergman R G, Raymond K N. Acid Catalysis in Basic Solution:A Supramolecular Host Promotes Orthoformate Hydrolysis [J]. Science,2007,316:85-88.
    [78]Yoshizawa M, Tamura M, Fujita M. Diels-Alder in Aqueous Molecular Hosts:Unusual Regioselectivity and Efficient Catalysis [J]. Science,2006,312:251-254.
    [79]Waiter C J, Anderson H L, Sanders J K M. exo-Selective acceleration of an intermolecular Diels-Alder reaction by a trimeric porphyrin host [J]. J. Chem. Soc., Chem. Commun.,1993.458-460.
    [80]Meeuwissen J, Reek J N H. supramolecular catalysis beyond enzyme mimics [J]. Nat. Chem.,2010.2: 625-621.
    [81]Ma L, Abney C, Lin W. Enantioselective catalysis with homochiral metal-organic frameworks [J]. Chem. Soc. Rev.,2009,38:1248-1256.
    [82]Lee J Y, Farha O K, Roberts J, et al. Metal-organic framework materials as catalysts [J]. Chem. Soc. Rev.,2009,38:1450-1459.
    [83]Li G, Yu W, Ni J, Taifeng Liu, et al. Self-Assembly of a Homochiral Nanoscale Metallacycle from a Metallosalen Complex for Enantioselective Separation [J]. Angew. Chem. Int. Ed.,2008,47: 1245-1249.
    [84]Li G. Yu W, Cui Y. A Homochiral Nanotubular Crystalline Framework of Metallomacrocycles for Enantioselective Recognition and Separation [J]. J. Am. Chem. Soc.,2008,130:4582-4583.
    [85]Davis A V, Fiedler D, Ziegler M, et al. Resolution of Chiral, Tetrahedral M4L6 Metal-Ligand Hosts [J]. J. Am. Chem. Soc.,2007,129:15354-15363.
    [86]Liu T, Liu Y, Xuan W, et al. Chiral Nanoscale Metal-Organic Tetrahedral Cages:Diastereoselective Self-Assembly and Enantioselective Separation [J]. Angew. Chem. Int. Ed.,2010,49:4121-4124.
    [87]Nishioka Y, Yamaguchi T, Kawano M, et al. Asymmetric [2+2] Olefin Cross Photoaddition in a Self-Assembled Host with Remote Chiral Auxiliaries [J]. J. Am. Chem. Soc.,2008.130:8160-8161.
    [88]Hua J, Lin W. Chiral Metallacyclophanes:Self-Assembly, Characterization, and Application in Asymmetric Catalysis [J]. Org. Lett.,2004,6:861-864.
    [89]Liu Y, Zhang R, He C, et al. A palladium(Ⅱ) triangle as building blocks of microporous molecular materials:structures and catalytic performance [J]. Chem. Commun.,2010,746-748.
    [90]Auzel F. Upconversion and Anti-Stokes Processes with f and d Ions in Solids [J]. Chem. Rev.,2004. 104:139-174.
    [91]Liu Y, Wu X, He C, et al. Self-assembly of cerium-based metal-organic tetrahedrons for size-selectively luminescent sensing natural saccharides [J]. Chem. Commun.,2009.7554-7556.
    [92]Hashemi R H, Bradley W G Jr. MRI:The Basics [M]. Williams and Wilkins:Baltimore,1997.
    [93]Liu Y, Wu X, He C, et al. A truncated octahedral nanocage for fluorescent detection of nucleoside [J]. Dalton. Trans,2008,43:5866-5868.
    [94]Liu Y, Wu X, He C, et al. Metal-organic polyhedral for selective sensing of ribonucleosides through the cooperation of hydrogen-bonding interactions [J]. Dalton. Trans,2010,39:7727-7732.
    [95]Descalzo A B, Rurack K, Weisshoff H, et al. Rational Design of a Chromo-and Fluorogenic Hybrid Chemosensor Material for the Detection of Long-Chain Carboxylates [J]. J. Am. Chem. Soc.,2005, 127:184-200.
    [96]Hibbert F, Emsley J. Hydrogen Bonding and Chemical Reactivity [J]. Adv. Phys. Org. Chem.,1991, 26:255-379.
    [97]Lauffer R B. Paramagnetic metal complexes as water proton relaxation agents for NMR imaging: theory and design [J]. Chem. Rev.,1987,87:901-927.
    [98]Caravan P, Ellison J J, McMurry T J, et al. Gadolinium(III) Chelates as MRI Contrast Agents:Structure, Dynamics, and Applications [J]. Chem. Rev.,1999,99:2293-2352.
    [99]Werner E J, Datta A, Jocher C J, et al. High-Relaxivity MRI Contrast Agents:Where Coordination Chemistry Meets Medical Imaging [J]. Angew. Chem. Int. Ed.,2008,47:8568-8580.
    [100]Caravan P. Strategies for increasing the sensitivity of gadolinium based MRI contrast agents [J]. Chem. Soc. Rev.,2006,35:512-523.
    [101]Mastarone D J, Harrison V S R, Eckermann A L, et al. A Modular System for the Synthesis of Multiplexed Magnetic Resonance Probes [J]. J. Am. Chem. Soc.,2011,133:5329-5337.
    [102]Livramento J B, Toth E, Sour A, et al. High Relaxivity Confined to a Small Molecular Space:A Metallostar-Based, Potential MRI Contrast Agent [J]. Angew. Chem. Int. Ed.,2005,44:1480-1484.
    [103]Xu J, Raymond K N. Lord of the Rings:An Octameric Lanthanum Pyrazolonate Clusters [J]. Angew. Chem. Int. Ed.,2000,39:2745-2747.
    [104]Pierre V C, Botta M, Aime S, et al. Fe(Ⅲ)-Templated Gd(Ⅲ) Self-Assemblies-A New Route toward Macromolecular MRI Contrast Agents [J]. J. Am. Chem. Soc.,2006,128:9272-9273.
    [105]Werner E J, Datta A, Jocher C J, et al. High-Relaxivity MRI Contrast Agents:Where Coordination Chemistry Meets Medical Imaging [J]. Angew. Chem. Int. Ed.,2008,47:8568-8580.
    [106]Bunzli J-C G, Piguet C. Lanthanide-Containing molecular and supramolecular polymetallic functional assemblies [J]. Chem. Rev.,2002,102:1897-1928.
    [107]Caravan P, Ellison J J, McMurry T J, et al. Gadolinium(Ⅲ) chelates as MRI contrast agents:structure, dynamics, and applications [J]. Chem. Rev.,1999,99:2293-2352.
    [108]Livramento J B, Toth E, Sour A, et al. High Relaxivity Confined to a Small Molecular Space:A Metallostar-Based, Potential MRI Contrast Agent [J]. Angew. Chem. Int. Ed.,2005,44:1480-1484.
    [109]Parker D. Luminescent lanthanide sensors for pH, pO2 and selected anions [J]. Coord. Chem. Rev., 2000,205:109-130.
    [110]Gunnlaugsson T, Donaill D A M, Parker D. Lanthanide Macrocyclic Quinolyl Conjugates as Luminescent Molecular-Level Devices [J]. J. Am. Chem. Soc.,2001,123:12866-12876.
    [111]Higuchi K, Onaka M, Izumi Y. Solid Acid and Base-Catalyzed Cyanosilylation of Carbonyl Compounds with Cyanotrimethylsilane [J]. Bull. Chem. Soc. Jpn.,1993,66:2016-2032.
    [112]Gregory R J H. Cyanohydrins in Nature and the Laboratory:Biology, Preparations, and Synthetic Applications [J]. Chem. Rev.,1999,99:3649-3682.
    [113]North M. Synthesis and applications of non-racemic cyanohydrins [J]. Tetrahedron:Asym.,2003,14: 147-176.
    [114]Fujita M, Kwon Y J, Washizu S, et al. Preparation. Clathration Ability, and Catalysis of a Two-Dimensional Square Network Material Composed of Cadmium(Ⅱ) and 4,4'-Bipyridine [J]. J. Am. Chem. Soc.,1994,116:1151-1152.
    [115]Evans O R, Ngo H L, Lin W B. Chiral Porous Solids Based on Lamellar Lanthanide Phosphonates [J]. J. Am. Chem. Soc.,2001,123:10395-10396.
    [116]Schlichte K. Kratzke T. Kaskel S. Improved synthesis. Thermal Stability and Catalytic Properties of The Metal-Organic Framework Compound Cu3(BTC)2 [J]. Microporous Mesoporous Mater.,2004.73: 81-88.
    [117]Horike S, Dinca M, Tamaki K, et al. Size-selective lewis acid catalysis in a microporous metal-organic framework with exposed Mn2+ coordination sites [J]. J. Am. Chem. Soc.,2008,130: 5854-5855.
    [118]Neogi S, Sharma M K, Bharadwaj P K, et al. Knoevenagel condensation and cyanosilylation reactions catalyzed by a MOF containing coordinatively unsaturated Zn(Ⅱ) centers [J]. J. Mole. Catal. A:Chem.,2009,299:1-4.
    [119]Li Z, Zhu G, Guo X, et al. Synthesis, Structure, and Luminescent and Magnetic Properties of Novel Lanthanide Metal-Organic Frameworks with Zeolite-like Topology [J]. Inorg. Chem.,2007,46: 5174-5178.
    [120]Wong K L, Law G L, Yang Y Y. et al. A Highly Porous Luminescent Terbium-Organic Framework for Reversible Anion Sensing [J]. Adv. Mater.,2006,18:1051-1054.
    [121]Zhao B, Chen X Y, Cheng P, et al. Coordination Polymers Containing ID Channels as Selective Luminescent Probes [J]. J. Am. Chem. Soc.,2004,126:15394-15395.
    [122]Chen B. Wang L. Zapata F, et al. A Luminescent Microporous Metal-Organic Framework for the Recognition and Sensing of Anions [J]. J. Am. Chem. Soc.,2008.130:6718-6719.
    [123]Guo X. Zhu G, Sun F, et al. Synthesis, Structure, and Luminescent Properties of Microporous Lanthanide Metal-Organic Frameworks with Inorganic Rod-Shaped Building Units [J]. Inorg. Chem., 2006,45:2581-2587.
    [124]Xiao Y, Cui Y, Zheng Q, et al. A Microporous Luminescent Metal-Organic Framework for Highly Selective and Sensitive Sensing of Cu2+ in Aqueous Solution [J]. Chem. Commun.,2010,46: 5503-5505.
    [125]Chen B, Wang L, Xiao Y, et al. A Luminescent Metal-Organic Framework with Lewis Basic Pyridyl Sites for Sensing of Metal Ions [J]. Angew. Chem. Int. Ed..2009,48:500-503.
    [126]Jiang P, Guo Z. Fluorescent detection of zinc in biological systems:recent development on the design of chemosensors and biosensors [J]. Coord. Chem. Rev.,2004,248:205-229.
    [127]Kramer R. Fluorescent chemosensors for Cu2+ ions:Fast, selective, and highly sensitive [J]. Angew. Chem. Int. Ed.,1998,37:772-773.
    [128]Fabbrizzi L. Licchelli M, Pallavicini P, et al. Fluorescent Sensors for Transition Metals Based on Electron-Transfer and Energy-Transfer Mechanisms [J]. Chem. Eur. J.,1996,2:75-82.
    [129]Boiocchi M, Fabbrizzi L, Licchelli M, et al. A two-channel molecular dosimeter for the optical detection of copper(Ⅱ) [J]. Chem. Commun.,2003,1812-1813.
    [130]Wade L G. Organic Chemistry [M]. Upper Saddle River, New Jersey:Prentice Hall. (6th ed.2005) pp.1056-1066.
    [131]Smith M B, March J. Advanced Organic Chemistry [M]. New York:Wiley Interscience. (5th ed. 2001) pp.1218-1223.
    [132]Mahrwald R. Modern Aldol Reactions [M]. Weinheim, Germany:Wiley-VCH Verlag GmbH & Co. KGaA.2004, pp.1218-1223.
    [133]Lee C M, Kumler W D. The Dipole Moment and Structure of the Imide Group. Ⅲ. Straight Chain Imides>N--H…O[UNK]C< Hydrogen Bonding and a Case of O[UNK]C--H…O[UNK]C< Hydrogen Bonding [J]. J. Am. Chem. Soc.,1962,84:571-578.
    [134]Bent H A. Structural chemistry of donor-acceptor interactions [J]. Chem. Rev.,1968,68:587-648.
    [135]Huyskens P L. Factors governing the influence of a first hydrogen bond on the formation of a second one by the same molecule or ion [J]. J. Am. Chem. Soc.,1977,99:2578-2582.
    [136]Banerjee M, Das S, Yoon M, et al. Postsynthetic Modification Switches an Achiral Framework to Catalytically Active Homochiral Metal-Organic Porous Materials [J]. J. Am. Chem. Soc.,2009,131: 7524-7525.
    [137]Ghosh S K, Bureekaew S, Kitagawa S. A Dynamic, Isocyanurate-Functionalized Porous Coordination Polymer [J]. Angew. Chem. Int. Ed.,2008,47:3403-3406.
    [138]Lee S J, Lin W. Chiral Metallocycles:Rational Synthesis and Novel Applications [J]. Acc. Chem. Res.,2008,41:521-537.
    [139]Dias L C, Marchi A A, Ferreira A B, et al.1,5-Asymmetric Induction in Boron-Mediated Aldol Reactions of β-Alkoxy Methylketones [J]. J. Org. Chem.,2008,73:6299-6311.
    [140]Guillena G, Hita M, Del C, et al. A Highly Efficient Solvent-Free Asymmetric Direct Aldol Reaction Organ ocataly zed by Recoverable (S)-Binam-l-Prolinamides. ESI-MS Evidence of the Enamine-Iminium Formation [J]. J. Org. Chem.,2008,73:5933-5943.
    [141]Jones S, Atherton J C C. Elsegood M R J, et al. Dimethyl 9,10-anthracenedicarboxylate:a centrosymmetric transoid molecule [J]. Acta Cryst.,2000, C56:881-883.
    [142]Bahmanyar S, Houk K N, Martin H J, et al. Quantum Mechanical Predictions of the Stereoselectivities of Proline-Catalyzed Asymmetric Intermolecular Aldol Reactions [J]. J. Am. Chem. Soc.,2003,125:2475-2479.
    [143]Nakadai M, Saito S, Yamamoto H. Diversity-based strategy for discovery of environmentally benign organocatalyst:diamine-protonic acid catalysts for asymmetric direct aldol reaction [J].Tetrahedron., 2002,58:8167-8177.
    [144]Sathapornvajana S, Vilaivan T. Prolinamides derived from aminophenols as organocatalysts for asymmetric direct aldol reactions [J]. Tetrahedron.,2007,63:10253-10259.
    [145]Dang D, Wu P, He C, et al. Homochiral Metal-Organic Frameworks for Heterogeneous Asymmetric Catalysis [J]. J. Am. Chem. Soc.,2010,132:14321-14323.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700