用户名: 密码: 验证码:
接枝共聚物的可控合成、溶液性质及其应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
两亲聚合物分子中同时具有分别对两种不同相结构(如水相与油相、两种油相、两种不相容的固相等)具有亲和性的链段,一般而言指同时具有亲油性和亲水性的高聚物。由于两亲聚合物在结构上的特点(亲油部分和亲水部分不相容而易发生微相分离),使得两亲聚合物在选择性溶剂、表面和本体结构中呈现出独特的性质,应用广泛。其中接枝聚合物由于拥有线型聚合物所不曾具有的一些独特性能,受到了研究者的广泛关注。本文通过催化链转移聚合(CCTP)一步合成末端带有可聚合双键的聚丙烯酸酯类大分子单体,然后大分子单体与普通单体共聚制备得到接枝型丙烯酸酯类聚合物。进而对所合成的接枝型两亲聚合物的溶液性质及其与小分子表面活性剂十六烷基三甲基溴化铵(CTAB)、十二烷基硫酸钠(SDS)的相互作用进行了系统研究。同时考察了此类接枝聚合物分别在二甲苯和水体系中的炭黑分散性能与聚合物结构的关系。此外,还通过小分子多胺和大分子单体酯基之间的取代反应制备得到接枝型的聚阳离子,研究其复合质粒DNA的能力、材料毒性以及体外细胞转染的效率。本论文的主要工作如下:
     (1)利用CCTP方法设计合成了支链亲水、主链疏水的阴离子型的接枝型两亲聚合物,表面张力研究发现水溶液中该两亲聚合物没有明显的临界胶束浓度(CMC),动态光散射(DLS)与透射电镜(TEM)结果表明很低浓度时体系中即有聚集体形成。同时,研究了两亲聚合物与阳离子表面活性剂CTAB、以及阴离子表面活性剂SDS之间的相互作用。结果表明该阴离子型两亲聚合物与CTAB可形成结构紧密的复合物,复合物的粒径以及Zeta电势与CTAB的浓度有关;两亲聚合物与CTAB之间主要通过阴阳离子的静电引力而发生相互作用。而在两亲聚合物-SDS体系中,研究表明尽管聚合物与SDS之间存在较为强烈的同号电荷之间的静电排斥作用,但是两亲聚合物与SDS仍然可以通过两者疏水结构之间的疏水吸引力而发生相互作用。
     (2)采用类似技术路线合成了主链分别含有羧基、胺基以及季铵基的油溶性接枝聚合物,研究了羧基、胺基以及季铵基团对聚合物在二甲苯中分散炭黑能力的影响。结果表明主链中官能团的含量对炭黑的分散有较大的影响;而主链含胺基的接枝聚合物的炭黑分散能力比含羧基的样品好;通过将聚合物主链中的胺基季铵化,可大大提高接枝聚合物对炭黑的分散能力,能达到商业分散剂Disperbyk-163的炭黑分散能力。
     (3)设计合成了多种主链疏水、支链亲水的两亲接枝型聚合物,研究了聚合物疏水主链的组成、亲水链和疏水链长度以及官能团含量对该聚合物在水中分散炭黑的影响。结果表明疏水主链含适量的胺基和苯基官能团均对炭黑的分散有利,胺基单体含量为疏水主链单体总量的5%时分散效果最好。此外,聚合物用量、溶液离子强度以及体系pH值对炭黑的分散均有较大的影响,当体系中有电解质存在或者溶液呈现酸性时对炭黑的分散不利。优化的聚合物分散剂所制备的炭黑分散体具有较好的静置稳定性,放置三个月仍能表现出良好的分散状态,其炭黑分散能力与商业分散剂Disperbyk-190相当。
     (4)通过小分子多胺与大分子单体PMMA酯基之间的氨解反应制备了丙烯酸酯类聚阳离子(PMMA-g-oligoamines),通过琼脂糖凝胶电泳、TEM、DLS、Zeta电势研究了聚阳离子对质粒DNA的复合能力。结果表明三种聚阳离子均可以有效的和DNA形成结构紧密的复合物,复合物粒径在200nm左右,电位值则达到了20mV以上。细胞毒性结果表明三种聚阳离子对HEK293T和HeLa细胞的细胞毒性远远低于25 kDa PEI的毒性(25 kDa PEI的毒性为合成的聚阳离子毒性的100多倍)。对细胞的体外转染结果表明三种聚阳离子均可以把质粒DNA有效地转入HEK293T和HeLa细胞中,且在两种细胞中的转染效率达到了25 kDa PEI的转染效率。此外,激光共聚焦结果表明三种聚阳离子均可以有效的把质粒DNA转入到细胞核中。
Amphiphilic polymers have attracted much attention in the past because of their special aggregating behavior in bulk, selected solvents and surfaces. Normally, there are two different kinds of polymeric chains co-existed in amphiphilic polymer structures, which show different affinity to the two different phases (e.g. water and oil, two kinds of oils or solids with different characters). In this thesis, we focused on graft acrylic polymers (one of the widely industrial utilized amphiphilic polymers), which were copolymerized by CCTP (catalytic chain transfer polymerization)-synthesized macromonomer and nomal acrylic monomers. Moreover, the solution behavior of amphiphilic graft polymers and the influence of small surfactants (Cetyltrimethylammonium bromide (CTAB), or Sodium dodecyl sulfate (SDS)) have also been studied systematically. And the graft polymers with proper structures were applicated as dispersants to stabilize carbon black (CB) particles in xylene or water. Besides, graft polycations were synthesized via the aminolysis reaction between oligoamines and CCTP macromonomer; and the cytotoxicity, ability for complexeing with plasmid DNA and efficiency for in vitro transfection of the polycations were evaluated.
     (1) The anionic amphiphilic graft polymer (the main chain is hydrophobic and the side chain is hydrophilic) was prepared via CCTP method. Surface tension study indicates that the amphiphilic graft polymer has no evident critical micelle concentration (CMC). Dynamic light scattering (DLS) and transmission electron microscope (TEM) results reveal that even at extremely low concentration, there are aggregates existed in the amphiphilic polymer solution. In addition, the interactions between the anionic polymer and cationic surfactant CTAB and anionic surfactant SDS were studied. The data shown that the anionic amphiphilic polymer could interact with CTAB forming compact complexes; the size and Zeta potential of the complexes was dependent on the CTAB concentration. The interaction between the polymer and CTAB is mainly anionic-cationic electrostatic attractions. In the system of amphiphilic polymer/SDS, the studies revealed that although strong electrostatic repulsions were existed between both of them, the amphiphilic polymer could still interact with SDS by hydrophobic attractions which are originated from the hydrophobic chains of the polymer and SDS.
     (2) Three kinds of oil-soluble graft polymers (containing carboxylic, amino and quaternary ammonium groups in the main chain respectively) were synthesized via the similar synthetic route, and the influences of the functional groups on the abilities of the polymers to disperse CB in xylene were evaluated. The results indicate that the content of the functions in the main chain has great influence on the CB dispersion; and the polymers containing amino groups in the main chain show better CB dispersing ability than the ones containing carboxylic groups. When the amino groups were quaternized, the dispersing ability of the polymer is improved remarkably and is similar to the commercial dispersant Disperbyk-163.
     (3) Several amphiphilic polymers were designed and synthesized. The influences of the hydrophobic backbone components, the length of the backbone, the lateral chain and the content of functional groups on the CB dispersion were studied. The results indicate that the amino groups and proper contents of phenyl groups in the backbone of the amphiphilic polymer were favored for the dispersing of CB in water. Besides, polymer concentration, ion strength and pH have great influence on CB dispersion. When electrolyte is existed in the system, or the solution is acidic, CB could not be dispersed effectively. The CB dispersing ability of the optimal polymer dispersant can be equal to the commercial dispersant Disperbyk-190.
     (4) Acrylic polycations were prepared via the aminolysis reaction between oligo amines and ester of PMMA. The complex capability of the polycations with plasmid DNA was evaluated by Agarose Gel Retardation Assay, TEM, DLS and Zeta potential measurements. The results indicate that all of the polycations could condense DNA compactly and form regular nanospheres. The size of the complexes is about 200nm, while the Zeta potential of the complexes is over 20mV. The results of cytotoxicity in HEK293T and HeLa cells indicate that the cytotoxicity of polyctions is much lower than that of 25 kDa PEI, and the cytotoxicity of 25 kDa PEI is 100 orders of magnitude higher than that of PMMA-g-oligoamines. The results of in vitro transfection exhibit that all of the three polycations could transfer the plasmid DNA to HEK293T and HeLa cells effectively, and the transfection efficiency is comparable to that of 25 kDa PEI. The confocal results indicate that all of the three polycations could transfer the plasmid DNA to nucleolus effectively.
引文
1. Song H, Zhang SF, Ma XC, Wang DZ, Yang JZ. Synthesis and application of starch-graft-poly(AM-co-AMPS) by using a complex initiation system of CS-APS. Carbohydrate Polymers.2007,69:189-195.
    2. Silva I, Gurruchaga M, Goni I. Physical blends of starch graft copolymers as matrices for colon targeting drug delivery systems. Carbohydrate Polymers.2009, 76:593-601.
    3. Simms JA. A new graft polymer pigment dispersant synthesis. Prog. Org. Coat. 1999,35:205-214.
    4. Peleshankoa S, Tsukruk VV. The architectures and surface behavior of highly branched molecules. Prog. Polym. Sci.2008,33:523-580.
    5. Sheiko SS, Sumerlin BS, Matyjaszewski K. Cylindrical molecular brushes: Synthesis, characterization, and properties. Prog. Polym. Sci.2008,33:759-785.
    6. Bruzzano S, Sieverling N, Wieland C, Jaeger W, Thunemann AF, Springer J. Cationic polymer grafted starch from nonsymmetrically substituted macroinitiators. Macromolecules.2005,38:7251-7261.
    7. Aoi K, Aoi H, Okada M. Synthesis of a poly(vinyl alcohol)-based graft copolymer having poly(e-caprolactone) side chains by solution polymerization. Macromol. Chem. Phys.2002,203:1018-1028.
    8. Inoue Y, Matsugi T, Kashiwa N, Matyjaszewski K. Graft copolymers from linear polyethylene via atom transfer radical polymerization. Macromolecules.2004,37: 3651-3658.
    9. Glaied O, Dube M, Chabot B, Daneault C. Synthesis of cationic polymer-grafted cellulose by aqueous ATRP. J. Colloid Interface Sci.2009,333:145-151.
    10. Vivek AV, Babu K, Dhamodharan R. Arborescent polystyrene via ambient temperature ATRP:toward ordered honeycomb microstructured templates. Macromolecules.2009,42:2300-2303.
    11. Gao HF, Matyjaszewski K. Synthesis of molecular brushes by "Grafting onto" method:combination of ATRP and click reactions. J. Am. Chem. Soc.2007,129: 6633-6639.
    12. Durmaz YY, Kumbaraci V, Demirel AL, Talinli N, Yagci Y. Graft copolymers by the combination of ATRP and photochemical acylation process by using benzodioxinones. Macromolecules.2009,42:3743-3749.
    13. Asami R, Takaki M, Hanahata H. Preparation of (p-vinylbenzyl) polystyrene Macromer. Macromolecules.1983,16:628-631.
    14. Miyashita K, Kamigaito M, Sawamoto M, Higashimura T. End-functionalized polymers of styrene and p-methylstyrene by living cationic polymerization with functionalized initiators. Macromolecules.1994,27:1093-1098.
    15. Ren YR, Jiang XS, Yin J. Copolymer of poly(4-vinylpyridine)-g-poly(ethylene oxide) respond sharply to temperature, pH and ionic strength. Eur. Polym. J.2008, 44:4108-4114.
    16. Ryan J, Aldabbagh F, Zetterlund PB, Yamada B. Nitroxide-mediated controlled/ living radical copolymerizations with macromonomers. React. Funct. Polym. 2008,68:692-700.
    17. Neugebauer D. Atom transfer radical copolymerization of N, N'-dimethyl-acrylamide with methacrylate-functionalized poly (ethylene oxide). React. Funct. Polym.2008,68:535-543.
    18. Petit L, Karakasyan C, Pantoustier N, Hourdet D. Synthesis of graft polyacrylamide with responsive self-assembling properties in aqueous media. Polymer.2007,48:7098-7112.
    19. Gridnev AA, Ittel SD. Catalytic chain transfer in free-radical polymerizations. Chem. Rev.2001,101:3611-3659.
    20. Gridnev AA. The 25th Anniversary of catalytic chain transfer. J. Polym. Sci., Part A:Polym. Chem.2000,38:1753-1766.
    21. Bresciani-Pahor N, Forcolin M, Marzilli LG, Randaccio L, Summers MF, Toscano PJ. Organocobalt B12 models:axial ligand effects on the structural and coordination chemistry of cobaloximes. Coord. Chem. Rev.1985,63:1-125.
    22. Janowicz AH. Cobalt (II) chelates as chain transfer agents in free redical polymerizations. U.S. Patent 4,694,054.1987.
    23. Heuts JPA, Forster DJ, Davis TP. Reversible cobalt-carbon bond formation in catalytic chain transfer polymerization. Macromolecules.1999,32:2511-2519.
    24. Roberts GE, Barner-Kowollik C, Davis TP, Heuts JPA. Cobalt (II)-mediated catalytic chain transfer polymerization of styrene:estimating individual rate coefficients via kinetic modeling. Macromolecules.2003,36:1054-1062.
    25. Forster DJ, Heuts JPA, Davis TP. Conventional and catalytic chain transfer in the free-radical polymerization of 2-phenoxyethyl methacrylate. Polymer.2000,41: 1385-1390.
    26. Biasutti JD, Roberts GE, Lucien FP, Heuts JPA. Substituent effects in the catalytic chain transfer polymerization of 2-hydroxyethyl methacrylate. Eur. Polym. J.2003,39:429-435.
    27. Heuts JPA, Forster DJ, Davis TP. The effects of ester chain length and temperature on the catalytic chain transfer polymerization of methacrylates. Macromolecules.1999,32:3907-3912.
    28. Wang WX, Irvine DJ, Howdle SM. Dispersion catalytic chain transfer polymerizations of methyl methacrylate in supercritical carbon dioxide. Ind. Eng. Chem. Res.2005,44:8654-8658.
    29. Lu Z, Wang JY, Li Q, Chen L, Chen S. Controllable synthesis of nanosilica surface-grafted PMMA macromonomers via catalytic chain transfer polymerization. Eur. Polym. J.2009,45:1072-1079.
    30. Suddaby KG, Haddleton DM, Hastings JJ, Richards SN, O'Donnell JP. Catalytic chain transfer for molecular weight control in the emulsion polymerization of methyl methacrylate and methyl methacrylate-styrene. Macromolecules.1996,29: 8083-8091.
    31. Kukulj D, Davis TP, Gilbert RG. Catalytic chain transfer in miniemulsion polymerization. Macromolecules.1997,30:7661-7666.
    32. Smeets NMB, Meda US, Heuts JPA, Keurentjes JTF, Herk AMV, Meuldijk J. Molecular weight control in emulsion polymerization by catalytic chain transfer: a reaction engineering approach. Macromol. Symp.2007,259:406-415.
    33. Smeets NMB, Heuts JPA, Meuldijk J, Herk AMV. Effect of catalyst partitioning in Co (II) mediated catalytic chain transfer miniemulsion polymerization of methyl methacrylate. J. Polym. Sci., Part A:Polym. Chem.2008,46:5839-5849.
    34. Morrison D, Davis TP, Heuts JPA, Messerle B, Gridnev AA. Free radical rolymerization with catalytic chain transfer:Using NMR to probe the strength of the cobalt-carbon bond in small molecule model reactions. J. Polym. Sci., Part A: Polym. Chem.2006,44:6171-6189.
    35. Haddleton DM, Depaquis E, Kelly EJ, Kukulj D, Morsley SR, Bon SAF, Eason MD, Steward AG Cobalt-mediated catalytic chain-transfer polymerization (CCTP) in water and water/alcohol solution. J. Polym. Sci., Part A:Polym. Chem. 2001,39:2378-2384.
    36. Huybrechts J, Bruylants P, Kirshenbaum K, Vrana J, Snuparek J. New applications of catalytic chain transfer polymerization to waterborne binders for automotive paint systems. Prog. Org. Coat.2002,45:173-183.
    37. Sand A, Toivakka M, Hjelt T. Influence of colloidal interactions on pigment coating layer structure formation. J. Colloid Interface Sci.2009,332:394-401.
    38. Reuter E, Silber S, Psiorz C. The use of new blockcopolymeric dispersing agents for waterborne paints-theoretical and practical aspects. Prog. Org. Coat.1999,37: 161-167.
    39. Nsib F, Ayed N, Chevalier Y. Selection of dispersants for the dispersion of C.I. Pigment Violet 23 in organic medium. Dyes and Pigments.2007,74:133-140.
    40. Misra PK, Dash U, Somasundaran P. Effect of organized assemblies, part VII: adsorption behavior of polyoxyethylated nonyl phenol at silica-cyclohexane interface and its efficiencyin stabilizing the silica-cyclohexane dispersion. Ind. Eng. Chem. Res.2009,48:3403-3409.
    41. Nsib F, Ayed N, Chevalier Y. Selection of dispersants for the dispersion of carbon black in organic medium. Prog. Org. Coat.2006,55:303-310.
    42. Won YY, Meeker SP, Trappe V, Weitz DA, Diggs NZ, Emert JI. Effect of temperature on carbon-black agglomeration in hydrocarbon liquid with adsorbed dispersant. Langmuir.2005,21:924-932.
    43. Vaisman L, Wagner HD, Marom G. The role of surfactants in dispersion of carbon nanotubes. Adv. Colloid Interface Sci.2006,128-130:37-46.
    44. Somasundaran P, Krishnakumar S. Adsorption of surfactants and polymers at the solid-liquid interface. Colloids Surf., A.1997,123-124:491-513.
    45. Creutz S, Jerome R. Effectiveness of poly(vinylpyridine) block copolymers as ctabilizers of aqueous titanium dioxide dispersions of a high solid content. Langmuir.1999,15:7145-7156.
    46. Creutz S, Jerome R. Effectiveness of block copolymers as stabilizers for aqueous titanium dioxide dispersions of a high solid content. Prog. Org. Coat.2000,40: 21-29.
    47. Loiseau J, Doerr N, Suau JM, Egraz JB, Llauro MF, Ladaviere C. Synthesis and characterization of poly(acrylic acid) produced by RAFT polymerization. Application as a very efficient dispersant of CaCO3, Kaolin, and TiO2. Macromolecules.2003,36:3066-3077.
    48. Nsib F, Ayed N, Chevalier Y. Dispersion of hematite suspensions with sodium polymethacrylate dispersants in alkaline medium. Colloids Surf., A.2006,286: 17-26.
    49. Zhao JL, Wang XH, Gui ZL, Li LT. Dispersion of barium titanate with poly(acrylic acid-co-maleic acid) in aqueous media. Ceram. Int.2004,30: 1985-1988.
    50. Zhao JL, Wang XH, Chen RZ, Li LT. Dispersion of barium titanate in aqueous media. Ceram. Int.2007,33:207-212.
    51. Zhang JX, Ye F, Jiang DL, Iwasa M. Dispersion of Si3N4 powders in aqueous media. Colloids Surf, A.2005,259:117-123.
    52. Dange C, Phan TNT, Andre V, Rieger J, Persello J, Foissy A. Adsorption mechanism and dispersion efficiency of three anionic additives [poly(acrylic acid), poly(styrene sulfonate) and HEDP] on zinc oxide. J. Colloid Interface Sci. 2007,315:107-115.
    53. Shin YJ, Su CC, Shen YH. Dispersion of aqueous nano-sized alumina suspensions using cationic polyelectrolyte. Mater. Res. Bull.2006,41:1964-1971.
    54. Ridaoui H, Jada A, Vidal L, Donnet JB. Effect of cationic surfactant and block copolymer on carbon black particle surface charge and size. Colloids Surf., A. 2006,278:149-159.
    55. Braun D, Sauerwein, Hellmann GP. Polymer surfactants from styrene-co-maleic anhydride copolymers. Macromol. Symp.2001,163:59-66.
    56. Nagai K, Igarashi Y, Taniguchi T. Preparation of carbon black dispersion with enhanced stability by aqueous copolymerization of a polymerizable surfactant Colloids Surf., A.1999,153:161-163.
    57. Nizri G, Lagerge S, Kamyshny A, Major DT, Magdassi S. Polymer-surfactant interactions:binding mechanism of sodium dodecyl sulfate to poly(diallyldi-methylammonium chloride). J. Colloid Interface Sci.2008,320:74-81.
    58. Matsuda T, Annaka M. Salt effect on complex formation of neutral/ polyelectrolyte block copolymers and oppositely charged surfactants. Langmuir. 2008,24:5707-5713.
    59. Moglianetti M, Li PX, Malet FLQ Armes SP, Thomas RK, Titmuss S. Interaction of polymer and surfactant at the air-water interface:poly(2-(dimethylamino) ethyl methacrylate) and sodium dodecyl sulfate. Langmuir.2008,24:12892-12898.
    60. Zhang J, Thomasa RK, Penfold J. Interaction of oppositely charged polyelectrolyte-ionic surfactant mixtures:adsorption of sodium poly(acrylic acid)-dodecyl trimethyl ammonium bromide mixtures at the air-water interface. Soft Matter.2005,1:310-318.
    61. Wang C, Tam KC. Interactions between poly(acrylic acid) and sodium dodecyl sulfate:isothermal titration calorimetric and surfactant ion-selective electrode studies.J. Phys. Chem. B.2005,109:5156-5161.
    62. Folmer BM, Kronberg B. Effect of surfactant-polymer association on the stabilities of foams and thin films:sodium dodecyl sulfate and poly(vinyl pyrrolidone). Langmuir.2000,16:5987-5992.
    63. Fox GJ, Bloor DM, Holzwarth JF, Wyn-Jones E. Use of isothermal titration microcalorimetry to monitor the adsorption/desorption processes of sodium dodecyl sulfate with neutral polymers. Langmuir.1998,14:1026-1030.
    64. Jean B, Lee LT, Cabane B. Effects of sodium dodecyl sulfate on the adsorption of poly(N-isopropylacrylamide) at the air-water interface. Langmuir.1999,15: 7585-7590.
    65. Ghoreishi SM, Li Y, Bloor DM, Warr J, Wyn-Jones E. Electromotive force studies associated with the binding of sodium dodecyl sulfate to a range of nonionic polymers. Langmuir.1999,15:4380-4387.
    66. Couderc-Azouani S, Sidhu J, Thurn T, Xu R, Bloor DM, Penfold J, Holzwarth JF, Wyn-Jones E. Binding of sodium dodecyl sulfate and hexaethylene glycol mono-n-dodecyl ether to the block copolymer L64:electromotive force, microcalorimetry, surface tension, and small angle neutron scattering investigations of mixed micelles and polymer/micellar surfactant complexes. Langmuir.2005,21:10197-10208.
    67. Li Y, Xu R, Couderc S, Bloor DM, Holzwarth JF, Wyn-Jones E. Binding of tetradecyltrimethylammonium bromide to the ABA block copolymer Pluronic F127 (EO97PO69EO97):electromotive force, microcalorimetry, and light scattering studies. Langmuir.2001,17:5742-5747.
    68. Li Y, Xu R, Bloor DM, Holzwarth JF, Wyn-Jones E. The binding of sodium dodecyl sulfate to the ABA block copolymer Pluronic F127 (EO97PO69EO97):an electromotive force, microcalorimetry, and light scattering investigation. Langmuir.2000,16:10515-10520.
    69. Deo P, Deo N, Somasundaran P, Moscatelli A, Jockusch S, Turro NJ, Ananthapadmanabhan KP, Ottaviani MF. Interactions of a hydrophobically modified polymer with oppositely charged surfactants. Langmuir.2007,23: 5906-5913.
    70. Deo P, Somasundaran P. Interactions of hydrophobically modified polyelectrolytes with nonionic surfactants. Langmuir.2005,21:3950-3956.
    71. Bai GY, Nichifor M, Lopes A, Bastos M. Thermodynamic characterization of the interaction behavior of a hydrophobically modified polyelectrolyte and oppositely charged surfactants in aqueous solution:effect of surfactant alkyl chain length. J. Phys. Chem. B.2005,109:518-525.
    72. Diab C, Winnik FM, Tribet C. Enthalpy of interaction and binding isotherms of non-ionic surfactants onto micellar amphiphilic polymers (amphipols). Langmuir. 2007,23:3025-3035.
    73. Antunes FE, Lindman B, Miguel MG. Mixed systems of hydrophobically modified polyelectrolytes:controlling rheology by charge and hydrophobe stoichiometry and interaction strength. Langmuir.2005,21:10188-10196.
    74. Lee CT, Smith KA, Hat TA. Photoreversible viscosity changes and gelation in mixtures of hydrophobically modified polyelectrolytes and photosensitive surfactants. Macromolecules.2004,37:5397-5405.
    75. Ghoreishi SM, Fox GA, Bloor DM, Holzwarth JF, Wyn-Jones E. EMF and microcalorimetry studies associated with the binding of the cationic surfactants to neutral polymers. Langmuir.1999,15:5474-5479.
    76. Winnik FM, Regismond STA, Goddard ED. Interactions of an anionic surfactant with a fluorescent-dye-labeled hydrophobically-modified cationic cellulose ether. Langmuir.1997,13:111-114.
    77. Muzzalupo R, Infante MR, Perez L, Pinazo A, Marques EF, Antonelli ML, Strinati C, Mesa CL. Interactions between gemini surfactants and polymers: thermodynamic studies. Langmuir.2007,23:5963-5970.
    78. Burke SE, Palepu R. Interactions of a hydrophobically modified cationic cellulose ether derivative with amphiphiles of like charge in an aqueous environment. Carbohydr. Polym.2001,45:133-244.
    79. Wang C, Tam KC. Interactions between methacrylic acid/ethyl acrylate copolymers and dodecyltrimethylammonium bromide. J. Phys. Chem. B.2003, 107:4667-4675.
    80. Wang C, Tam KC. New Insights on the interaction mechanism within oppositely charged polymer/surfactant systems. Langmuir.2002,18:6484-6490.
    81. Burke SE, Eisenberg A. Effect of sodium dodecyl sulfate on the morphology of polystyrene-b-poly(acrylic acid) aggregates in dioxane-water mixtures. Langmuir. 2001,17:8341-8347.
    82. Deo P, Jockusch S, Ottaviani MF, Moscatelli A, Turro NJ, Somasundaran P. Interactions of hydrophobically modified polyelectrolytes with surfactants of the same charge. Langmuir.2003,19:10747-10752.
    83. Mintzer MA, Simanek EE. Nonviral vectors for gene delivery. Chem. Rev.2009, 109:259-302.
    84. Brun A, Albina E, Barret T, Chapman DAG, Czub M, Dixon LK, Keil GM, Klonjkowski B, Le Potier MF, Libeau G, Richardson JOJ, TakamatsucHH. Antigen delivery systems for veterinary vaccine development viral-vector based delivery systems. Vaccine. 2008,26:6508-6528.
    85. Tseng WC, Jong CM. Improved stability of polycationic vector by dextran-grafted branched polyethylenimine. Biomacromolecules.2003,4:1277-1284.
    86. Kima TH, Kima SI, Akaikeb T, Cho CS. Synergistic effect of poly(ethylenimine) on the transfection efficiency of galactosylated chitosan/DNA complexes. J. Controlled Release.2005,105:354-366.
    87. Wong K, Sun GB, Zhang XQ, Dai H, Liu Y, He CB, Leong KW. PEI-g-chitosan, a novel gene delivery system with transfection efficiency comparable to polyethylenimine in vitro and after liver administration in vivo. Bioconjugate Chem.2006,17:152-158.
    88. Hashimoto M, Morimoto M, Saimoto H, Shigemasa Y, Sato T. Lactosylated chitosan for DNA delivery into hepatocytes:the effect of lactosylation on the physicochemical properties and intracellular trafficking of pDNA/chitosan complexes. Bioconjugate Chem.2006,17:309-316.
    89. Jiang GB, Quan DP, Liao KR, Wang HH. Novel polymer micelles prepared from chitosan grafted hydrophobic palmitoyl groups for drug delivery. Mol. Pharmaceutics.2005,3:152-160.
    90. Danielsen S, Varum KM, Stokke BT. Structural analysis of chitosan mediated DNA condensation by AFM:influence of chitosan molecular parameters. Biomacromolecules.2004,5:928-936.
    91. Liu WG, Zhang X, Sun SJ, Sun GJ, Yao KD. N-alkylated chitosan as a potential nonviral vector for gene transfection. Bioconjugate Chem.2003,14:782-789.
    92. Mao ZW, Ma L, Jiang Y, Yan M, Gao CY, Shen JC. N, N, N-trimethylchitosan chloride as a gene vector:synthesis and application. Macromol. Biosci.2007,7: 855-863.
    93. Read ML, Etrych T, Ulbrich K, Seymour LW. Characterisation of the binding interaction between poly(L-lysine) and DNA using the fluorescamine assay in the preparation of non-viral gene delivery vectors. FEBS Letters.1999,461:96-100.
    94. Martinez-Fong D, Navarro-Quiroga I, Ochoa I, Alvarez-Maya I, Meraz MA, Luna J, Arias-Montano J. Neurotensin-SPDP-poly-L-lysine conjugate:a nonviral vector for targeted gene delivery to neural cells. Mol. Brain Res.1999,69: 249-262.
    95. Mannisto M, Vanderkerken S, Toncheva V, Elomaa M, Ruponen M, Schacht E, Urtti A. Structure-activity relationships of poly(L-lysines):effects of pegylation and molecular shape on physicochemical and biological properties in gene delivery. J. Controlled Release.2002,83:169-182.
    96. Boussif O, Lezoualch F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo:polyethylenimine. Proc. Natl. Acad. Sci. USA.1995,92: 7297-7301.
    97. Neu M, Fischer D, Kissel T. Recent advances in rational gene transfer vector design based on poly(ethylene imine) and its derivatives. J. Gene Med.2005,7: 992-1009.
    98. Haensler J, Szoka FC. Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjugate Chem.1993,4:372-379.
    99. Zhang XQ, Wang XL, Huang SW, Zhuo RX, Liu ZL, Mao HQ, Leong KW. In vitro gene delivery using polyamidoamine dendrimers with a trimesyl core. Biomacromolecules.2005,6:341-350.
    100.Dufes C, Uchegbu IF, Schatzlein AG. Dendrimers in gene delivery. Adv. Drug Deliv. Rev.2005,57:2177-2202.
    101.Gabrielson NP, Pack DW. Efficient polyethylenimine-mediated gene delivery proceeds via a caveolar pathway in HeLa cells. J. Controlled Release.2009,136: 54-61.
    102.Huh SH, Do HJ, Lim HY, Kim DK, Choi SJ, Song H, Kim NH, Park JK, Chang WJ, Chung HM, Kim JH. Optimization of 25 kDa linear polyethylenimine for efficient gene delivery. Biologicals.2007,35:165-171.
    103.Lungwitz U, Breunig M, Blunk T, Gopferich A. Polyethylenimine-based non-viral gene delivery systems. Eur. J. Pharm. Biopharm.2005,60:247-266.
    104.Sun YX, Xiao W, Cheng SX, Zhang XZ, Zhuo RX. Synthesis of (Dex-HMDI)-g-PEIs as effective and low cytotoxic nonviral gene vectors.J. Controlled Release. 2008,128:171-178.
    105.Jiang HL, Kim YK, Arote R, Nah JW, Cho MH, Choi YJ, Akaike T, Cho CS. Chitosan-graft-polyethylenimine as a gene carrier.J. Controlled Release.2007, 117:273-280.
    106.Pun SH, Bellocq NC, Liu AJ, Jensen G, Machemer T, Quijano E, Schluep T, Wen SF, Engler H, Heidel J, Davis ME. Cyclodextrin-modified polyethylenimine polymers for gene delivery. Bioconjugate Chem.2004,15:831-840.
    107.Petersen H, Fechner PM, Martin AL, Kunath K, Stolnik S, Roberts CJ, Fischer D, Davies MC, Kissel T. Polyethylenimine-graft-poly(ethylene glycol) copolymers: influence of copolymer block structure on DNA complexation and biological activities as gene delivery system. Bioconjugate Chem.2002,13:845-854.
    108.Brus C, Petersen H, Aigner A, Czubayko F, Kissel T. Physicochemical and biological characterization of polyethylenimine-graft-poly(ethylene glycol) block copolymers as a delivery system for oligonucleotides and ribozymes. Bioconjugate Chem.2004,15:677-684.
    109.Mao S, Neu M, Germershaus O, Merkel O, Sitterberg J, Bakowsky U, Kissel T. Influence of polyethylene glycol chain length on the physicochemical and biological properties of poly(ethylene imine)-graft-poly(ethylene glycol) block copolymer/SiRNA polyplexes. Bioconjugate Chem.2006,17:1209-1218.
    110.Merdan T, Kunath K, Petersen H, Bakowsky U, Voigt KH, Kopecek J, Kissel T. PEGylation of poly(ethylene imine) affects stability of complexes with plasmid DNA under in vivo conditions in a dose-dependent manner after intravenous injection into mice. Bioconjugate Chem.2005,16:785-792.
    111.van de Wetering P, Cherng JY, Talsma H, Hennink WE. Relation between transfection efficiency and cytotoxicity of poly(2-(dimethylamino)ethyl methacrylate)/plasmid complexes. J. Controlled Release.1997,49:59-69.
    112.van de Wetering P, Schuurmans-Nieuwenbroek NME, Hennink WE, Storm G. Comparative transfection studies of human ovarian carcinoma cells in vitro, ex vivo and in vivo with poly(2-(dimethylamino)ethyl methacrylate)-based polyplexes. J. Gene Med.1999,1:156-165.
    113.van der Aa MAEM, Huth US, Hafele SY, Schubert R, Oosting RS, Mastrobattista E, Hennink WE, Peschka-Suss R, Koning GA, Crommelin DJA. Cellular uptake of cationic polymer-DNA complexes via caveolae plays a pivotal role in gene transfection in COS-7 cells. Pharm. Res.2007,24:1590-1598.
    114.van de Wetering P, Moret EE, Schuurmans-Nieuwenbroek NME, van Steenbergen MJ, Hennink WE. Structure-activity relationships of water-soluble cationic methacrylate/methacrylamide polymers for nonviral gene delivery. Bioconjugate Chem.1999,10:589-597.
    115.Dubruel P, Christiaens B, Vanloo B, Bracke K, Rosseneu M, Vandekerckhove J, Schacht E. P hysicochemical and biological evaluation of cationic polymethacrylates as vectors for gene delivery. Eur. J. Pharm. Sci.2003, 211-220.
    116.Funhoff AM, van Nostrum CF, Koning GA, Schuurmans-Nieuwenbroek NME, Crommelin DJA, Hennink WE. Endosomal escape of polymeric gene delivery complexes is not always enhanced by polymers buffering at low pH. Biomacromolecules.2004,5:32-39.
    117.Funhoff AM, van Nostrum CF, Lok MC, Fretz MM, Crommelin DJA, Hennink WE. Poly(3-guanidinopropyl methacrylate):a novel cationic polymer for gene delivery. Bioconjugate Chem.2004,15:1212-1220.
    118.Luten J, Akeroyd N, Funhoff A, Lok MC, Talsma H, Hennink WE. Methacrylamide polymers with hydrolysis-sensitive cationic side groups as degradable gene carriers. Bioconjugate Chem.2006,17:1077-1084.
    119.You YZ, Manickam DS, Zhou QH, David Oupicky D. Reducible poly(2-dimethylaminoethyl methacrylate):synthesis, cytotoxicity, and gene delivery activity. J. Controlled Release.2007,122:217-225.
    120.Jiang XL, Lok MC, Hennink WE. Degradable-brushed pHEMA-pDMAEMA synthesized via ATRP and click chemistry for gene delivery. Bioconjugate Chem. 2007,18:2077-2084.
    1. Ren YR, Jiang XS, Yin J. Copolymer of poly(4-vinylpyridine)-g-poly(ethylene oxide) respond sharply to temperature, pH and ionic strength. Eur. Polym. J.2008, 44:4108-4114.
    2. Wang WX, Irvine DJ, Howdle SM. Dispersion catalytic chain transfer polymerizations of methyl methacrylate in supercritical carbon dioxide. Ind. Eng. Chem. Res.2005,44:8654-8658.
    3. Janowicz AH. Cobalt (Ⅱ) chelates as chain transfer agents in free redical polymerizations. U.S. Patent 4,694,054.1987.
    4. Heuts JPA, Kukulj D, Forster DJ, Davis TP. Copolymerization of styrene and methyl methacrylate in the presence of a catalytic chain transfer agent. Macromolecules.1998,31:2894-2905.
    5. Bakac A, Brynildson ME, Espenson JH. Characterization of the structure, properties, and reactivity of a cobalt (Ⅱ) macrocyclic complex. Inorg. Chem. 1986,25:4108-4114.
    6. Bakac A, Espenson JH. Unimolecular and bimolecular homolytic reactions of organochromium and organocobalt complexes. Kinetics and equilibria. J. Am. Chem. Soc.1984,106:5197-5202.
    7. Wang WX, Irvine DJ, Howdle SM. Dispersion catalytic chain transfer polymerizations of methyl methacrylate in supercritical carbon dioxide. Ind. Eng. Chem. Res.2005,44:8654-8658.
    8. Creutz S, Jerome R. Effectiveness of poly(vinylpyridine) block copolymers as stabilizers of aqueous titanium dioxide dispersions of a high solid content. Langmuir.1999,15:7145-7156.
    9. Creutz S, Jerome R. Effectiveness of block copolymers as stabilizers for aqueous titanium dioxide dispersions of a high solid content. Prog. Org. Coat.2000,40: 21-29.
    10. Sun YX, Zeng X, Meng QF, Zhang XZ, Cheng SX, Zhuo RX. The influence of RGD addition on the gene transfer characteristics of disulfide-containing polyethyleneimine/DNA complexes. Biomaterials.2008,29:4356-4365.
    11. Bloor DM, Mwakibete HO, Wyn-Jones E. EMF studies associated with the binding of cetyltrimethylammonium bromide to the polymers poly(propylene oxide), poly(vinylmethylether), and ethyl(hydroxyethyl) cellulose. J. Colloid Interface Sci.1996,178:334-348.
    12. Gamier S, Laschewsky A. New amphiphilic diblock copolymers:surfactant properties and solubilization in their micelles. Langmuir.2006,22:4044-4053.
    13. Folmer BM, Kronberg B. Effect of surfactant-polymer association on the stabilities of foams and thin films:sodium dodecyl sulfate and poly(vinyl pyrrolidone). Langmuir.2000,16:5987-5992.
    1. Braun D, Sauerwein, Hellmann GP. Polymer surfactants from styrene-co-maleic anhydride copolymers. Macromol. Symp.2001,163:59-66.
    2. Miano F, Bailey A, Luckham PF, Tadros TF. Adsorption of poly(ethylene oxide)-poly(propylene oxide) ABA block copolymers on carbon black and the rheology of the resulting dispersiongs. Colloids Surf.1992,68:9-16.
    3. Schaller C, Dirnberger K, Schauer T, Eisenbach CD. Stabilization of carbon black with ionic-hydrophobic polyelectrolytes. Macromol. Symp.2002,187:695-705.
    4. Nsib F, Ayed N, Yves Chevalier Y. Selection of dispersants for the dispersion of carbon black in organic medium. Prog. Org. Coat.2006,55:303-310.
    5. Reuter E, Silber S, Psiorz C. The use of new block copolymeric dispersing agents for waterborne paints-theoretical and practical aspects. Prog. Org. Coat.1999,37: 161-167.
    6. Lin YN, Smith TW, Alexandridis P. Adsorption of a rake-type siloxane surfactant onto carbon black nanoparticles dispersed in aqueous media. Langmuir.2002,18: 6147-6158.
    7. Lin YN, Alexandridis P. Temperature-dependent adsorption of Pluronic F127 block copolymers onto carbon black particles dispersed in aqueous media. J. Phys. Chem. B.2002,106:10834-10844.
    8. Ridaoui H, Jada A, Vidal L, Donnet JB. Effect of cationic surfactant and block copolymer on carbon black particle surface charge and size. Colloids Surf., A. 2006,278:149-159.
    9. Bulychev NA, Arutunov IA, Zubov VP, Verdonck B, Zhang TZ, Goethals EJ, Du Prez FE. Block copolymers of vinyl ethers as thermo-responsive colloidal stabilizers of organic pigments in aqueous media. Macromol. Chem. Phys.2004, 205:2457-2463.
    10. van den Haak HJW, Krutzer LLM. Design of pigment dispersants for high-solids paint systems. Prog. Org. Coat.2001,43:56-63.
    11. Tadros T. Interaction forces between particles containing grafted or adsorbed polymer layers. Adv. Colloid Interface Sci.2003,104:191-226.
    12. Creutz S, Jerome R. Effectiveness of poly(vinylpyridine) block copolymers as stabilizers of aqueous titanium dioxide dispersions of a high solid content. Langmuir.1999,15:7145-7156.
    13. Creutz S, Jerome R. Effectiveness of block copolymers as stabilizers for aqueous titanium dioxide dispersions of a high solid content. Prog. Org. Coat.2000,40: 21-29.
    14. Donnet JB. Fifty years of research and progress on carbon black. Carbon.1994, 32:1305-1310.
    15. Smith DM, Chughtai AR. The surface structure and reactivity of black carbon. Colloids Surf., A.1995,105:47-77.
    16. Bradley RH, Sutherland I, Sheng E. Carbon surface:area, porosity, chemistry, and energy.J. Colloid Interface Sci.1996,179:561-569.
    17. Lopez-Ramon MV, Stoeckli F, Moreno-Castilla C, Carrasco-Marin F. On the characterization of acidic and basic surface sites on carbons by various techniques. Carbon.1999,37:1215-1221.
    18. Bouhamed H, Boufi S, Magnin A. Dispersion of alumina suspension using comb-like and diblock copolymers produced by RAFT polymerization of AMPS and MPEG. J. Colloid Interface Sci.2007,312:279-291.
    19. Liang W, Bognolo G, Tadros TF. Stability of dispersions in the presence of graft copolymer (Ⅱ) adsorption of graft copolymers on titanium dioxide and the stability and rheology of the resulting dispersions. Langmuir.2000,16: 1306-1310.
    20. Liang W, Bognolo G, Tadros TF. Stability of dispersions in the presence of graft copolymer.1. Adsorption of graft copolymers on latex dispersions and the stability and rheology of the resulting dispersions. Langmuir.1995,11:2899-2904.
    21. Moad G, Rizzardo E, Thang SH. Toward living radical polymerization. Acc. Chem. Res.2008,41:1133-1142.
    22. Matyjaszewski K, Xia JH. Atom transfer radical polymerization. Chem. Rev.2001, 101:2921-2990.
    1. Smith DM, Chughtai AR. The surface structure and reactivity of black carbon. Colloids Surf., A.1995,105:47-77.
    2. Bradley RH, Sutherland I, Sheng E. Carbon surface:area, porosity, chemistry, and energy. J. Colloid Interface Sci.1996,179:561-569.
    3. Lopez-Ramon MV, Stoeckli F, Moreno-Castilla C, Carrasco-Marin F. On the characterization of acidic and basic surface sites on carbons by various techniques. Carbon.1999,37:1215-1221.
    4. Donnet JB. Fifty years of research and progress on carbon black. Carbon.1994, 32:1305-1310.
    5. Kamegawa K, Nishikubo K, Kodama M, Adachi Y, Yoshida H. Dissolution-aggregation behavior of water-soluble nanographites and their adsorptive characteristics for 2-naphthol in aqueous solutions.J. Colloid Interface Sci.2003,268:58-62.
    6. Radovic LR, Silva IF, Ume JI, Menbndz JA, Leon CAL, Scaroni AW. An experimental and theoretical study of the adsorption of aromatics prossessing electron-withdrawing and electron-donating functional groups by chemichally modified activated carbons. Carbon.1997,35:1339-1348.
    7. Haydar S, Ferro-Garcia MA, Rivera-Utrilla J, Joly JP. Adsorption ofp-nitrophenol on an activated carbon with different oxidations. Carbon.2003,41:387-395.
    8. Moreno-Castilla C. Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon.2004,42:83-94.
    9. Lee JU, Huh J, Kim KH, Park C, Jo WH. Aqueous suspension of carbon nanotubes via non-covalent functionalization with oligothiophene-terminated poly(ethylene glycol). Carbon.2007,45:1051-1057.
    10. Vaisman L, Wagner HD, Marom G. The role of surfactants in dispersion of carbon nanotubes. Adv. Colloid Interface Sci.2006,128-130:37-46.
    11. Matsuura K, Saito T, Okazaki T, Ohshima S, Yumura M, Iijima S. Selectivity of water-soluble proteins in single-walled carbon nanotube dispersions. Chem. Phys. Lett.2006,429:497-502.
    12. Wang GC, Ding YL, Wang F, Li XW, Li CZ. Poly(aniline-2-sulfonic acid) modified multiwalled carbon nanotubes with good aqueous dispersibility. J. Colloid Interface Sci.2008,317:199-205.
    13. Lin YN, Smith TW, Alexandridis P. Adsorption of a rake-type siloxane surfactant onto carbon black nanoparticles dispersed in aqueous media. Langmuir.2002,18: 6147-6158.
    14. Creutz S, Jerome R. Effectiveness of poly(vinylpyridine) block copolymers as stabilizers of aqueous titanium dioxide dispersions of a high solid content. Langmuir.1999,15:7145-7156.
    15. Creutz S, Jerome R. Effectiveness of block copolymers as stabilizers for aqueous titanium dioxide dispersions of a high solid content. Prog. Org. Coat.2000,40: 21-29.
    16. Li C, Yu X, Somasundaran P. Effect of a comb-like amphiphilic polymer on the stability of alumina dispersions. Colloids Surf.1992,69:155-158.
    17. Liang W, Bognolo G, Tadros TF. Stability of dispersions in the presence of graft copolymer (Ⅱ) adsorption of graft copolymers on titanium dioxide and the stability and rheology of the resulting dispersions. Langmuir.2000,16: 1306-1310.
    18. Farrokhpay S, Morris GE, Fornasieroa D, Self P. Influence of polymer functional group architecture on Titania pigment dispersion. Colloids Surf., A.2005,253: 183-191.
    19. Lin YN, Alexandridis P. Temperature-dependent adsorption of Pluronic F127 block copolymers onto carbon black particles dispersed in aqueous media. J. Phys. Chem. B.2002,106:10834-10844.
    20. Ridaoui H, Jada A, Vidal L, Donnet JB. Effect of cationic surfactant and block copolymer on carbon black particle surface charge and size. Colloids Surf., A. 2006,278:149-159.
    21.Mandzy, N.; Grulke, E.; Druffel, T. Breakage of TiO2 agglomerates in electrostatically stabilized aqueous dispersions. Powder Tehnol.2005,160: 121-126.
    1. Azzam T, Raskin A, Makovitzki A, Brem H, Vierling P, Lineal M, Domb AJ. Cationic polysaccharides for gene delivery. Macromolecules.2002,35:9947-9953.
    2. Mintzer MA, Simanek EE. Nonviral vectors for gene delivery. Chem. Rev.2009, 109:259-302.
    3. Brun A, Albina E, Barret T, Chapman DAG, Czub M, Dixon LK, Keil GM, Klonjkowski B, Le Potier MF, Libeau G, Ortego J, Richardson J, Takamatsu HH. Antigen delivery systems for veterinary vaccine development viral-vector based delivery systems. Vaccine.2008,26:6508-6528.
    4. Tseng WC, Jong CM. Improved stability of polycationic vector by dextran-grafted branched polyethylenimine. Biomacromolecules.2003,4:1277-1284.
    5. Tseng WC, Jong CM. Improved stability of polycationic vector by dextran-grafted branched polyethylenimine. Biomacromolecules.2003,4:1277-1284.
    6. Kima TH, Kima SI, Akaikeb T, Cho CS. Synergistic effect of poly(ethylenimine) on the transfection efficiency of galactosylated chitosan/DNA complexes. J. Controlled Release.2005,105:354-366.
    7. Wong K, Sun GB, Zhang XQ, Dai H, Liu Y, He CB, Leong KW. PEI-g-chitosan, a novel gene delivery system with transfection efficiency comparable to polyethylenimine in vitro and after liver administration in vivo. Bioconjugate Chem.2006,17:152-158.
    8. Gabrielson NP, Pack DW. Efficient polyethylenimine-mediated gene delivery proceeds via a caveolar pathway in HeLa cells. J. Controlled Release.2009,136: 54-61.
    9. Huh SH, Do HJ, Lim HY, Kim DK, Choi SJ, Song H, Kim NH, Park JK, Chang WJ, Chung HM, Kim JH. Optimization of 25 kDa linear polyethylenimine for efficient gene delivery. Biologicals.2007,35:165-171.
    10. Lungwitz U, Breunig M, Blunk T, Gopferich A. Polyethylenimine-based non-viral gene delivery systems. Eur. J. Pharm. Biopharm.2005,60:247-266.
    11. Sun YX, Xiao W, Cheng SX, Zhang XZ, Zhuo RX. Synthesis of (Dex-HMDI)-g-PEIs as effective and low cytotoxic nonviral gene vectors. J. Controlled Release. 2008,128:171-178.
    12. Jiang HL, Kim YK, Arote R, Nah JW, Cho MH, Choi YJ, Akaike T, Cho CS. Chitosan-graft-polyethylenimine as a gene carrier. J. Controlled Release.2007, 117:273-280.
    13. Pun SH, Bellocq NC, Liu AJ, Jensen G, Machemer T, Quijano E, Schluep T, Wen SF, Engler H, Heidel J, Davis ME. Cyclodextrin-modified polyethylenimine polymers for gene delivery. Bioconjugate Chem.2004,15:831-840.
    14. Petersen H, Fechner PM, Martin AL, Kunath K, Stolnik S, Roberts CJ, Fischer D, Davies MC, Kissel T. Polyethylenimine-graft-poly(ethylene glycol) copolymers: influence of copolymer block structure on DNA complexation and biological activities as gene delivery system. Bioconjugate Chem.2002,13:845-854.
    15. Wang YX, Chen P, Shen JC. The development and characterization. of a glutathione-sensitive cross-linked polyethylenimine gene vector. Biomaterials. 2006,27:5292-5298.
    16. van de Wetering P, Cherng JY, Talsma H, Hennink WE. Relation between transfection efficiency and cytotoxicity of poly(2-(dimethylamino)ethyl methacrylate)/plasmid complexes. J. Controlled Release.1997,49:59-69.
    17. van de Wetering P, Schuurmans-Nieuwenbroek NME, Hennink WE, Storm G. Comparative transfection studies of human ovarian carcinoma cells in vitro, ex vivo and in vivo with poly(2-(dimethylamino)ethyl methacrylate)-based polyplexes. J. Gene Med.1999,1:156-165.
    18. van der Aa MAEM, Huth US, Hafele SY, Schubert R, Oosting RS, Mastrobattista E, Hennink WE, Peschka-Suss R, Koning GA, Crommelin DJA. Cellular uptake of cationic polymer-DNA complexes via caveolae plays a pivotal role in gene transfection in COS-7 cells. Pharm. Res.2007,24:1590-1598.
    19. van de Wetering P, Moret EE, Schuurmans-Nieuwenbroek NME, van Steenbergen MJ, Hennink WE. Structure-activity relationships of water-soluble cationic methacrylate/methacrylamide polymers for nonviral gene delivery. Bioconjugate Chem.1999,10:589-597.
    20. Dubruel P, Christiaens B, Vanloo B, Bracke K, Rosseneu M, Vandekerckhove J, Schacht E. Physicochemical and biological evaluation of cationic polymethacrylates as vectors for gene delivery. Eur. J. Pharm. Sci.2003, 211-220.
    21. Funhoff AM, van Nostrum CF, Koning GA, Schuurmans-Nieuwenbroek NME, Crommelin DJA, Hennink WE. Endosomal escape of polymeric gene delivery complexes is not always enhanced by polymers buffering at low pH. Biomacromolecules.2004,5:32-39.
    22. Funhoff AM, van Nostrum CF, Lok MC, Fretz MM, Crommelin DJA, Hennink WE. Poly(3-guanidinopropyl methacrylate):a novel cationic polymer for gene delivery. Bioconjugate Chem.2004,15:1212-1220.
    23. Luten J, Akeroyd N, Funhoff A, Lok MC, Talsma H, Hennink WE. Methacrylamide polymers with hydrolysis-sensitive cationic side groups as degradable gene carriers. Bioconjugate Chem.2006,17:1077-1084.
    24. You YZ, Manickam DS, Zhou QH, David Oupicky D. Reducible poly(2-dimethylaminoethyl methacrylate):synthesis, cytotoxicity, and gene delivery activity. J. Controlled Release.2007,122:217-225.
    25. Jiang XL, Lok MC, Hennink WE. Degradable-brushed pHEMA-pDMAEMA synthesized via ATRP and click chemistry for gene delivery. Bioconjugate Chem. 2007,18:2077-2084.
    26. Wang WX, Irvine DJ, Howdle SM. Dispersion catalytic chain transfer polymerizations of methyl methacrylate in supercritical carbon dioxide. Ind. Eng. Chem. Res.2005,44:8654-8658.
    27. Lu B, Wang CF, Wu DQ, Li C, Zhang XZ, Zhuo RX. Chitosan based oligoamine polymers:synthesis, characterization, and gene delivery. J. Controlled Release. 2009,137:54-62.
    28. Zhang M, Liu M, Xue YN, Huang SW, Zhuo RX. Polyaspartamide-based oligo-ethylenimine brushes with high buffer capacity and low cytotoxicity for highly efficient gene gelivery. Bioconjugate Chem.2009,20:440-446.
    29. Liu YM, Reineke TM. Hydroxyl stereochemistry and amine number within poly(glycoamidoamine)s affect intracellular DNA delivery. J. Am. Chem. Soc. 2005,127:3004-3015.
    30. Kim T, Baek J, Yoon JK, Choi JS, Kim K, Park JS. Synthesis and characterization of a novel arginine-grafted dendritic block copolymer for gene delivery and study of its cellular uptake pathway leading to transfection. Bioconjugate Chem.2007,18:309-317.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700