用户名: 密码: 验证码:
光谱法研究血红素类蛋白与配体的相互作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要

All of the vital actions in cells are dependent on the expression of function of proteins, no proteins, no vital actions, a lot of biological molecules all participate in maintain and activation of proteins' biological functions. So reveal the profound mystery of vital movement must base on deeply research on the interaction of proteins.The hemeproteins participate in important biological function in cell, such as, preserving, transport of oxygen and electron transfer, and so on, which are executors in the vital actions. Here, we have studied the interaction between hemoproteins, such as Myoglobin and Cytochrome b5and some representative ligands, such as metal ions (Cu(Ⅱ), Fe(Ⅲ)), PEG200, PEG400, under near physiological conditions in vitro.
     (1) The interactions between Cu(Ⅱ), Fe(Ⅲ), Fe(Ⅱ) and the water soluble fragment of cytochrome b5(cytb5) have been investigated by multi-spectroscopic techniques, such as UV-Vis absorption spectroscopy, fluorescence spectroscopy, synchronous fluorescence spectroscopy, time-resolved fluorescence spetroscopy and circular dichrosm(CD). The results show that metal ions, such as, Cu(Ⅱ), Fe(Ⅲ), Fe(Ⅱ) can interact with cytb5, which induce the quenching of cytb5. The quenching mechanism of cytb5has been studied by fluorescence spectroscopy in different temperatures. The quenching mechanism of cytb5is dominated by dynamic quenching induced by Cu(Ⅱ), and the quenching mechanism of cytb5induced by Fe(Ⅱ) and Fe(Ⅲ) are static quenching, the valence state of iron has little effect on the interaction between cytb5and Fe. Synchronous fluorescence and circular dichroism spectra demonstrate that Cu(Ⅱ), Fe(Ⅲ) and Fe(Ⅱ) could also influence the micro-circumatance of aromatic amino residues and secondary structure of the protein.
     (2) The direct interactions between the active center of myoglobin and metal ions M(Ⅱ)(Cu(Ⅱ)、Zn(Ⅱ)、Mg(Ⅱ)、Co(Ⅱ) and Mn(Ⅱ)) have been studied by ultraviolet absorbance spectra. By changing different ionic concentration [Mb:M(Ⅱ)=1:1;1:2;1:4;1:8;1:10], different temperature [277,294,310and325K] and different interaction time(2,4,6,8and10days), results show that the iron ion of myoglobin is replaced by metal ions M(Ⅱ) and the corresponding myoglobin derivatives are produced, in addition, the interaction is increased gradually with amount of external metal ions added, the temperature advanced and the time extended.
     (3) The interactions between Mb(K56D) and Cu(Ⅱ), Fe(Ⅲ) have been studied by UV-Vis absorption spectroscopy, fluorescence spectroscopy and circular dichrosm(CD). Quenching of Mb(K56D) were studied by fluorescence spectroscopy in different temperatures289,298and310K, respectively, and the mechanism of quenching were confirmed. The binding contant, binding site numbers were gained by Lineweaver-Burk equation and double-lg equation.The thermodynamic parameters and acting force of interaction were found by thermodynamic equation. The binding distants between protein and metal ions were achieved by the Forster theory of non-radiation energy thansfer. At the same time, how the conformation of Mb(K56D) to be affected by Cu(Ⅱ) and Fe(Ⅲ) have been reaseached by synchronous fluorescence spetra and CD. Displacement of Asp44, Asp60and Lys56amino acids on the surface of myoglobin has a certain impact on the three-dimensional structure and function of myoglobin compared with wild type myoglobin.
     (4) The coordination reaction between metMb(WT) and Mb(K56D) and PEG400, PEG200, PEG2000were investigated by means of UV-Vis absorption spectra, steady fluorescence spectra, circular dichroism(CD) and synchronous fluorescence spectra, respectively. The experimental results showed that the transitions of Soret and Q band shifted to lower energies due to the formation of metMb-PEG400complex. According to the fluorescence enhancement equation, the binding constants of the complex at different temperatures, actting force and the thermodynamic parameters were obtained by double-lg equation and thermodynamic equation. At the same time, how to affect on conformation of Mbs in forming the complexs has been studied by synchronous fluorescence spectroscopy and UV spectroscopy. At last, similarities and differences of coordination reaction between metMb and different PEG has been gained.
     (5) The unfold of cytb5and Myoglobin(WT, D44K) have been studied by the fluorescence spectra and circular dichroism spectra in different temperatures and pHs. The results show that the hydrophobic region in the interior of the proteins have been collapsed, and the conformation is changed when the temperature and pHs have been changed and the mutation of the surface-charged residue Asp44to Lys44increases the protein's stability on the resistance to heat and acid denature.
     We have gained the exact and important result by studying the interaction between hemeproteins and low molecular weight's biological molecule by the numbers.These results help to know the metabolizable course of metal ions in vitro and affect of metal ions on structure of proteins, which deeply explain the affect of metal ions on biological function of proteins; help to know the pharmacology and toxicology of neuter surfactants PEG; help to know the coordination reaction of hemoproteins and ligants, which are very important for basic investigation and application.
引文
[1]唐朝枢,齐永芬.蛋白质种类的多样性及功能复杂性[J].国外医学.生理、病理科学与临床分册,2004,24(1):1-4.
    [2]杨频,高飞.无机化学原理[M].北京:科学出版社,2002,8-11.
    [3]李青仁,王月梅.微量元素与人体健康[J].微量元素与健康研究,2007,24(3):61-63.
    [4]Strittatter P, Spatz L, Corcoran D, et al. Purification and properties of rat liver microsomal stearyl coenzyme A desaturase[J].Proc Natl Acad Sci,1974,71:4565-4569.
    [5]Lu Y, Berry S M, Pfister T D. Engineering novel metalloproteins:design of metal-binding sites into native protein scaffolds[J]. Chem. Rev.,2001,101:3047-3080.
    [6]王英杰,明镇寰.锌在酶中发挥功能的几种方式[J].生命的化学,1994,14(1):21-23
    [7]陈因.含钼酶和钼在其中的作用[J].植物生理学通讯,1989,3:67-74.
    [8]陈冬玲,刘秋田.微量金属、金属酶与金属簇[J].百科知识,1989,(6):43-46
    [9]Valentine J S, Pantoliano M W, Mcdonnell P J, Burger A R and Lippard S J. pH-dependent migration of copper(II) to the vacant zinc-binding site of zinc-free bovine erythrocyte superoxide dismutase[J]. Proc.Natl.Acard.Sci.U.S.A,1979,76(9):4245-4249
    [10]Fee J A and Briggs R G. Studies on the reconstitution of bovine erythrocyte superoxide dismutase. V. Preparation and properties of derivatives in which both zinc and copper sites contain copper[J].Biochim.Biophys.Acta.,1975,400(2):439-450.
    [11]Lippard S J, Burger A R, gurbil K U, et al. Nuclear magnetic resonance and chemical modification studies of bovine erythrocyte superoxide dismutase:evidence for zinc-promoted organization of the active site structure. Biochemistry,1977,16(6):1136-1141.
    [12]Fee J A. Studies on the reconstitution of bovine erythrocyte superoxide dismutase. IV. Preparation and some properties of the enzyme in which Co(II) is substituted for Zn(II)[J]. J.Biol.Chem.,1973,248: 4229-4234.
    [13]Cass A E G, Galdes A, Hill H A O, et al. Heavy metal binding to biological molecules:Identification of ligands by observation of 199Hg--1H coupling[J].FEBS.lett.,1978,94(2):311-314.
    [14]Baily D B, Ellis P D, Fee J A. Cadmium-113 nuclear magnetic resonance studies of cadmium-substituted derivatives of bovine superoxide dismutase[J]. Biochemistry,1980,19(3): 591-596.
    [15]Calabrese L, Cocco D, Desider A. A novel Co(Ⅱ) binding site in copper-free superoxide dismutase: evidence for binding of cobalt at the copper binding site[J].FEBS.lett.,1979,106(1):142-144.
    [16]Cass A E G, Hill H A O, Bannister J V, et al. Zinc(Ⅱ) binding to apo-(bovine erythrocyte superoxide dismutase)[J].Biochem.J.,1979,177(2):477-486.
    [17]Rotilio G, Finazzi A, Agro, Calabrese L, et al. Studies of the metal sites of copper proteins. Ligands of copper in hemocuprein[J]. Biochemistry,1971,10(4):616-624.
    [18]Fee J A, Gaber B P. Anion binding to bovine erythrocyte superoxide dismutase. Evidence for multiple binding sites with qualitatively different properties[J].J.Biol.Chem.,1972,247(1):60-65.
    [19]Rigo A, Viglino P and Rotilio G. Competitive inhibition of Cu, Zn superoxide dismutase by monovalent anions[J]. Biophys, Res. Commun.,1977,79(3):776-783.
    [20]Fee J A and Bull C. Steady-state kinetic studies of superoxide dismutases. Saturative behavior of the copper-and zinc-containing protein[J]. J.Biol.Chem.,1986,261(28):13000-13005.
    [21]Rigo A, viglino P andRotilio G. Kinetic study of O-2 DISMUTATION BY BOVINE SUPEROXIDE DISMUTASE. Evidence for saturation of the catalytic sites by O-2[J]. Biochem.Biophys.Res.Commun.,1975,63(4):1013-1018.
    [22]Strothkamp K G and Lippard S J. Anion binding to the four-copper form of bovine erythrocyte superoxide dismutase:Mechanistic implications[J].Biochemistry,1981,20(26):7488-7493.
    [23]Hallewell R A, Masiarz F R, Najarian R C, Puma J P, et al. Human Cu/Zn superoxide dismutase cDNA:isolation of clones synthesising high levels of active or inactive enzyme from an expression library[J]. Nucl. Acids Res.,1985,13(6):2017-2034.
    [24]Banci L, Bertini I, Luchinat C and Hallewell R A. Ann.N.Y. The exploration of the active-site cavity of copper-zinc superoxide dismutase[J]. Acad.Sci.,1988,542:37-52.
    [25]Beyer W F, Fridovich I, Mullenbach G T and Hallewell R A. Examination of the role of arginine-143 in the human copper and zinc superoxide dismutase by site-specific mutagenesis[J]. J.Biol.Chem., 1987,262(23):11182-11187
    [26]McConn J D, Tsuru D, andYasunobn K. T. BACILLUS SUBTILIS NEUTRAL PROTEINASE.I. A ZINC ENZYME OF HIGH SPECIFIC ACTIVITY[J]. J. Biol.Chem.,1964,239:3706-3715.
    [27]Csopak H, Falk K E. The specific binding of copper(II) to alkaline phosphatase of E. coli[J]. FEBS Lett.,1970,7(2):147-150.
    [28]胡皆汉,舒占勇.铜锌超氧化物歧化酶活性中心铜与组氨酸的相互作用[J].中国科学B辑,1993,23(8):793-797.
    [29]HU J H, SHU Z Y. Interaction of Copper in CuZn-Superoxide Dismutase with Histidine[J]. Science in China series B,1994,37(3):265-271.
    [30]胡皆汉,陶丽梅,王孝敏.紫外可见吸收光谱法研究超氧化物歧化酶活性中心钻与组氨酸的相互作用[J].光谱学与光谱分析,1995,15(2):9-12.
    [31]舒占勇,胡皆汉,徐永廷,杨开海.生物小分子与铜锌超氧化物歧化酶相互作用的波谱学研究及其应用[J].波谱学杂志,1996,13(5):463-471.
    [32]贾颖萍,郑学仿,胡皆汉.紫外-可见吸收光谱法研究细胞色素C活性中心铁离子与微量元素的相互作用[J].光谱学与光谱分析,2001,21(2):222-223.
    [33]郑学仿,王静云,王园,安利佳,盖宏伟,胡皆汉.氨基酰化酶与Cu(Ⅱ)相互作用的谱学研究[J],光谱学与光谱分析,2001,21(6):804-806.
    [344]王静云,郑学仿,安利佳,盖宏伟.胡皆汉.碱性磷酸酶与Cu(Ⅱ)相互作用的谱学研究[J].光谱学与光谱分析,2001,21(4):432-434.
    [35]盖宏伟.郑学仿,王静云,安利佳,胡皆汉.可见光谱法研究核酸酶PI与氯化铜(Ⅱ)的和互作用[J].光谱学与光谱分析,2000,20(3):308-310.
    [36]郑学仿,胡皆汉,许永廷,程国宝.可见吸收光谱法研究铜锌超氧化歧化酶活性中心金属离子与氯化钻的相互作用[J].光谱学与光谱分析,1997,17(5):35-39.
    [37]郑学仿,王静云,林青松,安利佳,胡皆汉.枯草杆菌中性蛋白酶与Cu(Ⅱ)相互作用的EPR研究[J].化学通报,2001,(10):641-643.
    [38]胡皆汉,郑学仿,许永廷,程国宝.枯草杆菌中性蛋白酶与无机金属化合物相互作用的核磁共振谱[J].科学通报,2000,45(5):932-935.
    [39]郑学仿,高大彬,杨桦,胡皆汉.铜锌超氧化物歧化酶与精氨酸钴(Ⅱ)的相互作用[J].分子科学学报,2000,16(4):230-233.
    [40]郑学仿,胡皆汉,王静云,盖宏伟,安利佳.铜锌超氧化物歧化酶与色氨酸钴(Ⅱ)的相互作用[J].光谱学与光谱分析,2000,20(3):305-307.
    [41]郑学仿,胡皆汉,许永廷,程国宝.铜锌超氧化歧化酶与氯化镍(Ⅱ)相互作用的谱学研究[J].化学通报,2000,(2):46-48.
    [42]贾颖萍,郑学仿,胡皆汉.紫外-可见光谱法研究细胞色素C活性中心金属离子与硫酸铜的相互作用[J].光谱学与光谱分析,2001,21(1):54-56.
    [43]胡皆汉,郑学仿,许永廷,程国宝,赵永魁.光谱、波谱法研究铜锌超氧化酶与氯化钴(Ⅱ)、组氨酸钴(Ⅱ)相互作用[J].光谱学与光谱分析,1999,19(6):304-309.
    [44]郑学仿,胡皆汉,程国宝,许永廷,赵永魁,刘美华.光谱法研究铜锌超氧歧化酶与组氨酸钴(Ⅱ)的相互作用*Ⅲ溶液的pH值、作用时间的影响[J].光谱学与光谱分析,1999,19(6):803-805.
    [45]郑学仿,胡皆汉,程国宝,许永廷,赵永魁,刘美华.光谱法研究铜锌超氧歧化酶与组氨酸钻(Ⅱ)的相互作用*Ⅱ.外加组氨酸钴(Ⅱ)及磷酸盐的影响[J].光谱法与光谱分析,1999,19(6):798-802.
    [46]郑学仿,王静云,王园,高大彬,胡皆汉.铜锌超氧化酶与丝氨酸钴(Ⅱ)的相互作用[J].催化学报,2001,22(6):582-584.
    [47]郑学仿,高大彬,由业诚,胡皆汉.铜锌超氧化物歧化酶与苏氨酸钻(Ⅱ)的相互作用[J].光谱学与光谱分析,2003,23(6):1139-1141.
    [48]余军平.荧光光谱法在药物分析及药物与生物分子作用中的应用研究[D].武汉:武汉大学,2004.
    [49]闫炀,裴若会,阎宏涛.抗凝药物华法林与牛血清白蛋白相互作用光谱研究[J].药学学报,2008,43(12):1224-1227
    [50]倪永年,赖燕华.光谱法研究吲达帕胺与牛血清白蛋白的相互作用[J].南昌大学学报(理科版),2008,32(4):376-381.
    [51]Yue Y, Chen X, Qin J, Yao X. Characterization of the mangiferin-human serum albumin complex by spectroscopic and molecular modeling approaches[J]. J Pharm.Biomed Anal.,2009,49(3):753-759.
    [52]Lu Z, Zhang Y Y, Liu H, et al. Transport of a cancer chemopreventive polyphenol, resveratrol: interaction with serum albumin and hemoglobin[J]. J Fluoresc,2007,17:580-587.
    [53]Bogdan M, Pirnau A, Floare C, Carmen Bugeac. Binding interaction of indomethacin with human serum albumin[J]. Pharmaceutical and Biomedical Analysis,2008,47:981-984.
    [54]李文静,敖登高娃,白桦等.米诺环素与牛血清白蛋白相互作用的研究[J].军事医学科学院院刊,2008,32(5):452-454.
    [55]Cui F, Qin L, Zhang G, et al. Interaction of anthracycline disaccharide with human serum albumin: investigation by fluorescence spectroscopic technique and modeling studies[J]. Pharmaceutical and Biomedical Analysis.2008,48:1029-1036.
    [56]Ran D, Wu X, Zheng J, et al. Study on the interaction between florasulam and bovine serum albumin[J].J Fluoresc.,2007,17:721-726.
    [57]Wang Y Q, Tang B P, Zhang H M, et al. Studies on the interaction between imidacloprid and human serum albumin:spectroscopic approach[J]. Photochemistry and Photobiology B:Biology[J].2009, 94:183-190.
    [58]闫炀,裴若会,阎宏涛.抗凝药物华法林与牛血清白蛋白相互作用光谱研究[J].药学学报,2008,43(12):1224-1227.
    [59]Cheng X X, Lui Y, Zhou B, et al. Probing the binding sites and the effect of berbamine on the structure of bovine serum album in[J]. Spectrochimica Acta Part A.2009,72(5):922-928.
    [60]Zhang Y Z, Xiang X, Mei P, et al. Spectroscopic studies on the interaction of Congo Red with bovine serum albumin[J]. Spectrochim Acta A Mol Biomol Spectrosc.2009,72(4):907-914.
    [61]马君燕,陈克海,郑学仿,等.秋水仙碱与人血清白蛋白相互作用的谱学研究[J].光谱学与光谱分析,2007,27(12):2485-2489.
    [62]Zhang Y Z, Zhou B, Zhang X P, et al. Interaction of malachite green with bovine serum albumin: determination of the binding mechanism and binding site by spectroscopic methods. J Hazard Mater. 2009,163(2-3):1345-1352.
    [63]Hou H N, Qi Z D, OuYang Y W, et al. Studies on interaction between Vitamin B12 and human serum albumin. J Pharm Blomed Anal.2008,47(1):134-139.
    [64]Khan S N, Islam B, Yennamalli R, Sultan A, Subbarao N, Khan A U. Interaction of mitoxantrone with human serum albumin:spectroscopic and molecular modeling studies. Eur J Pharm Sci.2008,35(5):371-382.Pharmaceutical Sciences[J].2008,35:371-382.
    [65]子丽萍,杨雪滢,单香丽,等.芦丁与牛血清蛋白在不同条件下的相互作用[J].云南大学学报,2012,34(1):72-76.
    [66]尚永辉,李华,孙家娟,刘彬,郑敏燕.白杨素磺酸盐与牛血清白蛋白的相互作用[J].理化检验-化学分册,2012,48(2):155-161.
    [67]王鹏,陈粤华,冯素玲,范学森,张新迎.吡喃并[3,2-c]吡喃-5-酮衍生物与血清白蛋白相互作用的光谱和分子对接研究[J].分析实验室,2012,31(3):24-28.
    [68]子向荣,耿明江.光谱法研究抗癌药物槲皮素和人血清白蛋白的相互作用[J].光谱实验室,2012,29(1):290-295.
    [69]李悦,谷雨,何佳,何华,周祎.光谱法与分子模拟技术研究杨梅素与牛血清白蛋白的相互作用[J].化学学报,2012,70(2):143-150.
    [70]宝贵荣,领小,博·格日勒图,娜日苏.胡椒酸丁二醇单脂与牛血清白蛋白相互作用的研究[J].分析试验室,2012,31(3):7-10.
    [71]子慧卿,陈强.萘胺类似物与牛血清白蛋白相互作用的光谱研究[J].光谱实验室,2012,29(1):255-258.
    [72]安娜,敖登高娃.头孢噻肟-Cu-牛血清白蛋白相互作用的荧光光谱法研究[J].分析试验室,2012,31(2):38-40.
    [73]高平章,吴洪,郭婧,许亚妹.荧光光谱法研究灯盏花素与牛血清白蛋白相互作用[J].中国现代应用药学,2012,29(2):106-109.
    [74]武小芬,蔡朝霞,孙术国,黄群,任国栋,荷兰,马美湖.荧光光谱法研究核黄素与核黄素结合蛋白的相互作用[J].光谱学与光谱分析,2012,32(3):719-722.
    [75]刘蓉,曹树稳,余燕影,李先和,邓泽元.染料木素酯化修饰物与牛血清白蛋白的相互作用[J].光谱学与光谱分析,2009,29(12):3369-3374.
    [76]宋胜梅,汤文芳,郭晓莉,屈凌波,徐茂田.荧光光谱法研究染料木苷与牛血清白蛋白的相互作用[J].分析科学学报,2011,27(4):459-462.
    [77]游勇,鞠荣.重金属对食品的污染及其危害[J].学术交流.2007,2:102-103.
    [78]光泉.重金属废水的危害及治理[J].微量元素与健康研究.2004,21(4):54-56.
    [79]张英,周长民.重金属铅污染对人体的危害[J].辽宁化工.2007,(6):395-397.
    [80]韩禹.重金属对食品的污染危害[J].吉林蔬菜.2010,(4):85-86.
    [81]董秋洪,聂根新,涂田华等.食品中重金属污染对人体健康的影响及其对策[J].江西农业科技,2003,(3):37-38.
    [82]竹天.食品污染物监测及其健康影响评价的研究简介[J].中国食品卫生杂志,2004,16(2):99-103.
    [83]小骊,张永志,王钢军等.蔬菜中有害重金属元素污染研究进展[J].浙江农业学报.2004,16(5):259-262.
    [84]谢寒冰.豆芽质量安全的关键影响因素分析及对策[D].硕士论文,青岛:中国海洋大学.2008.
    [85]刘翀.我国蔬菜重金属污染现状及对策[J].安徽农学通报,2009,15(12):73-75
    [86]梅光泉.重金属废水的危害及治理[J].微量元素与健康研究.2004,21(4):54-56.
    [87]仲维科,樊耀波,王敏健.我国农作物的重金属污染及其防止对策[J].农业环境保护.2001,20(4):270-272.
    [88]陈晓波,李崧铜.钠和钼离子与牛血清白蛋白作用的荧光光谱研究[J].光谱学与光谱分析,2006,26(2):309-312.
    [89]吴根华,汪春华.荧光法研究pb2+与牛血清白蛋白的相互作用[J].光谱学与光谱分析,2005,25(2):246-248.
    [90]邢峰,李荣昌.铬(Ⅲ)与人血清白蛋白的结合作用.北京医科大学学报[J],1992,24(3):219-221.
    [91]杨斌盛,杨频.人血清白蛋白与金属离子作用的荧光光谱研究[J].生物化学与生物物理进展,1992,19(2):110-112.
    [92]郭明,郑学仿,由业诚,尹静梅,孔亮.微透析法研究金属离子镉与人血清蛋白的相互作用[J].大连大学学报,2001,22(6):7-12.
    [93]张凤云,毛富春,Heli Serin.10种金属离子与血清蛋白作用条件的研究[J].分析实验室,1996,15(6):5-8.
    [94]宋玉民,吴景绣,郑秀荣,吴琼.稀土金属离子与人血清白蛋白的相互作用[J].无机化学学报,2006,22(9):115-122.
    [95]梁彦秋.铜(Ⅱ)镉(Ⅱ)、几种小分子同血清白蛋白的相互作用研究[D].上海:华东师范大学物理学院化学系,2007.
    [96]蔡青青,聂伟,梁莹,董铁有.铅与牛血清蛋白的相互作用及模拟透析性能[J].河南科技大学学报:自然科学版,2009,30(6):79-86.
    [97]张爽,汪涛,Fatima,杜林方.汞(Ⅱ)与牛血红蛋白相互作用的研究[J].化学研究与应用,2007,19(6):611-613.
    [98]吴小华,缪吉根,缪煜清,陈建荣.血红蛋白与铜(Ⅱ)-茜素红S络合物相互作用的研究[J].光谱与光谱分析,2007,27(6):1168-1171.
    [99]魏欣,茹炳根.二价铅离子与金属硫蛋白相互作用的研究[J].中国生物化学与分子生物学报,1999,15(2):289-295.
    [100]赵学舟.姜黄素与金属离子和丝蛋白的相互作用[D].上海:复旦大学高分子科学系.2008.
    [101]杨薇,杨新玮.国内外活性染料的进展[J].染料工业,2001,38(3):1-5.
    [102]陈荣圻.活性染料的进展[J].印染,1998,24(11):46-51.
    [103]陈荣圻.活性染料的进展[J].印染,1998,24(12):47-50.
    [104]杨自来,韩增强.天然染料的应用现状及发展[J].河北纺织,2006,(30):26-30.
    [105]何华玲,于志财.植物染料的应用及其存在问题的探讨[J].河北纺织,2009,(2):75-78.
    [106]罗宗铭,崔英德,董飞燕.蛋白质与酸性染料相互作用的分光光度研究[J].光谱学与光谱分析,2001,21(2):251-253.
    [107]吴霖.染料荧光探针与蛋白质、核酸相互作用的研究[D].广州:华南师范大学化学系.2004
    [108]侯晓莉.三苯甲烷酸性染料与血清白蛋白相互作用的光谱研究[J].山西:山西大学化学化工学院.2006.
    [109]Zhai H L, Jia R P, Chen X G. A study on the interaction between bye and bovine serum albuim兰州大学学报(自然科学版)[J],2006,42(6):69-72.
    [110]颜承农,李杨,关中杰,刘义.荧光光谱法研究丙酮与牛血清白蛋白的相互作用特征.环境科学学报[J],2006,26(11):1880-1885.
    [111]孙祥,樊君,胡晓云,刘璐莎,胡春梅,尹辰.荧光素钠与牛血清白蛋相互作用的荧光光谱研究及其分析应用.化学学报[J],2011,69(8):937-944.
    [112]林海彬,汪庆祥,周朝晖.乳酸钻配合物与牛血清蛋白相互作用的研究[J].无机化学学报,2011,27(7):1239-1244.
    [113]徐同宽,沈兴海,高宏成.光谱法研究3H-吲哚季钱盐分子与牛血清蛋白的相互作用[J].光谱学与光谱分析,2005,25(6):857-860.
    [114]王树军.光谱法研究硝基苯基卟啉与咪畔类的轴向配位反应[J].应用化学,2010,27(6):721-726.
    [115]胡珍珠,陈泉军,陈芳.钇(Ⅲ)与卟啉配位反应的物理化学性质研究[J].化学与生物工程,2006,23(1):16-17.
    [116]郑璇,赵毅,朱必学.新席夫碱与铜铁在溶液中的配位反应研究[J].无机化学学报,2011,27(8):1523-1528.
    [117]刘海洋,胡希明,应晓等.双氮桥联1,10-菲咯啉大环与金属离子的配位反应研究[J].高等学校化学学报.2002,23(2):182-184.
    [118]王树军,彭玉苓,周学文.烟酸修饰尾式卟啉的合成与轴向配位反应的荧光性质研究[J].无机化学学报,2010,26(5):793-800.
    [119]王树军.羟基锌卟啉轴向配位反应的光谱性质研究[J].分子科学学报,2009,25(6):431-435.
    [120]朱思明,于淑娟,李军平.甘草酸与三价铬的配位反应研究[J].天然产物研究与开发.2007,19:854-857.
    [121]沈雪松,秦雪莲,刘义,屈松生.Fe(Ⅲ)与2,3-二羟基苯磺酸钠配位反应的动力学研究[J].化学学报,2005,63(18):1739-1742.
    [122]周华伟.肌红蛋白与配体相互作用的光谱法研究[D].大连:大连大学环境与化工学院,2011.
    [123]职秋艳.光谱法研究肌红蛋白及其突变体与小分子物质的相互作用[D].大连:大连大学生命科学与技术学院,2011.
    [124]Cohen B, Estabrook R W. Microsomal electron transport reactions.3. Cooperative interactions between reduced diphosphopyridine nucleotide and reduced triphosphopyridine nucleotide linked reactions[J]. Arch Biochim Biophys,1971,143(1):54-65.
    [125]Sannes I J, Hultqist D E. Effects of hemolysate concentration, ionic strength and cytochrome b5 concentration on the rate of methemoglobin reduction in hemolysates of human erythrocytes. Biochim Biophys Acta,1978,544(3):547-554.
    [126]王芳.光谱法研究药物与蛋白质相互作用及肌红蛋白突变体去氧过程[D].大连:环境与化工学院,2009.
    [127]Antonini E, Brunori M. Hemoglobin and Myoglobin in their reactions with ligands[M]. Amsterdam: North-Holland Publishing Company.1971.
    [128]Otsuka S, Yamanaka T. Metalloproteins, Chemical Properties and Biological Effects. Bioactive Molecules, Elsevier.1998,8.
    [129]Cordone L, Cottone G, Giuffrida S, et al. Thermal evolution of the CO stretching band in carboxy-myoglobin in the light of neutron scattering and molecular dynamics simulations [J].Chem.Phys.,2008,345(3):275-282.
    [130]Devereux M, Meuwly M. Structural Assignment of Spectra by Characterization of Conformational Substates in Bound MbCO[J]. Biophys J.,2009,96(11):4363-4375.
    [131]Kim S, Jin G, Lim M. Structural Dynamics of Myoglobin Probed by Femtosecond Infrared Spectroscopy of the Amide Band. Bull[J]. Korean chem. Soc.,2003,24(10):1470-1474.
    [132]赵保路.一氧化氮自由基[M].北京:科学出版社,2008.
    [133]Bossa C, Amadei A, Daidone I, et al. Molecular dynamics simulation of sperm whale myoglobin: effects of mutations and trapped CO on the structure and dynamics of cavities[J]. Biophys.J,2005, 89:465-474.
    [134]Brunori M. Nitric oxide moves myoglobin centre stage[J]. Trends in Biochemical Sciences,2001, 26(4):209-210.
    [135]李涛,吕荣,于安池.时间分辨拉曼光谱研究一氧化氮与肌红蛋白的结合过程.物理化学学报[J],2010,26(1):18-22.
    [136]Nutt D R, Meuwly M. Studying reactive processes with classical dynamics:rebinding dynamics in MbNO[J]. Biophys. J.,2006,90(4):1191-1201.
    [137]渠敏,李家璜,张淑仪等.时间分辨光声量热法研究碳氧血红蛋白的光解反应.声学学报[J],2008,33(5):425-429.
    [138]Meuwly M, Becker O M, Stote R, et al. NO rebinding to myoglobin:a reactive molecular dynamics study. Biophys. Chem. [J],2002,98:183-207.
    [139]Vos M H. Ultrafast dynamics of ligands within heme proteins[J]. BBA-Bioenergetics.,2008,1777(1): 15-31.
    [140]Ribeiro J M C, Nussenzveig R H.Nitric oxide synthase activity from a hematophagous insect salivary gland[J]. Febs letters,1993,330(2):165-168.
    [141]Ma J Y, Zheng X F, Tang Q, Ma J, Gao D B, Hu J H. Investigation on the photo-induced de-oxygenation process of myoglobin in aqueous solution by use of fluorescence spectroscopy. Science in China series B[J],2008,51(5):141-419.
    [142]马君燕,马静,郑学仿,唐乾,高大彬.荧光法对光诱导野生型肌红蛋白和突变体D44K去氧的对照研究.分析化学[J],2008,36(4):435-439.
    [143]Zhou H W, Cao H Y, Tang Q, Ma J Y, Zhang Y Y and Zheng X F. Investigation on the Photodissociation of Oxygen from Oxymyoglobin by Flurescence Spectroscopy[J].CHEM.RES.CHINESE UNIVERSITIES,2011,27(6):1060-1064.
    [144]周秋华,张红梅,徐倩,王彦卿.2,4-二硝基苯酚与肌红蛋白的相互作用[J].分析实验室,2011,30(4):74-77.
    [145]郭伟,严云辉.荧光光谱法研究水溶性L-Cys-CdS量子点与肌红蛋白的相互作用[J].光谱实验室,2012,29(1):475-478.
    [146]黄鹤勇,顾晓天,丁艳,周家宏,冯玉英.荧光光谱法研究咖啡因与肌红蛋白的相互作用[J].光谱学与光谱分析,2009,29(10):2798-2802.
    [147]魏少华,芦珊,季春,林云,周家宏,沈建p-HPcZn与肌红蛋白结合性能的研究[J].光谱学与光谱分析,2008,28(9):2148-2151.
    [148]赵雨,徐金泽,赵大庆,席时权,赵冰,徐蔚清.共振喇曼光谱研究稀土离子Er3+对肌红蛋白结构的影响[J].高等学校化学学报,2000,21(12):1913-1915.
    [149]冯玉英,杨辉,顾晓天,姜慧君,陆天虹.荧光光谱法研究肌红蛋白的活性铁卟啉与铜离子相互作用的研究(Ⅰ)-与铜离子的相互作用[J].光谱学与光谱分析,2003,23(3):532-534.
    [150]马静,郑学仿,唐乾,杨彦杰,孙霞,高大彬.光谱法研究Cu2+与肌红蛋白的相互作用[J].高等学校化学学报,2008,29(2):1-4.
    [15]唐乾,郑学仿,王静云,刘媛媛,袁玉莲.可见光谱法研究肌红蛋白血红素铁与金属离子相互作用(Ⅰ)[J].光谱学与光谱分析,2009,29(7):1958-1961.
    [152]唐乾,曹洪玉,王静云,郑学仿.温度和时间对肌红蛋白血红素铁与金属离子相互作用的影响[J].生物技术通讯,2011,22(4):548-551.
    []53]李宜雯,曹洪玉,唐乾,郑学仿.光谱与停流荧光法研究肌红蛋白及其突变体D60K与表面活性剂的相互作用[J].物理化学学报,2010,26(6):1687-1692.
    [154]职秋艳,唐乾,曹洪玉,安良梅,张莹莹,郑学仿.光谱法对照研究肌红蛋白及其突变体Mb(D60K)与H202的相互作用[J].光谱学与光谱分析,2011,31(9):2512-2516.
    [155]周华伟,曹洪玉,唐乾,安良梅,郑学仿.光谱法研究光诱导高铁肌红蛋白还原[J].化学学报,2011,69(130:559-1564
    [156]安良梅,曹洪玉,唐乾,郑学仿.紫外光照射下高铁肌红蛋白的还原[J].无机化学学报,2012,28(7):1461-1468.
    [157]王静云,刘丹,唐乾,包永明,郑学仿,安利佳.圆二色谱研究Asp44在稳定肌红蛋白结构中的作用[J].光谱学与光谱分析,2008,28(2):426-429.
    [158]唐乾,曹洪玉,王静云,郑学仿.紫外吸收光谱法研究Asp44在稳定肌红蛋白结构中的作用[J].化学通报,2012,75(1):84-87.
    [159]Moor G R, Pettigrew G W[M]. Aspects New York.1990.
    [160]Roh C, Villatte F, Kim BG. Schmid RD.Screening and purification for novel cytochrome b5 from uncultured environmental micro-organisms [J]. Lett Appl Microbiol.2007,44(5):475-480.
    [161]Wang L, Cowley AB, Terzyan S,et al. Comparison of cytochromes b5 from insects and vertebrates[J].Proteins.2007,67(2):293-304.
    [162]Strittatter P, Spatz L, Corcoran D, et al. Purification and properties of rat liver microsomal stearyl coenzyme A desaturase[J].Proc Natl Acad Sci,1974,71(11):4565-4569.
    [163]Cohen B, Estabrook R W. Microsomal electron transport reactions.3. Cooperative interactions between reduced diphosphopyridine nucleotide and reduced triphosphopyridine nucleotide linked reactions[J].Arch Biochim Biophys,1971,143(1):54-65.
    [164]Sannes I J, Hultqist D E. Effects of hemolysate concentration, ionic strength and cytochrome b5 concentration on the rate of methemoglobin reduction in hemolysates of human erythrocytes[J]. Biochim Biophys Acta,1978,544(3):547-554.
    [165]Percy M J, Aslan D J. NADH-cytochrome b5 reductase in a Turkish family with recessive congenital methaemoglobinaemia type I. Clin Pathol.2008,61(10):1122-1123
    [166]Ozaki S, Matsui T, Roach M P, et al. Rational molecular design of a catalytic site:engineering of catalytic functions to the myoglobin active site framework[J]. Coord. Chem. Rev.2000,198:39-59.
    [167]Taketani S, Ishigaki M, Mizutani A,et al. Heme synthase (ferrochelatase) catalyzes the removal of iron from heme and demetalation of metalloporphyrins[J].Biochemistry.2007,46(51):15054-15061.
    [168]Vergeres G, Chen D Y, Wu F F, et al. The function of tyrosine 74 of cytochrome b5[J].Archievs of Biochemistry and Biophysics,1993,305(2):231-241.
    [169]Basova LV, Tiktopulo E I, Kutyshenko VP.etal. Phospholipid membranes affect tertiary structure of the soluble cytochrome b5 heme-binding domain[J].Biochim Biophys Acta.2008,1778(4): 1015-1026.
    [170]Alexander N. Volkov, Davide Ferrari, et al. The orientations of cytochrome c in the highly dynamic complex with cytochrome b5 visualized by NMR and docking using HADDOCK[J].Protein Science, 2005,14:799-811.
    [171]Stayton P S, Poulos T L, Sligar S G. Putidaredoxin competitively inhibits cytochrome b5-cytochrome P-450cam association:a proposed molecular model for a cytochrome P-450cam electron-transfer complex[J].Biochemistry,1989,28:8201-8205.
    [172]Burch A M, Rigby S E, Funk W D, et al. NMR characterization of surface interactions in the cytochrome b5-cytochrome c complex[J].Science.1990,247(4944):831-833.
    [173]Liang Z X, Jiang M, Ning Q. Dynamic docking and electron transfer between myoglobin and cytochrome b(5)[J].J Biol Inorg Chem,2002,7:580-588.
    [174]Nocek J M, Hatch S L, Seifert J L, Hunter G W, Thomas D D, Hoffman B M. Interprotein electron transfer in a confined space:uncoupling protein dynamics from electron transfer by sol-gel encapsulation[J].J.Am.Chem.Soc.,2002,124(32):9404-11.
    [175]Nocek J M, Knutson A K, Xiong P, Co N P, Hoffman B M. Photoinitiated singlet and triplet electron transfer across a redesigned [myoglobin, cytochrome b5] interface[J]. J.Am.Chem.Soc.2010, 132(17):6165-6175.
    [176]Liang Z X, Nocek J M, Huang K, Hayes R T, Kurnikov I V, Beratan D N, Hoffman B M. Dynamic docking and electron transfer between Zn-myoglobin and cytochrome b(5)[J]. J.Am.Chem.Soc.. 2002,124(24):6849-59
    [177]Liang Z X, Kurnikov 1 V, Nocek J M, Hoffman B M. Dynamic docking and electron-transfer between cytochrome b5 and a suite of myoglobin surface-charge mutants. Introduction of a functional-docking algorithm for protein-protein complexes[J]. J.Am.Chem.Soc..2004,126: 2785-2798.
    [178]Hoffman B M, Laura M Celis, Deborah A Cull, Ami D Patel, Jennifer. L, Seifer, Korin E, Wheeler, Differential influence of dynamic processes on forward and reverse electron transfer across a protein-protein interface[J]. Proc Natl Acad Sci U S A.2005,102(10):3564-3569.
    [179]Zhang H, Hamdane D, Im SC, Waskell L. Cytochrome b5 inhibits electron transfer from NADPH-cytochrome P450 reductase to ferric cytochrome P450 2B4[J]. J.Biol.Chem.2008,283(9): 5217-5225.
    [180]Zhang H, Im S C, Waskell L. Cytochrome b5 increases the rate of product formation by cytochrome P450 2B4 and competes with cytochrome P450 reductase for a binding site on cytochrome P450 2B4[J]. J Biol Chem.2007,282(41):29766-29776.
    [181]Ihara M, Shintaku M, Takahash S, et al. Conversion of an electront ransfer protein into an oxygen binding protein:The Axial Cytochrome b5 mutant with an unusually high O2 affinity[J]. J. Am.Chem. Soc.2000,122:11535-11536
    [182]Wang W H, Wang Y H, Lu J X, et al. Engineering a hydrophilicheme catalytic pocket into microsomal cytochrome b5:Const ruction of novel mettalloproteins with high peroxidase-like activity[J]. Chem. Lett.2002,674-675
    [183]Wei C Y, Jia G Q, Zhou J, Han G Y and Li C. Evidengce for the binding mode of porphyrins to G-quadruplex DNA[J], Phys. Chem. Phys.,2009,11,4025-4032.
    [184]Wei C Y, Han G Y, Jia G Q, Zhou J, Li C. Study on the interaction of porphyrin with G-quadruplex DNAs[J]. Biophysical Chemistry.2008,137:19-23.
    [185]Wei C Y, Wang L H, Jia G Q, Zhou J, Han G Y, Li C. The binding mode of porphyrins with cation side arms to (TG4T)4 G-quadruplex:Spectroscopic evidence[J]. Biophysical Chemistry.2009,143: 79-84.
    [186]Jing Du, Masanori Sono, John H. Dawson. The H90G myoglobin cavity mutant as versatile scaffold for modeling heme iron coordination structures in protein active sites and their characterizartion with magnetic circular dichroism spectroscopy[J]. Coordination Chemistry Reviews,2011,255:700-716.
    [187]周华伟,曹洪玉,唐乾,李进京,郑学仿.光谱法研究高铁肌红蛋白中心与咪唑的配位反应[J].无机化学学报,2011,27(3):445-450.
    [188]张莹莹,曹洪玉,唐乾,郑学仿.不同类型表面活性剂与高铁肌红蛋白相互作用[J].物理化学学报.2011,27(12):2907-2914.
    [189]沈星灿,梁宏,何锡文等.圆二色谱分析蛋白质构象的方法及研究进展[J].分析化学,2004,32(3):388-394.
    [190]聂新华,张涛,李元,郑学仿,曹洪玉,唐乾.截短胰高血糖素样肽-1的构象研究[J].高等学校化学学报.2010,31(7):1337-1341.
    [191]Jing Du, Masanori Sono and John H.Dawson. Ferric His93Gly myoglobin cavity mutant and its complexes[J]. J. Porphyrins Phthalocyanines,2011,15:29-38.
    [192]Jing Du, Roshan Perera,and John H. Dawson.wAlkylamine-Ligated H93G Myoglobin Cavity Mutant:A Model System[J]. Inorg.Chem.,2011,1242-1249.
    [193]Jun Zhou, Chunying Wei, Guoqing Jia, Xiuli Wang, Zhaochi Feng and Can Li. Formation and stabilization of G-quadruplex in nanosized water pools[J]. Chem.Commun.,2010,46:1700-1702
    [194]Jun Zhou, Chunying Wei, Guoqing Jia, Xiuli Wang, Zhaochi Feng and Can Li. Formation of i-motif structure at neutral and slightly alkaline pH[J]. Mol. BioSyst.,2010,6,580-586
    [195]Jun Zhou, Chunying Wei, Guoqing Jia, Xiuli Wang, Zhaochi Feng and Can Li. Human telomeric G-quadruplex formed from duplex under near physiological conditions:Spectroscopic evidence and kineticsq[J]. Biochimie,2009,91:1104-1111
    [196]Jun Zhou, Chunying Wei, Guoqing Jia, Xiuli Wang, Qian Tang, Zhaochi Feng, Can Li. The structural transition and compaction of human telomeric G-quadruplex induced by excluded volume effect under cation-deficient conditions[J]. Biophysical Chemistry,2008,136:124-127.
    [197]马静.肌红蛋白及其突变体与金属离子相互作用的光谱法研究[D].大连:大连大学环境化工学院,2008
    [198]唐朝枢,齐永芬.蛋白质种类的多样性及功能复杂性[J].国外医学.生理、病理科学与临床分册,2004,24(1):1-4.
    [199]马君燕.光诱导的肌红蛋白去氧及人血清白蛋白的光谱学研究[D].大连:大连大学环境化工学院,2007
    [200]唐乾,曹洪玉,杨彦杰,郑学仿.细胞色素b5稳定性的光谱学研究[J].大连大学学报,2011,32(3):75-78,88.
    [201]林英武,黄仲贤.血红素蛋白结构及功能的相互转换[J].世界科技研究与发展,2006,28(1):8-13
    [202]安良梅,曹洪玉,唐乾,郑学仿.紫外照射下高铁肌红蛋白还原研究[J].无机化学学报,2012.
    [203]Havel H A. Overview of protein structure and spectroscopic methods[M].In:Havel H A ed. Spectroscopic Methods for Determining Protein Structure in Solution. New York:VCH,1996.
    [204]John B, Schenkman, Ingela J. The many roles of cytochrome b5[J]. Pharmacol.Ther.,2003,97(2): 139-152.
    [205]Lano B, Antonio R S. Bioinorganic chemistry in the postgenomic era[J]. Proc.Natl.Acad.Sci. USA., 2003,100(7):3601-3604.
    [206]Funk W D, Lo T P, Mauk M R. Mutagenic, electrochemical, and crystallographic investigation of the cytochrome b5 oxidation-reduction equilibrium:involvement of asparagine-57, serine-64, and heme propionate-7[J]. Biochemistry,1990,29(23):5500-5508.
    [207]姚萍,王韵华,孙雨龙.细胞色素b5 Phe35定点突变后对蛋白质结构和性质的影响[J].科学通报,1998,43:56-59.
    [208]Sheng W J, Sheng G D and Ying Y X. Influence of copper on the interaction between cytochrome c and sulfite in vitro[J]. Journal of Biochemical and Molecular Toxicology,2006,20:255.
    [209]Zhou B, Qi Z D and Xiao Q. Interaction of loratadine with serum albumins studied by fluorescence quenching method[J].J. Biochem.Biophys.Methods,2007,70 (5):743-745.
    [210]聂新华,张涛,李元,郑学仿,曹洪玉,唐乾.截短胰高血糖素样肽-1的构象研究[J].高等学校化学学报,2010,31(7):1337-1341.
    [211]Pablo T, Yolanda F, Victor M. Interactions of two amphiphilic penicillins with myoglobin in aqueous buffered solutions:a thermodynamic and spectroscopy study[J]. Biomacromolecules,2004, 5(6):2201-2211.
    [212]王镜岩,朱圣庚,徐长法.生物化学(第三版)[M].北京:高等教育出版社,2002,252-254.
    [213]杨频,高飞.无机化学原理[M].北京:科学出版社,2002.8-11.
    [214]程忠河,夏淑贤,杨波.铜的缺乏症及中毒救治措施[J].黑龙江畜牧兽医,2011,(10):89-90.
    [215]李青仁,王月梅.微量元素与人体健康[J].微量元素与健康研究,2007,24(3):61-63.
    [216]Funk, lotp, mauk M R, et al. Mutagenic,electrochemical,and crystallographic investigation of the cytochrome b5 oxidation-reduction equilibrium:involvement of asparagine-57,serine-64,and heme propionate-7[J].Biochemistry,1990,29(23):5500-5508.
    [217]Guy J Guillemette, Yuko Mat sushima -Hibiya, Tom Atkinson. Protein Engineering[J],1991,4:585.
    [218]刘丹.Asp44对肌红蛋白结构与功能的影响[D].大连:大连理工大学环境与生命科学技术学院,2006.
    [219]Mark S. Hargrove and John S. Olson.The Stability of Holomyoglobin is Determined by Heme Affinity[J]. Biochemistry,1996,35:11310-11318.
    [220]Yang Y M, Hu Q L and Fan Y L. Study on the binding of luteolin to bovine serum albumin[J]. Spectrochimica Acta A,2008,69(2):432-436
    [221]周能,周振.拉米夫定与牛血清白蛋白的相互作用[J].分子科学学报.2011,27(5):309-313.
    [222]Kandagal P B, Seetharamappa.land Ashoka S. Study of the interaction between doxepin hydrochloride and bovine serum albumin by spectroscopic techniques[J]. INT J BIOL MACROMOL. 2006,39 (4-5),234-239.
    [223]Lu J Q, Jin FandSun T Q. Multi-spectroscopic study on interaction of bovine serum albumin with lomefloxacin-copper(Ⅱ) complex[J]. Int. J. Biol. Macromol,2007,40 (4),299-304.
    [224]刘亚楠,杨芳,梅文杰,等.手性钌配合物的合成、抗肿瘤活性及其血清蛋白的相互作用[J].高等学校化学学报,2010,31(3):435-441.
    [225]Wang Y Q, Zhang H M and Zhang G C. Studies of the interaction between paraquat and bovine hemoglobin[J]. Int. J. Biol. Macromol.,2007,41 (3):243-239.
    [226]G. Zhang, L. Wang and J. Pan. Probing the bind of the Flavonoid diosmetin to human serum albumin by multispectroscopic techniques[J]. J Agric Food Chem.,2012,60 (10):2712-2719.
    [227]Forster T, Sinanoglu O. Modern Quantum Chemisby. New York:Academic Press,1966.
    [228]Peng.Xiong, Judith.M.Nocek, Josh Vura-Weis, et al. Fast Interprotein Electron ransfer in a [Myoglobin, b5] Complex with a Redesigned Interface[J]. Science,2010,330(19),1075-1078.
    [229]Nocek J M, Knutson A K, Xiong P, et al.Photoinitiated Singlet and Triplet Electron Transfer across a Redesigned [Myoglobin,Cytochrome b5] Interface[J]. J.Am.Chem.Soc.2010,132,6165-6175.
    [230]常希俊,杨芳,张莉.人血丙种球蛋白与镝(Ⅲ)、铽(Ⅲ)离子相互作用的共振散射光谱[J].兰州大学学报,2004,40(2):62-65.
    [231]Rodgers K R. Heme-based sensors in biological systems[J].Curr. Opin. Chem. Biol.,1999, 3(2):158-167.
    [232]Jaldappa S, Bhalchandra P K. Spectroscopic studies on the mode of interaction of an anticancer drug with bovine serum albumin[J]. Chem Pharm Bull[J],2004,52(9):1053-1057.
    [233]Lu J Q, Jin F and Sun T Q. Multi-spectroscopic study on interaction of bovine serumalbumin with lomefloxacin-copper(Ⅱ) complex[J]. Int.J. Biol.Macromol.,2007,40:299-304.
    [234]Blandl T, Warder SE, Prorok M, Castellino FJ. Structure-function relationships of the NMDA receptor antagonist peptide, conantokin-R[J].FEBS Lett,2000,470(2):139-146.
    [235]Lin KF, Liu YN, Hsu ST, Samuel D, Cheng CS, Bonvin AM, Lyu PC. Characterization and structural analyses of nonspecific lipid transfer protein 1 from mung bean[J].Biochemistry,2005, 44(15):5703-5712.
    [236]Ma Junyan, Zheng Xuefang,Tang Qian,Ma Jing,Gao Dabin, HU Jiehan. Investigation on the photo-induced de-oxygenation process of myoglobin in aqueous solution by use of fluorescence spectroscopy[J]. Science in China seris B,2008,51(5):141-419.
    [237]Shiro Y, Sato F, Suzuki T et al. X-ray absorption spectral study of ferric high-spin hemoproteins: XANES evidences for coordination structure of the heme iron[J]. J. Am. Chem. Soc.,1990,112(8): 2921-2924.
    [238]Ionascu D, Gruia F, Ye X, et al. Temperature-Dependent Studies of NO Recombination to Heme and Heme Proteins[J]. J. Am. Chem. Soc.,2005,127(48):16921-16934.
    [239]Yukl E T, Vries S D, Moenne-Loccoz P. The Millisecond Intermediate in the Reaction of Nitric Oxide with Oxymyoglobin is an Iron(Ⅲ) Nitrato Complex, Not a Peroxynitrite[J]. J. Am. Chem. Soc.,2009,131(21),7234-7235.
    [240]Vos M H. Ultrafast dynamics of ligands within heme proteins[J]. Biochimica et Biophysica Acta, 2008,1777(1):15-31.
    [241]Nicoletti F P, Thompson M K, Howes B D et al. New Insights into the Role of Distal Histidine Flexibility in Ligand Stabilization of Dehaloperoxidase-Hemoglobin from Amphitrite ornate[J]. Biochemistry,2010,49(9):1903-1912.
    [242]Lu Y, Berry S M, Pfister T D. Engineering novel metalloproteins:design of metal-binding sites into native protein scaffolds[J].Chem. Rev.,2001,101(10):3047-3080.
    [243]李宜雯,曹洪玉,唐乾,郑学仿.光谱与停流荧光法研究肌红蛋白及其突变体D60K与表面活性剂的相互作用[J].物理化学学报,2010,26(6):1687-1692.
    [244]Mero A, Clementi C, Veronese F M, Pasut G. Covalent conjugation of poly(ethylene glycol) to proteins and peptides:strategies and methods[J]. Methods Mol Biol.2011; 751:95-129.
    [245]Jevsevar S, Kunstelj M, Porekar V G. PEGylation of therapeutic proteins[J]. Biotechnol J.2010,5(1): 113-128.
    [246]Pasut G, Veronese F M. PEG conjugates in clinical development or use as anticancer agents:an overview[J]. Adv Drug Deliv Rev.2009,61(13):1177-1188.
    [247]Zerner M, Gouterman M, Kobayashi H. Extended Calculations on Iron Complexe;Theor. Chim. Acta,1996,6:363-400.
    [248]Marmo Moreira L, Lima Poli A, Costa-Fiho A J, Imasato H. Pentacoordinate and hexacoordinate ferric hemes in acid medium:EPR, UV-Vis and CD studies of the giant extracellular hemoglobin of Gloss oscolex paulistus[J]. Biophys. Chem.2006,124(1):62-72.
    [249]俞菊,杜汀燕,冯玉英,杨秀娟,陆天虹.肌红蛋白的同步荧光光谱[J].分析化学,2001,29(2):219-221.
    [250]Joseph R L. Principles of Fluorescence Spectroscopy[M]. NewYork:Plenum Press,1983.
    [251]Havel H A. Spectroscopic Methods for Determine Protein Structure in Solution[M]. New York: Wiley VCH,1996.
    [252]Ross P D, Subramanian S. Thermodynamics of protein association reactions:forces contributing to stability[J]. Biochemistry,1981,20:3096-3102.
    [253]Strittmatter P, Velick S F. The isolation and properties of microsomal cytochrome[J].J. Biol. Chem. 1956,221(1):253-264.
    [254]Takematsu H, Kawano T, Koyama S, et al. Reaction mechanism underlying CMP-N-acetylneuraminic acid hydroxylation in mouse liver:formation of a ternary complex of cytochrome b5, CMP-N-acetylneuraminic acid, and a hydroxylation enzyme[j]. J Biochem.,1994, 115(3):381-386.
    [255]Mathew F S, Argos P, Levine M. Cold Spring Harbor Symp.Quant.Bio.,1971,26:387.
    [256]Schenkman J B, Jansson I, The many roles of cytochrome b5[J]. Pharmacol Ther.,2003,97(2): 139-152.
    [257]Qian Wen, Sun Yu-Long, Wang Yun-Hua,et al. The influence of mutation at Glu44 and Glu56 of cytochrome b5 on the protein's stabilization and interaction between cytochrome c and cytochrome b5[J]. Biochemistry,1998,37(40):14137-14150.
    [258]Basova LV, Ilyina N B, Vassilenko K S, et al. Conformational states of the water-soluble fragment of cytochrome b5.I. pH-induced denaturation[J]. Molecular Biology,2002,36(5):718-725.
    [259]Altugye A, Silchenko S, Lee K H, et al. Probing the differences between rat liver outer mitochondrial membrane cytochrome b5 and microsomal cytochromes b5[J]. Biochemistry,2001,40(32): 9469-9483.
    [260]Vergeres G, Chen DY, Wu F F, et al. The function of tyrosine 74 of cytochrome b5[J]. The Archives of Biochemistry and Biophysics,1993,35(2):231-241.
    [261]Makhatadze G I, Privalov P L. Energetics of protein structure[J]. Protein Chem.,1995,47,307-425.
    [262]Nocek J M, Knutson A K, Xiong P, et al. Photoinitiated Singlet and Triplet Electron Transfer across a Redesigned[Myoglobin,Cytochrome b5]Interface[J].J.AM.CHEM.SOC.2010 (132):6165-6175.
    [263]Peng.Xiong, Judith.M.Nocek, Josh Vura-Weis, et al.Faster Interprotein Electron Transfer in a [Myoglobin,b5]Complex with Redesigned Interface[J], science,2010 (330):1075-1078.
    [264]孟令芝,龚淑玲,何永炳.有机波谱分析.第二版[M].武汉:武汉大学出版社,2003.
    [265]黄君礼,鲍治宇.紫外吸收光谱法及其应用[M].北京:中国科学技术出版社,1992.
    [266]王静云,刘丹,唐乾,包永明,郑学仿,安利佳.圆二色谱研究Asp44在稳定肌红蛋白结构中的作用[J].光谱学与光谱分析,2008,28(2),426-429.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700