用户名: 密码: 验证码:
聚N-异丙基丙烯酰胺构象转变的计算机模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大分子从无规线团到蜷曲球体的转变在理论和实践上均具有重要意义,因而是高分子科学研究中的热点问题之一。前人对线团—球体转变的理论研究,大多局限在对高分子链的形态尺寸变化的描述上,而对其转变机理,以及构象转变过程中的溶剂化作用等问题,仍然缺乏分子水平上的,以及进一步定量化描述。
     聚N-异丙基丙烯酰胺(PNiPA)由于每一个结构单元上同时存在亲水和疏水基团,它的溶液性质具有下临界共溶温度(LCST)的特性,是一种著名的水溶性温敏性高分子材料。当溶液温度从常温逐渐升高到LCST左右时,高分子链的形态尺寸发生突变,即所谓的高分子线团-球体的体积相转变。由于计算机模拟能对分子的结构和分子间相互作用提供详细的信息,本论文尝试采用计算机模拟方法研究PNiPA在溶液中的构象转变,并重点考察不同影响因素,包括内在结构和外部溶剂因素,对其相转变行为的影响,以及伴随高分子链构象转变过程中溶剂化作用的变化规律。在分子尺度上,初步阐述了不同取代基团对PNiPA在水溶液中LCST影响的原因,以及溶剂诱导PNiPA高分子链构象转变的本质。主要内容包括:
     (1)在PCFF力场框架下,应用分子动力学模拟观察了PNiPA高分子链在水溶液中LCST前后构象的转变。并在溶液状态下,着重考察了溶质与溶剂分子间相互作用的竞争,即:高分子链段…水分子,以及高分子链段…链段间相互作用。其作用规律是:在温度低于LCST时,高分子链段…水分子相互作用占主导,高分子链被充分溶剂化,处于伸展的无规线团构象;而当温度高于LCST时,高分子链段…链段间相互作用增加,可以观察到分子链逐渐发生蜷缩,末端距下降。此外,研究结果还表明,随着温度的升高,高分子链重复结构单元NiPA上(C)O和(N)H基团均发生明显的去溶剂化作用,且高分子链段间发生聚集。该模拟和分析结果均与实验现象定性一致。
     (2)聚N-异丙基丙烯酰胺在水溶液中LCST约为32℃,人们发现改变聚合物主链或侧链上的取代基团,LCST将发生较大的变化。比如以下3种不同结构的聚合物:聚N-异丙基丙烯酰胺(PNiPA)、聚N-n-正丙基丙烯酰胺(PNnPA)和聚N-异丙基甲基丙烯酰胺(PNiPMA),它们的重复单元可以用结构通式CH3CH(R1)(CONHR2)来表示,其中R1是H或CH3,R2是异丙基或正丙基,如图1所示。实验表明这些聚合物在其水溶液中均表现出不同的LCST。本论文运用量子化学计算和分子动力学模拟,以上述聚合物单体为研究对象,进一步考察结构因素——不同取代基团,对聚N-异丙基丙烯酰胺链在水溶液中构象转变的影响。研究表明高分子链发生构象转变与它们结构单元上不同分子基团的位阻大小有关。具体大小关系是:侧链异丙基位阻大于正丙基,主链α位甲基位阻大于氢原子,如图1所示。而位阻增大,使得高分子链在溶液中构象转变变得困难,需要更高的能量驱动其构象的翻转。因此,表现在LCST上,PNiPMA>PNiPA> PNnPA。
     (3)此外,不同溶剂对PNiPA的构象转变也同样有着较大影响。水与甲醇在常温条件下,均为PNiPA的良溶剂,但是水与甲醇一定比例下的混合物(甲醇摩尔含量在0.25到0.80之间),常温下却是PNiPA的劣溶剂。因此,PNiPA在水/甲醇混合溶剂中,将随着其混合溶剂组成的线性变化,发生线团—球体—线团可逆的构象转变现象。本论文,采用分子动力学模拟方法,以其单体NiPA为研究对象,考察了水/甲醇不同比例下混合溶剂对PNiPA构象转变的影响,以及在构象转变过程中溶剂化作用的变化。结果表明在甲醇摩尔含量0.25到0.80之间时,NiPA与溶剂分子间的相互作用力被减弱,发生去溶剂化作用,溶质与溶剂间氢键数下降,如图2所示,这与其高分子构象从线团到球体转变现象呼应。此外,进一步溶剂分子结构研究发现,在上述混合比例范围内的混合溶剂中,通过氢键作用形成的水和甲醇聚集体数目大幅增加,且结构较为稳定,这可能是导致高分子与溶剂分子间相互作用被减弱的主要原因。同时,分别对水分子和甲醇分子聚集体的结构研究中发现,虽然随着甲醇含量的增加,水分子聚集体的数量减少,但其氢键网络结构十分稳定;而甲醇分子则更易形成无分支的短链结构,并随着水含量的增加而逐渐被破坏,且在高含水量混合溶剂中,三个以上甲醇分子的聚集体已基本不存在。
     综上所述,本论文通过计算机模拟方法,研究了聚N-异丙基丙烯酰胺在溶液中线团-球体的转变,以及转变过程中的溶剂化作用变化规律;并重点讨论了不同取代基团以及溶剂对这一转变过程的影响等问题,得到一些有意义的理论结果。
The coil-to-globule transition of macromolecule is one of the most important fundamental problems both in theory and applications. The theories related to this topic are mainly concentrated in the description of the change of the configuration and size of the polymer chains thermodynamically and kinetically during the last 40 years. However, it is insufficient for understanding well the transition mechanism of polymer chain including the solvation effects during the process of conformational transition in molecular level and quantificational description.
     Poly(N-isopropylacrylamide) (PNiPA), which consists of both hydrophilic and hydrophobic group in each repeat unit, shows LCST in its solution, and is a very famous water soluble thermo-sensitive polymer. The coil-to-globule transition can take place within several degrees around LCST, and the hydrodynamic volume of polymer chain will decrease several hundred times. In this thesis, both quantum chemical methods and molecular dynamics simulations are employed to study the thermal phase transitions of PNiPA from the electronic and molecular structures. Various effects, including structural factor and solvent components, on the conformational transition have been investigated, respectively. Some interesting results have been got as follow:
     (1) Molecular dynamics simulations with PCFF have been adopted to study the conformation state of PNiPA below and above LCST, respectively. The molecular interactions among solutes and solvents:polymer segment…solvent and polymer segment…segment interactions have been investigated carefully. Below LCST, the former interaction is dominant, and PNiPA chain is solvated well and shows a random coil conformation; while temperature is raised above LCST, the chains collapse into a compacted globule gradually. Further investigations indicate that desolvation process is occurred on both (C) O and (N) H group of NiPA with the increase of temperature, and polymer segments begin to aggregate together, which illuminate that polymer segment…segment interactions are enhanced. The simulation results are qualitatively consistent with those from experiments.
     (2) Poly(N-alkylacrylamide) bears its LCST around 32℃in aqueous solution. However, it is found that various substituting groups on its main or side chain would greatly affect its phase transition behaviors and result in different levels of LCST. Based on a structural formula of a repeat unit of CH3CH(R1)(CONHR2), where R1 is H or CH3 and R2 is isopropyl or n-propyl, there exist three kinds of thermo-sensitive polymers with various structures:poly(N-isopropylacrylamide) (PNiPA), poly(N-n-propylacrylamide) (PNnPA), and poly(N-isopropylmethacrylamide) (PNiPMA), respectively, as shown in Figure 1. These polymers exhibit different levels of LCST in aqueous solutions. In this thesis, the monomers of these polymers are selected to demonstrate the cause of different LCST levels in aqueous solutions for various molecular structures using molecular dynamics simulations and quantum mechanics calculations. The monomers have functional groups of differing steric volume that greatly affect the conformational transition of chains and LCST levels of the polymers. A branched chain of N-propyl group in N-isopropylacrylamide and an additional methyl group at a-carbon in N-isopropylmethacrylamide both increased the steric effect, making it more difficult for monomers to draw closer and resulting in higher LCST levels of the polymers.
     (3) In addition to structure factor, the solvent component could affect the conformational transition of PNiPA also. It is reported that water and methanol are both good solvent for PNiPA at room temperature, but their mixture, with mole fractions of methanol (xmethanol) from 0.25 to 0.80, is bad one. With the increase of xmethanol, the coil-to-globule-to-coil transition of PNiPA would take place. The reentrant transition behaviors including solvation effects during conformational transition process in water/methanol mixtures are investigated by molecular dynamics simulations from monomer of PNiPA. The results indicate that NIPAM-solvent interactions are weakened with the increase of xmethanol from 0.25 to 0.80, and the total hydrogen bonding number between solute and solvent decreases, rationalizing the reentrant coil-to-globule-to-coil transition behaviors of PNiPA in the mixed solvents, as shown in Figure 2. Interestingly, hydrogen-bonded water-methanol clusters are abundant in binary mixed solvents, leading to the decrement of NIPAM-solvent interactions. To better understand the intermolecular interactions in the water-methanol complex clusters, the structures of pure water and methanol clusters are also studied, respectively. Although the amount of water clusters decreases with the increase of xmethanol, the structure of water clusters still keeps stable, and hydrogen-bonded networks are not essentially disrupted. As for methanol molecules, they prefer to form short non-branched chain-like hydrogen-bonded clusters. However, most of the chain-like hydrogen-bonded methanol clusters are broken in water-rich solutions, leaving the little probability of the formation of dimeric and trimeric methanol clusters.
引文
[1]Simmons, D. S.; Sanchez, I. C. Macromolecules 2010,43,2574.
    [2]Shechter, I.; Ramon,O.; Portnaya, I.; Paz, Y.; Livney, Y. D. Macromolecules 2010, 43,480.
    [3]Tauer, K.; Gau, D.; Schulze, S.; Hernandez, H. Polymer 2008,49,5452.
    [4]Maki, Y.; Dobashi, T.; Nakata, M. Phys. Rev. E 2008,78,041802.
    [5]Herold, C.; Schwille, P.; Petrov, E. P. Phys. Rev. Lett.2010,104,148102.
    [6]Shiraishi, Y.; Suzuki, T.; Hirai, T. Polymer 2009,50,5758.
    [7]Taylor, M. P.; Paul, W.; Binder, K. J. Chem. Phys.2009,131,114907.
    [8]Wang, M. X. Phys. Lett. A 2009,373,3285.
    [9]Lai, H. J.; Wu, P. Y Polymer 2010,57,1404.
    [10]Lu, Y J.; Zhou, K. J.; Ding, Y W.; Zhang, G. Z.; Wu, C. Phys. Chem. Chem. Phys.2010,72,3188.
    [11]Liu, R. X.; Fraylich, M.; Saunders, B. R. Colloid Polym. Sci.2009,287,627.
    [12]Ottaviani, M. F.; Winnik, F. M.; Bossmann, S. H.; Turro, N. J. Helv. Chim. Acta. 2001,81,2476.
    [13]Erbil, C.; Akin, H.; Uyanik, N. J. Appl. Poly. Sci.2003,87,1248.
    [14]Berlinova, I. V.; Nedelcheva, A. N.; Samichkov, V.; Ivanov, Y Polymer 2002,43, 7243.
    [15]Chen, Q.; Xu, K.; Zhang, W. D.; Song, C. L.; Wang, P. X. Colloid. Polym. Sci. 2009,287,1339.
    [16]Wei, H.; Cheng,. S. X.; Zhang, X. Z.; Zhuo, R. X. Prog. Polym. Sci.2009,34, 893.
    [17]Klis, M.; Karbarz, M.; Stojek, Z.; Rogalski, J.; Bilewicz, R. J. Phys. Chem. B 2009,113,6062.
    [18]Baysal, B. M.; Karasz, F. E. Macromol. Theory Simul.2003,12,627.
    [19]Fujishige, S.; Kubota, K.; Ando, I. J. Phys. Chem.1989,93,3311.
    [20]Kubota, K.; Fujishige, S.; Ando, I. J. Phys. Chem.1990,94,5154.
    [21]Kubota, K.; Fujishige, S.; Ando, I. Polym. J.1990,22,15.
    [22]Meewes, M.; Ricka, J.; Desilva, M.; Nyffenegger, R.; Binkert, T. Macromolecules 1991,24,5811.
    [23]Suzuki, Y.; Nozaki, K.; Yamamoto, T.; Itoh, K.; Nishio, I. J. Chem. Phys.1992, 97,3808.
    [24]Li, Z.; Kyeremateng, S. O.; Fuchise, K.; Kakuchi, R.; Sakai, R.; Kakuchi, T.; Kressler, J. Macro. Chem. Phys.2009,210,2138.
    [25]Teo, B. M.; Prescott, S. W.; Price, G. J.; Grieser, F. Ashokkumar, M. J. Phys. Chem. B 2010,114,3118.
    [26]Schild, H. G.; Tirrell, D. A. Langmuir 1991,7,665.
    [27]Winnik, F. M. Macromolecules 1990,23,1647.
    [28]Winnik, F. M. Macromolecules 1990,23,233.
    [29]Deng, L.; Shi, K.; Zhang, Y. Y.; Wang, H. M.; Zeng, J. G.; Guo, X. Z.; Du, Z. J.; Zhang, B. L. J. Colloid Inter. Sci.2008,323,169.
    [30]Li, G Y.; Guo, L.; Ma, S. M. J. Appl. Polym. Sci.2009,113,1364.
    [31]Fang, Y.; Qiang, J. C.; Hu, D. D.; Wang, M. Z.; Cui, Y. L. Colloid Polym. Sci. 2001,279,14.
    [32]Chee, C. K.; Ghiggino, K. P.; Smith, T. A.; Rimmer, S.; Soutar, I.; Swanson, L. Polymer 2001,42,2235.
    [33]Akiyoshi, K.; Kang, E. C.; Kurumada, S.; Sunamoto, J.; Principi, T.; Winnik, F. M. Macromolecules 2000,33,3244.
    [34]Bokias, G.; Hourdet, D.; Iliopoulos, I. Macromolecules 2000,33,2929.
    [35]Friedrich, T.; Tieke, B.; Meyer, M.; Pyckhout-Hintzen, W.; Pipich, V. J. Phys. Chem. B 2010,114,5666.
    [36]Shibayama, M.; Tanaka, T.; Han, C. C. J. Chem. Phys.1992,97,6842.
    [37]Berndt, I.; Pedersen, J. S.; Lindner, P.; Richtering, W. Langmuir 2006,22,459.
    [38]Musch, J.; Schneider, S.; Lindner, P.; Richtering, W. J. Phys. Chem. B 2008,112, 6309.
    [39]Liang, L.; Liu, J.; Gong, X. Y. Langmuir 2000,16,9895.
    [40]Sur, G. S.; Lyu, S. G.; Chang, J. H. J. Ind. Eng. Chem.2003,9,58.
    [41]Zhang, C.; Easteal, A. J. J. Appl. Polym. Sci. 2007,104,1723.
    [42]Ying, L.; Kang, E. T.; Neoh, K. G. J. Membrane Sci.2003,224,93.
    [43]Chung, P. W.; Kumar, R.; Pruski, M.; Lin, V. S. Y. Adv. Funct. Mater.2008,18, 1390.
    [44]Basavaraja, C.; Pierson, R.; Vishnuvardhan, T. K.; Huh, D. S. Eur. Polym. J. 2008,44,1556.
    [45]Zhao, D. Y.; Chen, X.; Liu, Y.; Wu, C. L.; Ma, R. J.; An, Y L.; Shi, L. Q. J. Colloid Interface Sci.2009,331,104.
    [46]Tam, K. C.; Wu, X. Y.; Pelton, R. H. Polymer 1992,33,436.
    [47]Mumick, P. S.; Mccormick, C. L. Polym. Eng. Sci.1994,34,1419.
    [48]Yang, H.; Yan, X. H.; Cheng, R. S. J. Polym. Sci. B:Polym. Phys.2000,38, 1188.
    [49]Hahn, M.; Gornitz, E.; Dautzenber, H. Macromolecules 1998,31,5616.
    [50]Iyer, N. P.; Hourdet, D.; Badiger, M. V.; Chassenieux, C.; Perrin, P.; Wadgaonkar, P. Polymer 2005,46,12190.
    [51]Wu, C.; Wang, X. H. Phys. Rev. Lett.1998,80 (18),4092.
    [52]Wu, C.; Qiu, X. Phys. Rev. Lett.1998,80 (3),620.
    [53]Wang, X.; Qiu, X.; Wu, C. Macromolecules 1998,31,2972.
    [54]吴奇,汪晓辉,高均.高分子通报1998,4,1.
    [55]Xu, J.; Zhu, Z. Y.; Luo, S. Z.; Wu, C.; Liu, S. Y Phys. Rev. Lett.2006,96, 027802.
    [56]Eliassaf, J. J. Appl. Polym. Sci 1978,22,873.
    [57]Yang, H.; Yin, W. S.; Kong, X. X.; Xu, M.; Yao, Y F.; Chen, Q.; Cheng, R. S. Colloid Polym. Sci.2006,284,935.
    [58]Yang, H.; Yan, X. H.; Cheng, R. S. J. Polym. Sci. B:Polym. Phys.,2000,38, 1188.
    [59]Yang, H.; Cheng, R. S.; Wang, Z. L. Polymer 2003,44,7175.
    [60]Wang, X. H.; Qiu, X. P.; Wu, C. Macromolecules 1998,31,2972.
    [61]程镕时,杨琥,严晓虎,王治流,李利.高等学校学学报2001,22,1262.
    [62]Starovoytova, L.; Spevacek, J.; Trchova, M. Euro. Polym. J.2007,43,5001.
    [63]Paz, Y.; Kesselman, E.; Fahoum, L.; Portnaya, I.; Ramon,0. J. Polym. Sci., Part B:Polym. Phys.2004,42,33.
    [64]Maeda, Y.; Nakamura, T.; Ikeda, I. Macromolecules 2001,34,1391.
    [65]Maeda, Y.; Nakamura, T.; Ikeda, I. Macromolecules 2001,34,8246.
    [66]Mamoru, K.; Etsuo, K. Langmuir 2009,25,8649.
    [67]Dybal, J.; Trchova, M.; Schmidt, P. Vib. Spectrosc.2009,51,44.
    [68]Takei, Y. G.; Aoki, T.; Sanui, K.; Ogata, N.; Okano, T.; Sakurait, Y. Bioconlugate Chem.1993,4,341.
    [69]杨琥,尹唯斯,王治流,丁延伟,张广照,程镕时.化学学报2004,62,610.
    [70]尹唯斯,杨琥,郑云,王治流,程镕时.南京大学学报(自然科学)2005,41,133.
    [71]Saito, S.; Konno, M.; Inomata, H. Adv. Polym. Sci.1993,109,207.
    [72]Panayiotou, M.; Garret-Flaudy, F.; Freitag, R. Polymer 2004,45,3055.
    [73]Notley, S. M. J. Phys. Chem. B 2008,112,12650.
    [74]Liu, G. M.; Zhang, G. Z. Langmuir 2005,21,2086.
    [75]Zhang, G. Z.; Wu, C. J. Am. Chem. Soc.2001,123,1376.
    [76]Zhang, G. Z.; Wu, C. Phys. Rev. Lett.2001,86,822.
    [77]龚珍,李象远,李泽荣.高等学校化学学报2004,25,539.
    [78]Dhara, D.; Chatterji, P. R. J. M. S.-Rev. Macromol. Chem. Phys.2000, C40,51.
    [79]Frank, H. S.; Wen, W. Y. Discuss. Faraday Soc.,1957,23,133.
    [80]Cabane, B. J. Phys. Chem.1977,81,1639.
    [81]Lee, L. T.; Cabane, B. Macromolecules 1997,30,6559.
    [82]Kokufuta, E.; Zhang, Y. Q.; Tanaka, T.; Mamada, A. Macromolecules 1993,26, 1053.
    [83]Kokufuta, E.; Suzuki, H.; Sakamoto, D. Langmuir 1997,13,2627.
    [84]Walter, R.; Ricka, J.; Quellet, Ch.; Nyffengger, I.; Binkert, Th. Macromolecules 1996,29,4019.
    [1]Levine, I. N. Quantum Chmistry,5th Edition, Prentice-Hall, Inc., New Jersey, 2000.
    [2]Parr, R. G.; Yang, W. Density-functional theory of atoms and molecules, Oxford Univ. Press, Oxford,1989.
    [3]Jones, R.O.; Gunnsrson, O. Rev. Mod. Phys.1989,61,689.
    [4]Parr, R. G Ann. Rev. Phys. Chem.1983,34,631.
    [5]Hohenberg, P.; Kohn, W.; Sham, L. J. Adv. Quant. Chem.1990,21,7.
    [6]Ziegler, T. Chem. Rev.1991,91,651.
    [7]Koch, W.; Holthausen, M. C. A Chemist's guide to Density Functional Theory,2th Edition, Wily-VCH, Weinheim,2001.
    [8]林梦海编,量子化学计算方法与应用,北京,科学出版社,2004.
    [9]张敬来编,密度泛函理论在π电子体系共轭体系中的运用,开封,河南大学出版社,2004.
    [10]Leach, A. R. Molecular Modeling:Principles and Applications, Person Education Limited,2003.
    [11]Allen, M. P.; Frenkel, D.; Talbot, J. Comput. Phys. Rep.1989,9,301.
    [12]Materials Studio, version 4.0, Accelrys Inc., San Diego,2006.
    [13]Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K. M. Jr.; Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman, P. A. J. Am. Chem. Soc. 1995,117,5179
    [14]Pearlman, D. A.; Case, D. A.; Caldwell, J. C.; Seibel, G. L.; Singh, U. C.; Weiner, P.;Kollman,P. A.AMBER 4.0,1991 University of California,San Francisco.
    [15]Weiner,P.K.;Kollman,P. A.J.Comp.Chem.1981,2,287.
    [16]Weiner,S.J.;Kollman,P.A.;Case,D.A.;Singh,U.C.;Ghio,C.;Alagona,G.; Profeta,S.Jr.;Weiner,P. K.J.Am.Chem.Soc.1984,106,765.
    [17]Weiner,S.J.;Kollman,P. A.;Nguyen,D.T.;Case,D.A.J.Comp.Chem.1986, 7,230.
    [18]Brooks,B.R.;Bruccoleri,R.E.;Olafson,B.D.;States,D.J.;Swaminathan,S.; Karplus,M.J.Comp.Chem.1983,4,187.
    [19]Feller et al.Biophys.J.1997,73,2269.
    [20]MacKerell,A.D.;Bashford,D.;Bellott,M.;Dunbrack,R.L.;Evaseck,J.D.; Field,M.J.;Fischer,S.;Gao,J.;Guo,H.;Ha,S.;JosephMcCarthy,D.;Kucnir,L.; Kuczera,K.;Lau,F.T.K.;Mattos,C.;Michnick,S.;Ngo,T.;Nguyen,D.T.;Prohom, B.;Reiher,W. E.;Roux,B.;Schlenkrich,M.;Smith,J.C.;Stote,R.;Straub,J.; Wtanabe,M.;WiorkiewiczKuczera,J.;Yin,D.;Karplus,M.J.Phys.Chem.B 1998, 102,3586.
    [21]Mackerell,A.D.;Wiorkiewiczkuczera,J.;Karplus,M.J. Amer.Chem.Soc. 1995,117,11946.
    [22]Momany,F.A.;Rone,R.J.Comp.Chem.1992,13,888.
    [23]Pavelites,J.J.;Gao,J.;Bash,P. A.;Mackerell,A.D.J.Comp.Chem.1997,18, 2219.
    [24]Dauber-Osguthorpe,P.;Roberts,V. A.;Osguthorpe,D.J.;Wolff, J.;Genest,M.; Hagler,A.T.Proteins: Structure,Function and Genetics,1988,4,31.
    [25]Hagler, A. T.; Ewig, C. S. Comp. Phys. Comm.1994,84,131.
    [26]Sun, H. Macromolecules,1995,28,701.
    [27]Sun, H.; Ren, P.; Fried, J. R. J. Comp. Theor. Polym. Sci. 1998,8,229.
    [28]Verlet, L. Phys. Rev.1967,159,98.
    [29]Hockney, R. W. Med. Cowput. Phys.1970,20,130.
    [30]Swope, W. C.; Anderson, H. C.; Berens, P. H.; Wilson, K. R. J. Chem. Phys. 1982,76,637.
    [31]Allen, M. P.; Tildesley, D. J. Computational Simulation of Liquids; Oxford:New York,1987.
    [32]Greiner, W.; Neise, L.; Stocker, H. Thermodynamics and Statistical Mechanics; Springer-Verlag New York, Inc.,1995.
    [33]Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; DiNola, A.; Haak, J. R. J. Chem. Phys.1984,81,3684.
    [34]Nose, S. Mol. Phys.1984,52,255.
    [35]Nose, S. J. Chem. Phys.1984,81,511.
    [36]Nose, S. Prog. Theor. Phys. Suppl.1991,103,1.
    [37]Andersen, H. C. J. Chem. Phys.1980,72,2384.
    [38]Pratt, L. R.; Haan, S. W. J. Chem. Phys.1981,74,1864.
    [39]Luckhurst, G. R.; Simpson, P. Mol. Phys.1982,47,251.
    [40]Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. H.; Teller, E. J. Chem. Phys.1953,21,1087.
    [41]Tosi, M. P. Solid State Physics,1964,16,107.
    [42]Ewald, P. P. Ann. Phys.1921,64,253.
    [1]Yang,H.;Yan,X.H.;Cheng,R.S.J.Polym.Sci.Phys.2000,38,1188.
    [2]程镕时,严晓虎.高子学报1989,6,647.
    [3]Takata,S.;Norisuye,T.;Shibayama,M.Macromolecules 2002,35,4779.
    [4]Gorelo v,A.V.;DuChesne,A.;Dawson,K.A.Physica A,1997,240,443.
    [5]Kawasaki,H.;Sasaki,S.;Maeda,H.J.Phys.Chem.B 1997,101,4184.
    [6]Wu,C.;Qiu,X.Phys.Rev.Lett.1998,80,620.
    [7]Wang,X.;Qiu,X.;Wu,C.Macromolecules 1998,31,2972.
    [8]Yang,H.;Cheng,R.S.;Wang,Z.L.Polymer 2003,44,7175.
    [9]程镕时,杨琥,严晓虎,王治流,李利.高等学校化学学报2001,22,1262.
    [10]Longhi,G.;Lebon,F.;Abbate,S.;Fornili,S.L.Chem.Phys.Lett.2004,386, 123.
    [11]Gaussian 03,Revision B.04,Frisch,M.J.;Trucks,G W.;Schlegel,H.B.; Scuseria,G. E.;Robb,M.A.;Cheeseman,J.R.;Montgomery,J.A.;Vreven,T.;Kudin, K.N.;Burant,J.C.;Millam,J.M.;Iyengar,S.S.;Tomasi,J.;Barone,V.;Mennucci, .B.;Cossi,M.;Scalmani,G;Rega,N.;Petersson,G A.;Nakatsuji,H.;Hada,M.; Ehara,M.;Toyota,K.;Fukuda,R.;Hasegawa,J.;Ishida,M.;Nakajima,T.;Honda,Y; Kitao,O.;Nakai,H.;Klene,M.;Li,X.;Knox,J.E.;Hratchian,H.P.;Cross,J.B.; Adamo,C.;Jaramillo,J.;Gomperts,R.;Stratmann,R.E.;Yazyev,O.;Austin,A.J.; Cammi,R.;Pomelli,C.;Ochterski,J.W.;Ayala,P.Y.;Morokuma,K.;Voth,G A.; Salvador,P.;Dannenberg,J.J.;Zakrzewski,V. G.;Dapprich,S.;Daniels,A.D.; Strain,M.C.;Farkas,O.;Malick,D.K.;Rabuck,A.D.;Raghavachari,K.;Foresman,
    J.B.;Ortiz,J.V.;Cui,Q.;Baboul,A.G.;Clifford,S.;Cioslowski,J.;Stef.anov,B.B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T. Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc., Pittsburgh PA,2003.
    [12]Sun, H. Macromolecules,1995,28,701.
    [13]Dauber-Osguthorpe, P.; Roberts, V. A.; Osguthorpe, D. J.; Wolff, J.; Genest, M.; Hagler, A. T. Proteins:Structure, Function and Genetics,1988,4,31.
    [14]Ransil, B. J. Chem. Phys.1961,34,2109.
    [15]Boys, S. F.; Bernardi, F. Mol. Phys.1970,19,553.
    [16]Materials Studio, version 4.0, Accelrys Inc., San Diego,2006.
    [17]H. C. Andersen, J. Chem. Phys.72 (1980) 2384.
    [18]Allen, M. P.; Tildesley, D. J. Computational Simulation of Liquids; Oxford:New York,1987.
    [19]Dhara, D.; Chatterji, P. R. J.M.S.-Rev. Macromol. Chem. Phys.2000, C40,51.
    [20]See, for example:(a) Christopher, M. B.; Guy, H. G J. Phys. Chem. B 2007,111, 9940. (b) Gubskaya, A. V.; Kusalik, P.G. J. Phys. Chem. A 2004,108,7151. (c) Mennucci, B.; Martniez, J. M. J. Phys. Chem. B 2005,109,9818. (d) Mennucci, B.; Martniez, J. M. J. Phys. Chem. B 2005,109,9830. (e) Meng, S.; Ma, J.; Jiang, Y. J. Phys. Chem. B 2007,111,4128. (f) Meng, S.; Ma, J. J. Phys. Chem. B 2008,112, 4313.
    [21]Pauling, L.著,卢嘉锡等译,化学键的本质,第三版,上海科学技术出版社,1981.
    [22]Impey, R. W.; Madden, P. A.; McDonald, I. R. J. Phys. Chem.1983,87,5071.
    [23]Garcia, A. E.; Stiller, L. J. Comput. Chem:1993,14,1396.
    [24]Mennucci, B.; Martinez, J. M. J. Phys. Chem. B 2005,109,9818.
    [1]Mori,T.;Hirano,T.;Maruyama,A.;Katayama,Y;Niidome,T.;Bando,Y.;Ute, K.;Takaku,S.;Maeda,Y.Langmuir2009,25,48.
    [2]Jin,M.R.;Wang,Y X.;Zhong,X.;Wang,S.C.Polymer 1995,36,221.
    [3](a)Ito,D.;Kubota,K.Polym.J.1999,31,254.(b)Ito,D.;Kubota,K.Chem.Lett. 1998,12,1283.(c)Ito,D.;Kubota,K.Macromolecules1997,30,7828.
    [4]Kubotak,H.K.;Kuwahara,N.;Fujishige,S.;Ando,I.Polym.J.1990,22,1051.
    [5]Tiktopulo,E.I.;Uversky,V. N.;Lushchik,V.B.;Klenin,S.I.;Bychkova,V. E.; Ptitsyn,0.B.Macromolecules 1995,28,7519.
    [6]Netopilik,M.;Bohdanecky,M.;Chytry,V.;Ulbrich,K.Macromo.Rapid Comm. 1997,18,107.
    [7](a)Duracher,D.;Elaissari,A.;Pichot,C.J.Polym.Sci.Part A:Polym.Chem. 1999,37,1823.(b)Duracher,D.;Elaissari,A.;Pichot,C.Colloid.Polym.Sci.1999, 277.905.
    [8]Guillermo,A.;Addad,J.P. C.;Bazile,J.P.;Duracher,D.;Elaissari,A.;Pichot,C. J.Polym.Sci.Part B:Polym.Phys.2000,38,889.
    [9]Djokpe,E.;Vogt,W.Macro.Chem.Phys.2001,202,750.
    [10]Fomenko,A.;Pospisil,H.;Sedlakova,Z.;Plestil,J.;Ilavsky,M.Phys.Chem. Chem.Phys.2002,4,4368.
    [11]Starovoytova,L.;Spevacek,J.;Ilavsky,M.Polymer 2005,46,677.
    [12]Tang,Y C.;Ding,Y. W.;Zhang,G Z.J.Phys.Chem.B 2008,112,8447.
    [13]Xie,D.;Ye,X.;Ding,Y.;Zhang,G;Zhao,N.;Wu,K.;Cao,Y;Zhu,X.X. Macromolecules,2009,42,2715.
    [14]Takekawa,M.;Kokufuta,E.Colloid.Polym.Sci.2009,287,323.
    [15]Ito,D.;Kubota,K.Macromolecules 1997,30,7828.
    [16]Tang,Y C.;Liu,X.Polymer 2010,51,897.
    [17]Matsumura,Y;Iwai,K.Polymer 2005,46,10027.
    [18]Spevacek,J.Curr. Opi.Coll.Int.Sci.2009,14,184.
    [19]Cao,Y.;Zhao,N.;Wu,K.;Zhu,X.X.Langmuir 2009,25,1699.
    [20]Maeda,Y.;Yamade,M.Polumer 2009,50,519.
    [21]Maeda,Y.;Nakamura,T.;Ikeda,I.Macromolecules 2001,34,1391.
    [22]Maeda,Y.;Nakamura,T.;Ikeda,I.Macromolecules 2001,34,8246.
    [23]Maeda,Y.;Higuchi,T.;Ikeda,I.Langmuir 2001,17,7535.
    [24]Tirumala,V R.;Ilavsky,J.J.Chem.Phys.2006,124,234911.
    [25]Gaussian 03,Revision B.04,Frisch,M.J.;Trucks,G W.;Schlegel,H.B.; Scuseria,G. E.;Robb,M.A.;Cheeseman,J.R.;Montgomery,J.A.;Vreven,T.;Kudin, K.N.;Burant,J.C.;Millam,J.M.;Iyengar,S.S.;Tomasi,J.;Barone,V.;Mennucci, B.;Cossi,M.;Scalmani,G;Rega,N.;Petersson,G A.;Nakatsuji,H.;Hada,M.; Ehara,M.;Toyota,K.;Fukuda,R.;Hasegawa,J.;Ishida,M.;Nakajima,T.;Honda,Y; Kitao,O.;Nakai,H.;Klene,M.;Li,X.;Knox,J.E.;Hratchian,H.P.;Cross,J.B.; Adamo,C.;Jaramillo,J.;Gomperts,R.;Stratmann,R.E.;Yazyev,O.;Austin,A.J.; Cammi,R.;Pomelli,C.;Ochterski,J.W.;Ayala,P.Y;Morokuma,K.;Voth,G. A. Salvador,P.;Dannenberg,J.J.;Zakrzewski,V. G.;Dapprich,S.;Daniels,A.D.; Strain,M.C.;Farkas,O.;Malick,D.K.;Rabuck,A.D.;Raghavachari,K.;Foresman, J.B.;Ortiz,J.V.;Cui,Q.;Baboul,A.G.;Clifford,S.;Cioslowski,J.;Stefanov,B.B.; Liu,G.;Liashenko,A.;Piskorz,P.;Komaromi,I.;Martin,R.L.;Fox,D.J.;Keith,T.; Al-Laham,M.A.;Peng,C.Y;Nanayakkara,A.;Challacombe,M.;Gill,P.M.W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc., Pittsburgh PA,2003.
    [26]Ransil, B. J. Chem. Phys.1961,34,2109.
    [27]Boys, S. F.; Bernardi, F. Mol. Phys.1970,19,553.
    [28]Materials Studio, version 4.0, Accelrys Inc., San Diego,2006.
    [29]H. C. Andersen, J. Chem. Phys.72 (1980) 2384.
    [30]Allen, M. P.; Tildesley, D. J. Computational Simulation of Liquids; Oxford:New York,1987.
    [31]Karasawa, N.; Goddard, W. A.Ⅲ.J. Phys. Chem.1989,93,7320.
    [32]Dhara, D.; Chatterji, P. R. J.M.S.-Rev. Macromol. Chem. Phys.2000, C40,51.
    [33]Chandra, A. J. Phys. Chem. B 2003,107,3899.
    [34]Kemnitz, C. R.; Loewen, M. J. J. Am. Chem. Soc.2007,129,2521.
    [35]Gubskaya, A. V.; Kusalik, P. G. J. Phys. Chem. A 2004,108,7151.
    [36]Mennucci, B.; Martniez, J. M. J. Phys. Chem. B 2005,109,9818.
    [37]Mennucci, B.; Martniez, J. M. J. Phys. Chem. B 2005,109,9830.
    [38]Meng, S.; Ma, J. J. Phys. Chem. B 2008,112,4313.
    [39]Christopher, M. B.; Guy, H. G. J. Phys. Chem. B 2007,111,9940.
    [40]Wu, C.; Qiu, X. Phys. Rev. Lett.1998,80,620.
    [41]Yang, H.; Cheng, R. S.; Wang, Z. L. Polymer 2003,44,7175.
    [42]Starovoytova, L.; Spevacek, J.; Trchova, M. Euro. Polym. J.2007,43,5001.
    [43]Paz, Y.; Kesselman, E.; Fahoum, L.; Portnaya, I.; Ramon, O. J. Polym. Sci., Part B:Polym. Phys.2004,42,33.
    [44]Maeda, Y.; Nakamura, T.; Ikeda, I. Macromolecules 2001,34,1391.
    [45]Maeda,Y;Nakamura,T.;Ikeda,I.Macromolecules 2001,34,8246.
    [1]Otaka,K.;Inomata,H;Konno,M.;Saito,S.Macromolecules 1990,23,283.
    [2]Mukae,K.;Sakurai,S.;Sawamura,S.;Makino,K.;Kim,S.W.;Ueda,I.; Shirahama,K.J.Phys.Chem.1993,97,737.
    [3]Notley,S.M.J.Phys.Chem.B 2008,.112,12650.
    [4]Katsumoto,Y.;Tanaka,T.;Ihara,K.;Koyama,M.;'Ozaki,Y.J.Phys.Chem.B 2007,111,12730.
    [5]Schild,H.G;Muthukumar,M.;Tirrell,D.A.Macromolecules 1991,24,948.
    [6]Zhang,G Z.;Wu,C.Phys.Rey.Lett.2001,86,822.
    [7]Zhang,G.Z.;Wu,C.J.Am.Chem.Soc.2001,,23,1376.
    [8]Chen,J.H.;Chen,H.H.;Chang,Y X.;Chuang,P Y;Hong,P. D.J.Appl.Poly. Sci.2008,07,2732.
    [9]Liu,G M.;Zhang,G Z.Langmuir 2005,21,2086.
    [10]Asano,M.;Winnik,F. M.;Yamashita,T.;Horie,K.Macromolecules 1995,28, 5861.
    [11]Wang,N.A.;Ru,G Y;Wang,L.Y.Langmuir 2009,25,5898.
    [12]Brochard,F.;de Gennes,P.G.Ferroelectrics1980,30,33.
    [13]Dixit,S.;Crain,J.;Poon,W.C.K.;Finney,J.L.;Soper,A.K.Nature 2002,416, 829.
    [14]Allison,S.K.;Fox,J.P.;Hargreaves,R.;Bates,S.P.Phys.Rev.B 2005,71, 024201.
    [15]Sato,T.;Chiba,A.;Nozaki,R.J.Chem.Phys.2000,112,2924.
    [16]Soper,A.K.;Finney,J.L.Phys.Rev.Lett.1993,71,4346.
    [17]Meng, E. C.; Kollman, P. A. J.Phys. Chem.1996,100,11460.
    [18]Tanaka, H.; Gubbins, K. E. J. Chem. Phys.1992,97,2626.
    [19]Yu, H. B.; Geepke, D. P.; Liu, H. Y.; Van Gunsteren, W. F. J. Comput. Chem. 2006,27,1494.
    [20]Morrone, J. A.; Haslinger, K. E.; Tuckerman, M. E. J. Phys. Chem. B 2006,110, 3712.
    [21]Kiselev, M.; Ivlev, D. J. Mol. Liq.2004,110,193.
    [22]Wensink, E. J. W.; Hoffmann, A. C. J. Chem. Phys.2003,119,7308.
    [23]Noskov, S. Y.; Kiselev, M. G.; Kolker, A. M.; Rode, B. M. J. Mol. Liq.2001,91, 157.
    [24]Fidler, J.; Rodger, P. M. J. Phys. Chem. B 1999,103,7695.
    [25]Chowdhuri, S.; Chandra, A. J. Chem. Phys.2005,123,234501.
    [26]Rahman, A.; Stillinger, F. H. J. Chem. Phys.1971,55,3336.
    [27]Jorgensen, W. L. J. Phys. Chem.1986,90,1276.
    [28]Guo, J.-H.; Luo, Y.; Augustsson, A.; Kashtanov, S.; Rubensson, J.-E.; Shuhu, D.; Agren, H.; Nordgren, J. Phys. Rev. Lett.2003,91,157401.
    [29]Bako, L.; Jedlovsky, P.; Palinkas, G. J. Mol. Liq.2000,87,243.
    [30]Sun, H. Macromolecules,1995,28,701.
    [31]Ransil, B. J. Chem. Phys.1961,34,2109.
    [32]Boys, S. F.; Bernardi, F. Mol. Phys.1970,19,553.
    [33]Materials Studio, version 4.0, Accelrys Inc., San Diego,2006.
    [34]Andersen, H. C. J. Chem. Phys.1980,72,2384.
    [35]Allen, M. P.; Tildesley, D. J. Computational Simulation of Liquids; Oxford:New York,1987.
    [36]Karasawa, N.; Goddard, W. A., Ⅲ. J. Phys. Chem.1989,93,7320.
    [37]Chandra, A. J.Phys. Chem. B 2003,107,3899.
    [38]Christopher, M. B.; Guy, H. G. J. Phys. Chem. B 2007,111,9940.
    [39]Gubskaya, A. V.; Kusalik, P.G J. Phys. Chem. A 2004,108,7151.
    [40]Mennucci, B.; Martniez, J. M. J. Phys. Chem. B 2005,109,9818.
    [41]Mennucci, B.; Martniez, J. M. J. Phys. Chem. B 2005,109,9830.
    [42]Meng, S.; Ma, J.; Jiang, Y. J. Phys. Chem. B 2007,111,4128.
    [43]Meng, S.; Ma, J. J. Phys. Chem. B 2008,112,4313.
    [44]Laaksonen, L. J. Mol. Graphics 1992,10,33.
    [45]Laaksonen, A.; Kusalik, P. G.; Svishchev, I. M. J. Phys. Chem. A 1997,101, 5910.
    [46]Sun, L.; Siepmann, I.; Schure, M. R. J. Phys. Chem. B 2006,110,10519.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700