用户名: 密码: 验证码:
长三角地区土壤—小麦系统微量元素迁移的地球化学特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会的发展,土壤——农作物系统重金属等有害元素污染已成为热点环境问题。自上个世纪中期以来,研究人员开展了许多围绕农业土壤系统中重金属污染来源的调查以及元素生物有效性等问题开展了许多调查和实验研究,尽管如此,人们对区域实际条件下重金属尤其是氟、硒、钼、硼等微量元素在土壤——农作物体系中迁移和富集的机理以及影响因素的研究尚不足;对微量元素同位素在地表系统中迁移活性的研究很少;在土壤环境中微量元素的微观原位分析研究领域尚处于探索发展阶段。
     长三角地区作为我国重要的经济发展区域,其生态环境受到了工业农业快速发展带来的破坏。虽然近几年来,我国相关单位和科研工作者针对该地区的生态环境污染做了许多研究,但在全区域范围内的土壤和小麦中微量元素地球化学行为特征的调查研究较为少见。长三角地区表层土壤和小麦具有怎样的元素含量和空间分布以及富集特征,在实际农业系统中微量元素从土壤到小麦中的迁移受哪些因素的影响,有害元素在污染的土壤和小麦籽实中微米层次的赋存位置以及与相关元素的关系等一系列问题尚有待于研究。
     本研究选择长三角地区为研究区域,以土壤和小麦为主要研究对象(包括相关圈层物质),通过野外调查和采样、实验数据分析和综合研究,系统研究了微量元素在土壤——小麦系统中迁移的地球化学行为特征,获得了以下主要认识:
     (1)长三角地区表层土壤相对于中国土壤平均水平有较高的Cu、Cd、Zn、Hg、F含量、相近的Pb、Ni、Cr、Se和B含量以及较低的As和Mo含量;相对于世界土壤平均水平具有较高的Cu、Hg、As、B和F含量,Zn和Cr的平均含量与世界水平基本一致,Cd、Pb、Ni、Se和Mo含量低于世界平均水平。研究区表层土壤在过去几十年中发生了Cd、Cu、Zn、Cr、Ni和F富集,各重金属富集程度的排序为Cd>Cu>Zn>Cr>Ni>As>Hg>Pb。根据我国土壤质量标准,研究区耕层土壤各重金属的污染率依次是Cd>Hg>Cu=Zn>Cr>Ni>Pb>As。总体来说,苏州和杭州——嘉兴地区的表层土壤呈现除As外的7种重金属、F和B明显的富集。
     (2)土壤Cd、Cu、Zn、Hg、Ni和Cr富集(污染)主要是受冶炼、电镀、化工等工业排放影响的缘故,F富集可能主要是源自石料、水泥等与成土母质有关的人为活动带来的输入,Mo、Se和As富集主要与富硒岩石、煤等的使用开发带来的废弃物扩散有关,而Pb的富集源则与其它元素不同,可能是主要直接受大气沉降影响造成的。
     (3)长三角地区小麦籽实发生了F、Zn、Cd、Cu、Ni、Pb以及Hg污染,污染主要分布在苏南和浙北地区。根据籽实样品污染率,各污染物次序为F>Ni>Zn>Cd=Cu>Pb>Hg>As>Se>Cr。微量元素不同的小麦组织的含量具有很大的差异:As、Pb、Cd、Ni、Cr、F和Se在小麦植株不同部位中的含量遵从根>秸秆>籽实的顺序,Cu、Hg和B遵从秸秆>根>籽实的次序,Zn和Mo遵从籽实>秸秆>根的次序。
     (4)根据元素从土壤到小麦根部、再到秸秆、籽实整个过程的迁移系数以及迁移模式的变化特征,可以将全部元素分为三类。第一类主要包括Hg、Pb、Cu、 As、Cr、Mo、F和B,迁移系数先增加后减小,整个迁移过程曲线呈“峰”型,表明小麦根和籽实对于吸收这些元素具有较明显的排斥,主要反映了大气对小麦秸秆和叶片中这些元素含量的贡献。相关分析表明籽实中氟主要来自秸秆,但小麦秸秆和籽实中F的主要来源不是土壤,而可能是大气。第二类为迁移能力步步增长型,即迁移系数从土壤→根、根→秸秆、再到秸秆→籽实逐步增大,主要包括Zn、Ni、Cd、Se和P,体现了这些元素的强迁移能力。S和Fe被归为第三类,属于特殊型。
     (5)回归和通径分析表明,长三角地区土壤重金属本身及其有效态、pH、土壤铵态氮、缓效钾、碳酸盐、活性二价阳离子是影响小麦从土壤中吸收重金属、Mo和B最主要的影响因素。耕层土壤pH、Ca、Mg、碳酸盐和缓效钾能抑制重金属从土壤向小麦中迁移;而土壤重金属本身以及其它重金属、Ex-Ca、Ex-Mg、有效Fe、铵态氮对重金属从土壤向小麦籽实中迁移表现出促进作用。土壤Se、Mo、有效Mo、pH、S、酸可溶Al、碳酸盐和P含量的增加能促进小麦吸收土壤中的Se和Mo,小麦从土壤中吸收B主要受控于土壤总硼和有效硼。
     (6)碳酸盐对小麦吸收土壤中重金属的遏制作用是不同的,依次为:Ni>Zn>Cd>Cu>Pb>Fe≈Cr≈Hg.在贫(无)碳酸盐土壤上种植的小麦具有明显较高的Ni、Cd等重金属含量。研究区大部分土壤样品(镇江沿江地区的样品除外)发生了严重的碳酸盐淋失,含有碳酸盐样品的碳氧同位素分析表明土壤中的碳酸盐主要是原生海相碳酸盐。
     (7)铅在不同环境介质具有不同的或互相叠加的同位素组成特征,但是无论是在人为源还是自然源中,Pb同位素分配大致遵循下述方程:208pb/206pb=-1.157×206Pb/207Pb+3.460(r2=0.941).长三角地区人为端元Pb相对富集重铅,与当地出产的铅矿石Pb同位素分布范围基本一致。深层土壤相对于地层沉积岩具有较低的208Pb/206Pb比值和略高的206pb/207pb,说明在成土过程中,轻铅(206pb)更倾向于从岩石中风化释放进入土壤圈。土壤可交换态Pb和碳酸盐态Pb相对于总铅具有明显低的206pb/207pb比值,人为铅对表层土壤中可交换Pb和碳酸盐态Pb的存在有重要影响。轻铅在土壤中的活性比重铅强,优先进入可交换态,向深部迁移;在深部的淀积层重铅则较轻铅优先与碳酸盐结合沉淀。水稻倾向于吸收和积累较轻的206pb同位素;但是由于大气沉降Pb污染对水稻吸收Pb的影响,造成了长三角地区水稻籽实比根富集重铅(208pb)的现象。通过Pb同位素识别污染源模型估算,长三角地区水稻籽实中大约有16.7-52.6%(平均33.5%)的Pb为大气成因。
     (8)土壤样品中重金属元素的空间微区分布与Fe基本一致,与Mg和Mn比较一致。二价阳离子重金属可能主要以置换形式与土壤中Fe、Mg等阳离子发生替代,以黏粒——细粒被土壤铁氧化物和黏土矿物所吸附固定于土壤固相之中。小麦籽实的NanoSIMS扫描图像表明,Si主要分布在淀粉颗粒和糊粉细胞的细胞壁层中;氟在表皮、糊粉细胞和胚乳层的淀粉颗粒以及蛋白质基质中皆有一定分布,氟在小麦籽实的各个组织细胞中是普遍存在的。小麦籽实中Fe和Zn的分布极为类似,与P和O-H关系密切,说明K、Mg、Ca、Fe和Zn在小麦籽实中主要以植酸和多糖的物种存在。重金属在土壤——小麦系统中的地球化学行为与其本身及Fe等相关元素的生物地球化学活性有密切关系。
Heavy metals contamination of soil and agro-products is an important issue with the increasing anthropogenic activities. There have been increasing studies on the heavy metals contamination of soil and plant. However, many questions about the geochemical behavior of trace elements in soil-plant are still unclear due to the complexity of the soil-plant system. Although many previous researches have studied the source of the contamination and the bio-availability of the heavy metals in soil with special experiments, the knowledge on the transfer and accumulation of fluorine, selenium, molybdenum, boron and other trace elements in the soil-plant and the influence factor is scant, so is the knowledge on the mobility of the trace isotopes transfer in the terrestrial system and in situ examination of trace elements in soil and plant at the micrometer level.
     The ecological environment of the Yangtze River delta area has been deteriorating with the accelerated economic develop in the past few decades. Although some researchers have investigated the environment pollution of heavy metals in this region, the study on the geochemical characteristics of trace elements in the soil-wheat system on a whole regional scale is lacking. What are characteristics of the concentrations (or accumulations) of trace elements and their spatial distributions? What do soil parameters effect the process of trace elements transfer from soil to wheat and which are the main influence factors? How do trace elements in the contaminated soil and wheat grain distribute at the micrometer scale? These questions need to be answered through the study of a representative area in the Yangtze River delta. The candidate selected the Yangtze River delta region as the study area and used the soil and wheat as the major study objects, and combined the field investigation, laboratory measurements and datum analyses, to characterize the geochemical behavior of trace elements in the soil-wheat system. The main results and conclusions are summarized below:
     (1) The topsoils of the Yangtze River delta region show relatively higher concentrations of Cu, Cd, Zn, Hg and F, similar concentrations of Pb, Ni, Cr, Se and B, and lower concentrations of As and Mo than the average level of Chinese topsoil. Comparing to average elemental concentration of the world soil, the soil in the study area has higher concentrations of Cu, Hg, As, B and F, similar concentrations of Zn and Cr, and lower concentrations of Cd, Pb, Ni, Se and Mo. The topsoil has accumulated a relatively higher amount of Cd, Cu, Zn, Cr, Ni and F during the past decades. The rate of heavy metals pollution is in the order of Cd> Hg> Cu=Zn> Cr> Ni> Pb> As. The spatial distributions of trace elements are not the same. In general, the topsoil from Suzhou and Hangzhou-Jiaxing area show apparent accumulation and pollution of heavy metals (except for As), F and B.
     (2) The accumulation (contamination) of Cd, Cu, Zn, Hg, Ni and Cr of the topsoil mainly came from metallurgy, electroplate and other industrial emission. The accumulation of F was a closely related to the stone mining and manufacturing and other relative anthropogenic activities. The accumulation of Mo, Se and As might be due to the exploration of local pedogenic parent rock and coal. And the accumulation of Pb may be a result of the increasing atmosphere deposition.
     (3) The wheat grain from the Yangtze River delta region shows general to severe F, Zn, Cd, Cu, Ni, Pb and Hg pollution, and the contamination is generally distributed in the south of Jiangsu and the north of Zhejiang. The contamination rates were in the order of F> Ni> Zn> Cd=Cu> Pb> Hg> As> Se> Cr. Different wheat tissues show different in elemental concentrations:As, Pb, Cd, Ni, Cr, F, Se and Fe concentrations follow root> straw> grain, Cu, Hg and B follow straw> root> grain, Zn and Mo follow grain> straw> root.
     (4) According to the difference of the transfer coefficient and the transfer model, all the elements can be divided into three groups. The first group includes Hg, Pb, Cu, As, Cr, Mo, F and B. Their transfer coefficient increases from the soil to the straw, then decreases from the straw to the grain. The whole transfer model shows "convex" pattern, indicating that wheat has a low tendency on absorbing these elements. This pattern mainly reflects the atmospheric component to the accumulation of Hg, Pb, Cu, As, Cr, Mo, F and B in wheat straw and grain. The second group includes Zn, Ni, Cd, Se and P, the element transfer coefficient increases step by step, i.e., increases from soil to wheat grain via root and straw. This pattern mainly reflects the strong transfer abilities of these elements.
     (5) Soil pH, Ca, Mg, TOC, carbonate and slowly available potassium hinder the heavy metals transfer from soil to wheat, whereas Ex-Ca, Ex-Mg, bio-available Fe, ammonium nitrogen and heavy metal themselves present the promote the transfer. Increasing the concentrations of Soil Se, Mo, bio-available Mo, S, oxalic acid extractable Al, carbonate, TOC, P and pH can enhance the accumulation of Se and Mo in the wheat. Boron absorption and accumulation in the wheat is mainly affected by soil B and bio-available B. Regression and partial correlation analysis show that besides the concentrations of heavy metal and its bio-availability and soil pH, soil ammonium nitrogen, slowly available potassium, carbonate, active bivalent cations and available phosphorus are the most important influence factors on the transfer of heavy metals, Mo and B from soil to wheat.
     (6) The effect of carbonate on the transfer of heavy metals from soil to wheat is different:Ni> Zn> Cd> Cu> Pb> Fe≈Cr≈Hg. Higher soil carbonate content will increase the absorption of Se and Mo in the wheat. Most of the topsoil samples from the Yangtze River delta area had lost carbonate, the carbon and oxygen isotopic analyses on the carbonate contained soil sample shows that the carbonate in the topsoil is mainly marine primary carbonate origin.
     (7) Pb isotopes have different mobility in different environmental matrixes. Pb isotopes in the geochemical cycle generally follow the equation of208Pb/206Pb=-1.157×206Pb/207Pb+3.46(r2=0.941). The anthropogenic Pb has the lower206Pb/207Pb (1.11-1.17)and relatively higher208Pb/206Pb (2.07-2.18), i.e., enriched in relatively heavy Pb isotopes, and the range of Pb isotopic ratios of anthropogenic Pb is similar to that of the local Pb ore. During the pedogenic process, the lighter Pb (206Pb) is more likely to transport into soil from the parent rock. Soil exchangeable Pb and carbonates phase Pb show the lower206Pb/207Pb relative to the total Pb, indicating that the anthropogenic Pb has an important effect on the existence of exchangeable Pb and carbonate phase Pb in the topsoil. In the pedosphere, the lighter Pb (206Pb) usually shows stronger mobility relative to the heavier Pb (208Pb), and is more likely to transfer into the soil exchangeable Pb fraction and move deeper, whereas heavier Pb has a priority to precipitate with carbonate in the deeper sediment horizon compared to the lighter Pb. The lighter Pb shows stronger transfer ability from soil to cereal grain via root compared to the heavier Pb. However, the cereal grains have lower206Pb/207Pb and higher208Pb/206Pb airborne Pb and anthropogenic Pb, implying that a considerable amount of Pb in cereal grains comes from the atmosphere. The model shows that16.7-52.6%(average:33.5%) of Pb in rice grain is the airborne Pb.
     (8) The spatial distributions of heavy metals at micrometer level are the most similar to that of Fe, next similar to that of Mg and Mn. This indicates that heavy metals have a similar distribution at the microcosmic level in the soil, mainly co-existing with Fe. Active bivalent heavy metal cations may mainly exist as isomorphs with Fe, Mg and other bivalent cations. They form into the compounds as the fine-grained clay-granule and been absorbed in the iron oxides, clays, and other soil solid. NanoSIMS images show that Si mainly distributes in the starch granules and cell wall of the aleurone. F generally distributes in the epidermis, aleurone and both starch granules and protein matrix of endosperm. Zn, Fe, Mg, Ca and K in the wheat grain mainly exist in the phytate granules of aleurone. The SIMS image of Zn is very similar to that of Fe, and Zn has a close relationship with P and O-H, implying that Zn, Fe, Mg, Ca and K in the wheat grain mainly coexist with phytic acid and polysaccharides.
引文
Achiba W.B., Lakhdar A., Gabteni N., Du Laing G., Verloo M., Boeckx P., Van Fuentes A., Llorens M., Saez J., Soler A., Aguilar M.I., Ortuno J.F., Meseguer V.F. Simple and sequential extractions of heavy metals from different sewage sludges. Chemosphere 2004,54:1039-1047.
    Adams M.L., Zhao F.J., McGrath S.P., Nicholson F.A., Chambers B.J. Predicting cadmium concentrations in wheat and barley grain using soil properties. J. Environ. Qual.2004,33:532-541.
    Ahumada I., Gudenschwager O., Carrasco M.A., Castillo G., Ascar L., Richter P. Copper and zinc bioavailabilities to ryegrass (Lolium perenne L.) and subterranean clover (Trifolium subterraneum L.) grown in biosolid treated Chilean soils. J. Environ. Manage.2009,90:2665-2671.
    Alexande P.D., Alloway B.J., Dourado A.M. Genotypic variations in the accumulation of Cd, Cu, Pb and Zn exhibited by six commonly grown vegetables. Environmental Pollution 2006,144:736-745.
    Almas A.R., Singh B.R. Plant uptake of cadmium-109 and zinc-65 at different temperature and organic matter levels. J. Environ. Quality 2001,30:869-877.
    Amini M., Khademi H., Afyuni M., Abbaspour K.C. Variability of available cadmium in relation to soil properties and land use in an arid region in central Iran. Water Air Soil Pollut.2005,162:205-218.
    Andersson A. On the influence of manure and fertilizers on the distribution and amounts of plant available Cd in soils. Swed. J. Agric. Res.1976,6:27-36.
    Antoniadis V., Robinson J.S., Alloway B.J. Effects of short-term pH fluctuations on cadmium, nickel, lead, and zinc availability to ryegrass in a sewage sludge-amended field. Chemosphere 2008,71:759-764.
    Ariyama K., Shinozaki M., Kawasaki A., Ishida Y. Strontium and lead isotope analyses for determining the geographic origins of grains. Analytical Sciences. 2011,27:709-713.
    Asad A. Boron requirements for sunflower and wheat. Journal of Plant Nutrition 2002,25(4):885-889
    Backstrom M., Karlsson S., Allard B. Metal leachability and anthropogenic signal in roadside soils estimated from sequential extraction and stable lead isotopes. Environ. Monit. Assess.2004,90:135-160.
    Bacon J.R., Hewitt I.J., Cooper P. Lead in grass in the Scottish uplands:deposition or uptake. J. Environ. Monit.2005,7:785-791.
    Badawy S.H., Helal M.I.D., Chaudri A.M., Lawlor K., McGrath S.P. Soil solid phase controls lead activity in soil solution. J. Environ. Qual.2002,31:162-167.
    Baker AJM, Walker PL. Ecophysiology of metal uptake by tolerant plants. In:Shaw AJ (ed) Heavy metal tolerance in plants:Evolutionary aspects, CRC Press Inc, Boca Raton, Florida, p 155-177,1990.
    Bang J., Hesterberg D. Dissolution of trace element contaminants from two coastal plain soils as affected by pH. Journal of Environmental Quality 2004,33:891-901.
    Banuelos G.S., Ajwa H.A. Trace elements in soils and plants:an overview. J. Environ. Sci. Health 1999,A34(4):951-974.
    Barber A.S. Soil nutrient bioavailability:Mechanistic approach. New York:A Wiley-inter-science Pn-blication,1984:275-296.
    Barker S.L.L., Hickey K.A., Cliney J.S., Dipple G.M., Kilburn M.R., Vaughan J.R. Uncloaking invisible gold:use of NanoSIMS to evaluate gold, trace elements, and sulfer isotopes in pyrite from Carlin-type gold deposits. Economic Geology 2009,104:897-904.
    Barrow N.J., Ellis A.S. Testing a mechanistic model Ⅲ. The effect of pH on fluoride retention by a soil. J. Soil Sci.1986,37:287-293.
    Basta N.T., Ryan J.A., Chaney R.L. Trace element chemistry in residual-treated soils: key concepts and metal bioavailability. J. Environ. Qual.2005,34:49-63
    Bettany J.R., Saggar S., Stewart J.W.B. Comparison of the amounts and forms of sulfur in soil organic matter fractions after 65 years of cultivation. Soil Sci. Soc. Am. J.1980,44:70-75.
    Bi X., Feng X., Yang Y, Li X., Shin G.P.Y., Li F., Qiu G., Li G., Liu T., Fu Z. Allocation and source attribution of lead and cadmium in maize (Zea mays L.) impacted by smelting emissions. Environmental Pollution 2009,157:834-839.
    Bibak A., Borggard O.K. Molybdenum adsorption by aluminium and iron oxides and humic acid. Soil Sci.1994,158:323-328.
    Bindler R., Brannvall M., Renberg I. Natural lead concentrations in Pristine boreal forest soils and past pollution trend:a reference for critical load models. Environ Sci Technol 1999,33:3362-3367.
    Bolan N.S., Adriano D.C., Mahimairaja S. Distribution and bioavailability of trace elements in livestock and poultry manure by-products. Crit. Rev. Environ. Sci. Technol.2004,34:291-338.
    Bollhofer A, Rosman K.J.R. Isotopic source signatures for atmospheric lead:the Northern Hemisphere. Geochim Cosmochim Acta 2001,65:1727-40.
    Bose S, Bhattacharyya AK. Heavy metal accumulation in wheat plant grown in soil amended with industrial sludge. Chemosphere 2008,70:1264-1272.
    Bove M.A., Ayuso R.A., De Vivo B., Lima A., Albanese S. Geochemical and isotopic study of soils and waters from an Italian contaminated site:Agro Aversano (Campania). Journal of Geochemical Exploration 2011,109:38-50.
    Bowen H J.M. Environmental chemistry of the element. Academic Press. New York. 1979.
    Braen S.N., Weinstein L.H. Uptake of fluoride and aluminum by plants grown in contaminated soils. Water Air Soil Pollut.1985,24:215-223.
    Brewer R.F. Fluorine. In:Black, C.A. (Ed.), Methods of Soil Analysis, Agronomy Monograph (Part 2). ASA and SSSA, Madison, WI, pp.1135-1148.1965.
    Broadley MR, White PJ, Bryson RJ, Meacham MC, Bowen HC, Johnson SE, Hawkesford MJ, McGrath SP, Zhao FJ, Breward N, Harriman M, Tucker M. Biofortification of UK food crops with selenium. Proc Nutr Soc 2006,65:169-181.
    Buchter B., Davidoff B., Amacher M.C., Hinz C., Iskandar I.K., Selim H.M. Correlation of Freundlich Kd and elements. Soil Sci.1989,148:370-379.
    Buekers J., Mertens J., Smolders E. Toxicity of the molybdate anion in soil is partially explained by the effects of the accompanying cation or by soil pH. Environ. Toxicol. Chem.2010,29:1274-1278.
    Bujdos M., Mul'ova A., Kubova J., Medved'J. Selenium fractionation and speciation in rocks, soils, waters and plants in polluted surfacemine environment. Environ. Geol.2005,47:353-360
    Burkhead J.L., Reynolds K.A.G., Abdel-Ghany S.E., Cohu C.M., Pilon M. Copper homeostasis. New Phytol.2009,182:799-816.
    Cakmak I., Pfeiffer W. H., McClafferty B. Biofortification of durum wheat with zinc and iron. Cereal Chem.2010,87:10-20.
    Carver T.L.W., Thomas B.J., Robbins M.P., Zeyen R.J. Silicon deprivation enhances localized autofluorescent responses and phenylalanine ammonia-lyase activity in oat attacked by Blumeria graminis. Physiological and Molecular Plant Pathology 1998,52:223-243.
    Cataldo D.A., Weldung R.E., Garland T.R. Speciation of trace inorganic contaminants in plants and bioavailability to animals:An overview. J. Environ. Qual.1987, 16:289-295.
    Cerling T.E. The stable isotopic composition of modern soil carbonate and its relationship to climate. Earth Planet. Sci. Lett.1984,71:229-240.
    Cerling T.E., Quade J. Stable carbon and oxygen isotopes in soil carbonates. In:Swart, P., McKenzie, J.A., Lohmann, K.C. (Eds.), Climate Change in Continental Isotopic Records. American Geophysical Union, Washington DC, pp.217-231.1993.
    Cerqueira B., Vega F.A., Serra C., Silva L.F.O., Andrade M.L. Time of flight secondary ion mass spectrometry and high-resolution transmission electron microscopy/energy dispersive spectroscopy:A preliminary study of the distribution of Cu2+ and Cu2+/Pb2+ on a Bt horizon surfaces. J. Hazard. Mater. 2011,195:422-431.
    Chaignon V., Sanchez-Neira I., Herrmann P., Jaillard B., Hinsinger P. Copper bioavailability and extractability as related to chemical properties of contaminated soils from a vine-growing area. Environ. Pollut.2003,123:229-238.
    Chaudri A., McGrath S., Gibbs P., Chambers B., Carlton-Smith C., Godley A., Bacon J., Campbell C., Aitken M. Cadmium availability to wheat grain in soils treated with sewage sludge or metal salts. Chemosphere 2007,66:1415-1423.
    Chavoshi E., Afyuni M., Hajabbasi M.A., Khoshgoftarmanesh A.H., Abbaspour K.C., Shariatmadari H., Mirghafari N. Health risk assessment of fluoride exposure in soil, plants, and water at Isfahan, Iran. Hum. Ecol. Risk Assess.2011,17:414-430.
    Chen L., Yang F., Xu J., Hu Y., Hu Q., Zhang Y., Pan G. Determination of selenium concentration of rice in China and effect of fertilization of selenite and selenate on selenium content of rice. J. Agric. Food Chem.2002,50:5128-5130.
    Chlopecka A. Forms of Cd, Cu, Pb, and Zn in soil and their uptske by cereal crops when applied jorntly as carbonates. Water, Air, Soil Pollut.1996,87:297-309.
    Clemens S. Toxic metal accumulation, responses to exposure and mechanisms to tolerance in plants. Biochimie 2006,88:1707-1719.
    Cloquet C., Carignan J., Lehmann M.F., Vanhaecke F. Variation in the isotopic composition of zinc in the natural environment and the use of zinc isotopes in biogeosciences:a review. Anal Bioanal Chem 2008,390:451-463.
    Combs G. F. Selenium in global food systems. Br. J. Nutr.2001,85:517-547.
    Cook C.M., Vardaka E., Lanaras T. Concentrations of Cu, Growth, and Chlorophyll Content of Field-Cultivated Wheat Growing in Naturally Enriched Cu Soil. Bull. Environ. Contam. Toxicol.1997,58:248-253
    Cui Y, Du X. Soil heavy-metal speciation and wheat phytotoxicity in the vicinity of an abandoned lead-zinc mine in Shangyu City, eastern China. Environ. Earth Sci. 2011,62:257-264.
    Cullbard E.B., Thornton I., Wheatley M., Moorcroft S., Thompson M. Metal contamination in British urban dusts and soils. J. Environ. Qual. 1988,17(2):226-234.
    Dai J., Becquer T., Rouiller J.H., Reversat G., Reversat F.B., Lavelle P. Influence of heavy metals on C and N mineralization and microbial biomass in Zn-,Pb-, Cu-, and Cd-contaminated soils. Applied Soil Ecology 2004,25:99-109.
    Dalenberg J.W., Van Driel W. Contribution of atmospheric deposition to heavy metal concentrations in field crops. Neth. J. Agricult. Sci.1990,38:369-379.
    Dawson J.C., Tetzlaff D., Carey A., Raab A., Soulsby C., Killham K., Meharg A.A. Characterizing Pb mobilization from upland soils to streams using 206Pb/207Pb isotopic ratios. Environ. Sci. Technol.2010,44:243-249.
    de Matos AT, Fontes MPF, da Costa LM, Martinez MA. Mobility of heavy metals as related to soil chemical and mineralogical characteristics of Brazilian soils. Environ. Pollut.2001,111:429-435.
    De Temmerman L., Ann R., Nadia W. Impact of atmospheric deposition of As, Cd and Pb on their concentration in carrot and celeriac. Environ. Pollut.2012,166:187-195.
    De Temmerman L., Hoenig M. Vegetable crops for biomonitoring lead and cadmium deposition. J. Atmos. Chem.2004,49:121-135.
    De Temmerman L., Ruttens A., Waegeneers N. Impact of atmospheric deposition of As, Cd and Pb on their concentration in carrot and celeriac. Environ. Pollut. 2012,166:187-195.
    Dollard G.J. Glasshouse experiments on the uptake of foliar applied lead. Environmental Pollution A 1986,40:109-119.
    Dong Y., Ma LQ, Rhue RD. Relation of enhanced Pb solubility to Fe Partitioning in soils, Environ. Pollut.2000,110:515-522.
    Door R., Richter K., Martin R. Detection of low phosphorus contents in neurofilms of squid axons by image-EELS contrast spectroscopy. J. Microsc-Oxford,1997,188 (2):173-181.
    Dragut L., Bogatu C., Verbitchi V., et al. In situ remediation of soils polluted with heavy metals. Part II. Using of electrokoinetic treatment. J. Environ. Protec.Ecol. 2009,10(1):49-55.
    Du Laing G., De Vos R., Vandecasteele B., Lesage E., Tack F.M.G., Verloo M.G. Effect of salinity on heavy metal mobility and availability in intertidal sediments of the Scheldt estuary. Estuarine, Coastal and Shelf Science 2008,77:589-602.
    Du Laing G., Rinklebe J., Vandecasteele B., Meers E., Tack F.M.G. Heavy metal mobility and availability in estuarine and riverine floodplain soils and sediments:a review. Sci. Total Environ.2009,407:3972-3985
    Dudka S, Piotrowska M, Chlopecka A. Effect of elevated concentrations of Cd and Zn in soil on spring wheat yield and the metal contents of the plants. Water, Air Soil Pollut 1994,76:333-341.
    Eisses J.F., Kaplan J.H. The mechanism of copper uptake mediated by human CTR1-a mutational analysis. J. Biol. Chem.2005,280:37159-37168.
    Elzahabi M., Yong R.N. pH influence on sorption characteristics of heavy metal in the vadose zone. Engineering Geologists 60:61-68.
    Epstein E. Silicon. Annual review of plant physiology and plant molecular Biology 1999,50:641-664.
    Eriksson J.E., Soderstrom M. Cadmium in soil and winter wheat grain in southern Sweden.1. Factors influencing Cd levels in soils and grain. Acta Agric Scand Sect B 1996,46:240-248
    Eusterhues K, Rumpel C, Kogel-Knabner I. Organo-mineral associations in sandy acid forest soils:importance of specific surface area, iron oxides and micropores. Eur. J. Soil Sci.2005,56:753-763.
    Feeney K.A., Heard P.J., Zhao F.J., Shewry P. R. Determination of the distribution of sulphur in wheat starchy endosperm cells using secondary ion mass spectroscope (SIMS) combined with isotope enhancement. J. Cereal Sci.2003,37:311-318.
    Feng J., Wang Y., Zhao J., Zhu L., Bian X., Zhang W. Source attributions of heavy metals in rice plant along highway in Eastern China. J. Environ. Sci. 2011,23:1158-1164.
    Fernandez E., Jimenez R., Lallena A.M., Aguilar J. Evaluation of the BCR sequential extraction procedure applied for two unpolluted Spanish soils. Environ. Pollut. 2004,131:355-364
    Freney J.R. Forms and reactions of organic sulfur compounds in soils, In:Tabatabai M.A. (ed.) Sulfur in agriculture, Agronomy Monograph No.27. ASA-CSSA-SSSA, Madison, pp207-231.
    Gallego J.L.R., Ordonez A., Loredo J. Investigation of trace element sources from an industrialized area (Aviles, northern Spain) using multivariate statistical methods. Environ. Int.2002,27:589-596.
    Garrett R.G., MacLaurin A.I., Gawalko E.J., Tkachuk R., Hall G.E.M. A prediction model for estimating the cadmium content of durum wheat from soil chemistry. J. Geochem. Explor.1998,64:101-110
    Gaur A., Adholeya A. Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils.Current Science 2004,86(4):528-534.
    Gil C., Boluda R., Ramos J. Determination and evaluation of cadmium, lead and nickel in greenhouse soils of Almeria (Spain). Chemosphere 2004,55:1027-1034
    Gissel-Nielsen G., Gupta U.C., Lamand M., Westermarck T. Selenium in soils and plants and its importance in livestock and human-nutrition. Adv Agron 1984,37:397-460
    Glazovskaya M.A. Criteria for classification of soils according to lead-pollution risk. Eurasian Soil Sci.1994,26(9):58-74.
    Goldschmidt V.M. Geochemistry, Clarendon Press:Oxford.1954.
    Gray C.W., Moot D.J., McLaren R.G., Reddecliffe T. Effect of nitrogen fertiliser applications on cadmium concentrations in durum wheat (Triticum turgidum) grain. NZ J. Crop Hortic. Sci.2002,30:291-299.
    Grovenor C.R.M., Smart K.E., Kilburn M.R., Shore B., Dilworth J.R., Martin B., Hawes C., Rickaby R.E.M. Specimen preparation for NanoSIMS analysis of biological materials. Appl. Surf. Sci.2006,252:6917-6924.
    Guan T., He H., Zhang X., Bai Z. Cu fractions, mobility and bioavailability in soil-wheat system after Cu-enriched livestock manure applications. Chemosphere 2011,82:215-222.
    Guerquin-Kern J., Wu T., Quintana C., Croisy A. Progress in analytical imaging of the cell by dynamic secondary ion mass spectrometry (SIMS microscopy). Biochim. Biophys. Acta 2005,1724:228-238.
    Guo J.H., Liu X.J., Zhang Y., et al. Significant acidification in major Chinese croplands. Science 2010,327:1008-1010
    Gupta U.C. Soil and plant factors affecting molybdenum uptake by plants. In:Gupta, U.C., (Ed.), Molydenum in Agriculture. Cambridge University Press, Cambridge, UK, pp.71-91.1997.
    Hammer D., Keller C. Changes in the rhizosphere of metal-accumulating plants evidenced by chemical extractants. J. Environ. Qual.2002,31:1561-1569.
    Hamon R.E., McLaughlin M.J., Naidu R., Correl R. Long-term changes in cadmium bioavailability in soil. Environ. Sci. Technol.1998,32:3699-3703.
    Hang X., Wang H., Zhou J., Ma C., Du C., Chen X. Risk assessment of potentially toxic element pollution in soils and rice (Oryza sativa) in a typical area of the Yangtze River Delta. Environ. Pollut.2009,157:2542-2549.
    Hao Y., Guo Z., Yang Z., Fan D., Fang M., Li X. Tracking historical lead pollution in the coastal area adjacent to the Yangtze River Estuary using lead isotopic compositions. Environmental Pollution 2008,156:1325-1331.
    Harris N.S., Taylor G.J. Cadmium uptake and translocation in seedlings of near isogenic lines of durum wheat that differ in grain cadmium accumulation. BMC Plant Biol.2004,4:4.
    Harrison R.M, Chirgawi M.B. The assessment of air and soil as contributors of some trace metals to vegetable plants I. Use of a filtered air growth cabinet. Sci. Total Environ.1989a,83(1-2):13-34.
    Harrison R.M, Chirgawi M.B. The assessment of air and soil as contributors of some trace metals to vegetable plants II. Translocation of atmospheric and laboratory-generated cadmium aerosols to and within vegetable plants. Sci. Total Environ.1989b,83(1-2):35-45.
    Hassett JJ. Capacity of selected Illinois soil to remove lead from aqueous solution. Commun. Soil Sci. Plant Anal.1974,5:499-505.
    Haynes R.J., Ludecke T.E. Effect of lime and phosphorus applications on concentrations of available nutrients and on P, Al and Mn uptake by 2 pasture legumes in an acid soil. Plant Soil 1981,62:117-128.
    He J.Y., Ren Y.F., Wang F.J., Pan X.B., Zhu C., Jiang D.A. Characterization of Cadmium Uptake and Translocation in a Cadmium-Sensitive Mutant of Rice (Oryza sativa L. ssp. japonica). Arch Environ Contam Toxicol 2009,57:299-306
    He M.M., Tian G.M., Liang X.Q. Phytotoxicity and speciation of copper, zinc and lead during the aerobic composting of sewage sludge. J. Hazard. Mater.2009,163: 671-677.
    Heard P.J., Feeney K.A., Allen G.C., Shewry P.R. Determination of the elemental composition of mature wheat grain using a modified secondary ion mass spectrometer (SIMS). Plant J.2001,30:237-245.
    Heister K., Hoschen C., Pronk G.J., Mueller C.W., Kogel-Knabner I. NanoSIMS as a tool for characterizing soil model compounds and organomineral associations in artificial soils. J Soils Sediments 2012,12:35-47.
    Hellebrand E., Snow J.E., Mostefaoui S., Hoppe P. Trace element distribution between orthopyroxene and clinopyroxene in peridotites from the Gakkel Ridge:a SIMS and NanoSIMS study. Contrib Mineral Petrol.2005,150:486-504.
    Hettiarachchi G.M., Ryan J.A., Chaney R.L., La Fleur C.M. Sorption and desorption of cadmium by different fractions of biosolids-amended soils. J. Environ. Qual. 2003,32:1684-1693.
    Hiemstra T., Antelo J., Rahnemaie R., van Riemsdijk W.H.2010. Nanoparticles in natural systems I:the effective reactive surface area of the natural oxide fraction in field samples. Geochim Cosmochim Acta 74:41-58.
    Homer J.M. Bell J.N.B. Effects of fluoride and acidity on early plant growth. Agric. Ecosyst. Environ.1995,52:205-211.
    Hossner L.R., Doll E.C. Magnesium fertilization of potatoes as related to liming and potassium. Psssa,1970,34:772-774.
    Hu N.J., Li Z., Huang P. et al. Distribution and mobility of metals in agricultural soils near a copper smelter in South China. Environ. Geochem. Health 2006,28:19-26.
    Hu Z.Y., Zhao F.J., McGrath S.P. Sulphur fractionation in calcareoussoils and bioavailability to plants. Plant Soil 2005,268:103-109
    Huang B., Shi X., Yu D., Oborn I., Blomback K., Pagella T., Wang H., Sun W., Sinclair F. Environmental assessment of small-scale vegetable farming systems in peri-urban areas of the Yangtze River Delta region, China. Agricul. Ecosys. Environ. 2006,112:391-402.
    Huang B., Zhao Y., Sun W., Yang R., Gong Z., Zou Z., Ding F., Su J. Relationships between distributions of longevous population and trace elements in the agricultural ecosystem of Rugao County, Jiangsu, China. Environ. Geochem Health 2009,31:379-390.
    Huang M., Zhou S., Sun B., Zhao Q. Heavy metals in wheat grain:Assessment of potential health risk for inhabitants in Kunshan, China. Sci. Total Environ. 2008,405,54-61.
    Huang S., Liao Q., Hua M., Wu X., Bi K., Yan C., Chen B., Zhang X. Survey of heavy metal pollution and assessment of agricultural soil in Yangzhong district, Jiangsu Province, China. Chemosphere 2007,67:2148-2155.
    Huang S., Tu J., Liu H., Hua M., Liao Q., Feng J., Weng Z., Huang G. Mutivariate analysis of trace element concentrations in atmospheric deposition in the Yangtze River delta, East China. Atmospheric Environment 2009,43:5781-5790.
    Huang S.S., Liao Q.L., Hua M., Wu X.M., Bi K.S., Yan C.Y., Chen B., Zhang X.Y. Survey of heavy metal pollution and assessment of agricultural soil in Yangzhong district, Jiangsu Province, China. Chemosphere 2007,67:2148-2155.
    Huang X.S., Wang H.Y., Zhou J.M., Ma, C.L., Du C.W., Chen, X.Q. Risk assessment of potentially toxic element pollution in soils and rice (Oryza sativa) in a typical area of the Yangtze River Delta. Environ. Pollut.2009,157:2542-2549.
    Impellitteri C.A., Lu Y.F., Saxe J.K., Allen H.E. Peijnenburg WJGM. Correlation of the partitioning of dissolved organic matter fractions with the desorption of Cd, Cu, Ni, Pb and Zn from 18 Dutch soils. Environ. Int.2002,28:401-410
    Irtelli B., Petrucci W.A., Navari-Izzo F. Nicotianamine and histidine/proline are, respectively, the most important copper chelators in xylem sap of Brassica carinata under conditions of copper deficiency and excess. J. Exp. Bot.2009,60:269-277.
    Jamali M.K., Kazi T.G., Arain M.B., Afridi H.I., Jalbani N., Kandhro G.A., et al. Heavy metal accumulation in different varieties of wheat (Triticum aestivum L.) grown in soil amended with domestic sewage sludge. J. Hazard Mater. 2009,164:1386-1391.
    Jansson G. Cadmium in arable crops. PhD thesis, Acta Univ. Agric. Sueciate. Agraria 341, pp.7-41.
    Jha S.K., Nayak A.K., Sharma Y.K. Site specific toxicological risk from fluoride exposure through ingestion of vegetables and cereal crops in Unnao district, Uttar Pradesh, India. Ecotox. Environ. Safety 2011,74:940-946.
    Jiang Y.H., Jiang S.Y., Ling H.F., Dai B.Z. Low-degree melting of a metasomatized lithospheric mantle for the origin of Cenozoic Yulong monzogranite-porphyry, east Tibet:geochemical and Sr-Nd-Pb-Hf isotopic constraints. Earth and Planetary Science Letters 2006,241:617-633.
    Jones G.A., Kaiteris P.A. Vacuum-Gasometric Technique for Rapid and Precise Analysis of Calcium-Carbonate in Sediments and Soils, J. Sediment Petrol., 1983,53(2):655-660.
    Jung M.C., Thornton I. Environmental contamination and seasonal variation of metals in soils, plants and waters in the paddy fields around a Pb-Zn mine in Korea. Sci. Total Environ.1997,198:105-121.
    Kabala C., Singh B.R. Fractionation and mobility of copper, lead, and zinc in soil profiles in the vicinity of a copper smelter. J. Environ. Qual.2001,30:485-492.
    Kabata-Pendias A. Soil-plant transfer of trace elements-an environmental issue. Geoderma 2004,122:143-149.
    Kashem M.A., Singh B.R. Metal availability in contaminated soils:I. Effects of flooding and organic matter on changes in Eh, pH and solubility of Cd, Ni and Zn. Nutrient Cycling in Agroecosystems 2001,61:247-255.
    Kaste J.M., Bostick B.C., Friedland A.J., Schroth A.W., Siccama T.G. Fate and speciation of gasoline-derived lead in organic horizons of the northeastern USA. Soil Sci. Soc. Am. J.2006,70:1688-1698.
    Kennedy V.H., Sanchez A.L., Oughton D.H., Rowland A.P. Use of single and sequential chemical extractants to assess radionuclide and heavy metal availability from soils for root uptake. The Analyst.1997,122, R89-R100.
    Kirpichtchikova T.A., Manceau A., Spadini L. Speciation and solubility of heavy metals in contaminated soil using X-ray microfluorescence, EXAFS spectroscopy, chemical extraction, and thermodynamic modeling Geochimica et Cosmochimica Acta 2006,70:2163-2190.
    Kleber M., Mikutta R., Torn M.S., Jahn R. Poorly crystalline mineral phases protect organic matter in acid subsoil horizons. Eur. J. Soil Sci.2005,56:717-725.
    Koeppe D.E. The uptake, distribution, and effect of cadmium and lead in plants. Sci Total Environ 1977,7:197-206.
    Komarek M., Ettler V., Chrastny V., Mihaljevic M. Lead isotopes in environmental sciences:A review. Environment International 2008,34:562-577.
    Kutman U.B., Yildiz B., Cakmak I. Improves nitrogen status enhances zinc and iron concentrations both in the whole grain and the endosperm fraction of wheat. J. Cereal Sci.2011,53:118-125.
    Lafuente A.L., Gonzalez C., Quintana J.R., Vazquez A., Romero A. Mobility of heavy metals in poorly developed carbonate soils in the Mediterrance region. Geoderma 2008,145:238-244.
    Laird B.D., Peak D., Siciliano S.D. Bioaccessibility of metal cations in soils is linearly related to its water exchange rate constant. Environ. Sci. Technol.2011, 45:4139-4144.
    Lakhdar A., Iannelli M.A., Debez A., Massacci A., Jedidi N., Abdelly C. Effect of municipal solid waste compost and sewage sludge use on wheat (Triticum durum): growth, heavy metal accumulation, and antioxidant activity. J Sci Food Agric 2010,90:965-971.
    Landberg T., Greger M. Influence of N and N supplementation on Cd accumulation in wheat grain, in Proceedings of 7th International Conference on the Biogeochemistry of Trace Elements, Vol.1:Ⅲ, Uppsala, pp.90-91,2003.
    Landi A., Mermut A.R., Anderson D.W. Origin and rate of pedogenic carbonate accumulation in Saskatchewan soils, Canada. Geoderma 2003,117:143-156
    Larsen E.H., Moseholm L., Nielsen M. Atmospheric deposition of trace elements around point sources and human risk assessment. II:Uptake ofarsenic and chromium by vegetables grown near a wood preservation factory. Sci. Total Environ.1992,126:263-275.
    Larsen S., Widdowson A.E. Soil fluorine. J. Soil Sci.1971,22:210-221.
    Lavado R.S., Porcelli C.A., Alvarez R. Nutrient and heavy metal concentration and distribution in corn, soybean and wheat as affected by different tillage systems in the Argentine Pampas. Soil Till. Res.2001,62:55-60.
    Lee J.H., Doolittle J.J. Phosphtate application impacts on cadmium sorption in acidic and calcareous soils. Soil Sci.2002,164:390-400.
    Lee S.Z., Allen H.E., Huang C.P., Sparks D.L., Sanders PF., Peijnenburg W.J.G.M. Predicting soil-water partition coefficients for cadmium. Environ. Sci. Technol. 1996,30:3418-3424
    Levi-Setti R.R. Structural and microanalytical imaging of biological materials by scanning microscopy with heavy-ion probes. Annu. Rev. Biophys. Biophys. Chem. 1988,17:325-347.
    Li B.Y., Zhou D.M., Cang L., Zhang H.L., Fan X.H., Qin S.W. Soil micronutrient availability to crops as affected by long-term inorganic and organic fertilizer applications. Soil Till. Res.2007b,96:166-173.
    Li H., McGrath S., Zhao F. Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytologist 2008,178:92-102
    Li J.X., Yang XE, He ZL et al. Fractionation of lead in paddy soils and its bioavailability to rice plants. Geoderma,2007a,141:174-180.
    Li N., Gao Z., Luo D., Tang X., Chen D., Hu Y. Selenium level in the environment and the population of Zhoukoudian area, Beijing, China. Sci. Total Environ.2007a, 381:105-111.
    Li P., Wang X., Allinson G., et al. Risk assessment of heavy metals in soil previously irrigated with industrial wastewater in Shenyang, China. J. Hazard. Mater. 2009,161:516-521.
    Li X.D., Thornton I. Chemical partitioning of trace and major elements in soils contaminated by mining and smelting activities. Appl. Geochem.2001,16:1693-1706.
    Liao M.T., Hedley M.J., Woolley D.J., Brooks R.R., Nichols M.A. Copper uptake and translocation in chicory (Cichorium intybus L. Cv. Grasslands Puna) and tomato (Lycopersicon esculentum Mill. cv. Rondy) plants grown in NFT system. I. Copper uptake and distribution in plants. Plant Soil 2000,221:135-142.
    Liu H.Y., Probst A., Liao B. H. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China). Sci. Total Environ. 2005,339:153-166.
    Liu J.G., Li K.Q., Xu J.K. et al. Interaction of Cd and five mineral nutrients for uptake and accumulation in different rice cultivars and genotypes. Field Crops Res.2003, 83:271-281.
    Liu L., Chen H., Cai P., Liang W., Huang Q. Immobilization and phytotoxicity of Cd in contaminated soil amended with chicken manure compost. J Hazard Mater 2009a,163:563-567
    Liu Q.L., Xu X.H., Ren X.L., Fu H.W., Wu D.X., Shu Q.Y. Generation and characterization of low phytic acid germplasm in rice (Oryza sativa L.). Theor. Appl. Genet.2007,114:803-814.
    Liu W., Liu J., Wu M., Li Y., Zhao Y., Li S. Accumulation and translocation of toxic heavy metals in winter wheat (Triticum aestivum L.) growing in agricultural soil of Zhengzhou, China. Bull Environ Contam Toxicol 2009b,82:343-347.
    Lopez M., Gonzalez I., Romero A. Trace elements contamination of agricultural soils affected by sulphide exploitation (Iberian Pyrite Belt, SW Spain). Environ. Geol. 2008,54:805-818.;
    Lorenz S.E., Hamon R.E., McGrath S.P., Holm P.E., Christensen T.H. Application of fertilizer cations affect cadmium and zinc concentrations in soil solutions and uptake by plants. Eur. J. Soil Sci.1994,45:159-165.
    Maiz I., Arambarri I., Garcia R., Millan E. Evaluation of heavy metal availability in polluted soils by two sequential extraction procedures using factor analysis. Environ. Pollut.2000,110:3-9.
    Mao C., Chen J., Yuan X., Yang Z., Ji J. Seasonal variations in the Sr-Nd isotopic compositions of suspended particulate matter in the lower Changjiang River: Provenance and erosion constraints.2011,56(22):2371-2378.
    Marion G.H., Introne D.S., Van Cleve K. The stable isotope geochemistry of CaCO3 on the Tanana River floodplain of interior Alaska, U.S.A.:Composition and mechanisms of formation.ChemicalGeology (Isotope Geoscience Section.),1991, 86:97-110.
    Marion G.M, Babcock K.L. The solubilities of carbonates and phosphates in calcareous soil suspensions.Psssa,1977,41:724-728.
    Marques A.P., Rangel G.C., Antonio O.S.S., Castro P.M.L. Remediation of heavy metal contaminated soils:phytoremediation as a potentially promising clean-up technology. Critical Reviews in Environmental Science and Technology 2009,39(8):622-654.
    Marschner H. Mineral Nutrition of Higher Plants. Academic Press, London,1995.
    Mayland H.F, Wilkinson SR. Soil factor affecting magnesium availability in plant-animal systems:A review.J Anim Sci,1989,67:3437-3444
    McCarty L.S., Maekay D. Enhancing ecotoxieological modeling and assessment, body residues and modes of aetion. Environ. Sci. Technol.1993,7:1719-1728
    Mcclure F.J. Fluorine in foods (survey of recent data 1949). Public Health Rep. 1949,64:1061.
    McGrath S.P., Mico C., Curdy R., Zhao F.J. Predicting molybdenum toxicity to higher plants:Influence of soil properties. Environ. Pollut.2010,158:3095-3102.
    Meharg A.A., Lombi E., Williams P.N., Scheckel K.G., Feldmann J., Raab A., Zhu YG., Islam R. Speciation and localization of arsenic in white and brown rice grains. Environ. Sci. Techno.2008,42:1051-1057.
    Mitchell L.G., Grant C.A., Racz G.J. Effect of nitrogen application on concentration of cadmium and nutrient ions in soil solution and in durum wheat. Canadian Journal of Soil Science 2000,80(1):107-115.
    Mokwuney A.U., Melsted S.W. Magnesium forms in selected temperature and tropical soils. Psssa,1972,36:762-764.
    Moore K.L., Schroder M., Lombi E, Zhao F.J., McGrath S.P., Hawkesford M.J., Shewry, P.R., Grovenor, C.R.M. NanoSIMS analysis of arsenic and selenium in cereal grain. New Phytol.2010,185:434-445.
    Moore K.L., Zhao F.J., Gritsch C.S., Tosi P., Hawkesford M.J., McGrath S.P., Shewry P.R., Grovenor C.R.M. Localisation of iron in wheat grain using high resolution secondary ion mass spectrometry. J. Cereal Sci.2012,55:183-187.
    Moreno-Caselles J., Moral R., Perez-Espinosa A., Perez-Murcia M.D. Cadmium accumulation and distribution in cucumber plant. J. Plant Nutr.2000,23:243-250.
    Msaky J.J., Calvet R. Adsorption behavior of copper and zinc in soils:influence of pH on adsorption characteristics. Soil Science,1990,150:513-522.
    Mukai H.,Tanaka A., Fujii T. Regional Characteristics of Sulfur and Lead Isotope Ratios in the Atmosphere at Several Chinese Urban Sites. Environ. Sci. Technol. 2001,35,1064-1071.
    Mulligana C.N., Yongb R.N., Gibbs B.F. Remediation technologies for metal-contaminated soils and groundwater:an evaluation. Engineering Geology 2001,60,(1-4):193-207
    Nable R.O., Banuelos G.S., Paull J.G. Boron toxicity. Plant Soil 1997,193:181-198.
    Nan Z.R., Li J.J., Zhang J.M., Cheng G.D. Cadmium and zinc interactions and their transfer in soil-crop system under actual field. Sci. Total Environ.2002b,285: 187-195.
    Nan Z.R., Zhao C.Y., Li J.J., Chen F.H., Sun W. Relations between boil properties and selected heavy metal concentrations in spring wheat (Triticum aestivum L.) grown in contaminated soils. Water Air Soil Pollut.2002a,133:205-213.
    Narwal R.P., Singh B.R., Salbu B. Association of cadmium, zinc, copper, and nickel with components in naturally heavy metal-rich soils studied by parallel and sequential extractions. Commun. Soil Sci. Plant Anal.1999,30,1209-1230.
    Nelson A.T. Use of Biominitoring of Control Toxies in the US, EPA/600/R-3- 157 Fish Physiology. Toxieology, and Water Quality Management J]. Processings of an International Symposium Sacramento, California, USA, Sep.1993:18-19.
    Nemati K., Abu Bakar N.K., Sobhanzadeh E., Abas M.R. A modification of the BCR sequential extraction procedure to investigate the potential mobility of copper and zinc in shrimp aquaculture sludge. Microchem. J.2009,92:165-169.
    Nordt L.C., Wilding L.P., Hallmark C.T., et al. Carbon isotope composition of soil carbonates and their use in studying pedogenesis[C]//Yamasaki S, Boutton TW, eds. Mass Spectrometry of Soils. New York:Marcel Dekker Inc,1996:133-154.
    Norvell W.A., Wu J., Hopkins D. G., Welch R.M. Association of cadmium in durum wheat grain with soil chloride and chelate-extractable soil cadmium. Soil Sci. Soc. Am. J.2000,64:2162-2168.
    Nriagu J.O. A silent epidemic of environmental metal poisoning? Environ. Pollut. 1988,50,1-2:139-161.
    Nyamangara J. Use of sequential extraction to evaluate zinc and copper in a soil amended with sewage sludge and inorganic metal salts. Agr. Ecosyst. Environ. 1998,69:135-141.
    O'Neill P. Arsenic. In Alloway B.J. (ed.) Heavy metals in soils. Blackie, Glasgow and London, pp83-99.1990.
    Ockenden I., Dorsch J.A., Reid M.M., Lin L., Grant L.K., Raboy V., Lott J.N.A. Characterization of the storage of phosphorus, inositol phosphate and cations in grain tissues of four barley (Hordeum vulgare L.) low phytic acid genotypes. Plant Science 2004,167:1131-1142.
    Omueti A.I., Jones R.L. Fluoride adsorption by Illinois soils. J. Soil Sci. 1977,28:564-572.
    Pacholski M.L., Wigogard N. Imaging with mass spectrometry. Chem. Rev.1999,99: 2977-3005.
    Palumbo B., Angelone M., Bellanca A., Dazzi C., Hauser S., Neri R., Wilson J. Influence of inheritance and pedogenesis on heavy metal distribution in soils of Sicily, Italy. Geoderma 2000,95:47-266.
    Pascual I., Antolin M.C., Garcia C., Polo A., Sanchez-Diaz M. Plant availability of heavy metals in a soil amended with a high dose of sewage sludge under drought conditions. Biol Fertil Soils 2004,40:291-299.
    Pendell E.G., Harden J.W., Trumbore S.E., et al. Isotopic approach to soil carbonate dynamics and implications for paleoclimatic interpretations. Quaternary Research, 1994,42:60-71.
    Perilli P., Mitchell L.G., Grant C.A., Pisante M Cadmium concentration in durum wheat grain (Triticum turgidum) as influenced by nitrogen rate, seeding date and soil type. J Sci Food Agric 2010,90:813-822
    Perrott K.W., Smith B.F.L., Inkson R.H.E. The reaction of fluoride with soils and soil minerals. J. Soil Sci.1976,27:58-67.
    Peterson R.E., Tyler B.J. Analysis of organic and inorganic species on the surface of atmospheric aerosol using time-of-flight secondary ion mass spectrometry (TOF-SIMS). Atmospheric Environment 2002,36:6041-6049.
    Pich A., Scholz G. Translocation of copper and other micronutrients in tomato plants (Lycopersicon esculentum Mill):nicotianamine-stimulated copper transport in the xylem. J. Exp. Bot.1996,47:41-47.
    Plassard F., Winiarski T., Petit-Ramel M. Retention and distribution of three heavy metals in a carbonated soil:comparison between batch and unsaturated column studies. J Contamin. Hydrol.2000,42:99-111.
    Pouyat R.V., McDonnell M.J. Heavy metal accumulations in forest soils along an urban-rural gradient in southeastern New York, USA. Water Air Soil Pollut. 1991,57-58:797-807.
    Puschenreiter M., Horak O., Friesl W., Hartl W. Low-cost agricultural measures to reduce heavy metal transfer into the food chain-a review. Plant Soil Environ 2005,51:1-11.
    Qian J., Wang Z.J., Shan X.Q., Tu Q., Wen B., Chen B. Evaluation of plant availability of soil trace metals by chemical fractionation and multiple regression analysis. Environ. Pollut.1996,91:309-315.
    Quintana C., Bellefqih S., Laval J.Y., Guerquin-Kern J.L., Wu T.D., Avila J., Ferrer I., Arranz R., Patino C. Study of the localization of iron, ferritin, and hemosiderin in Alzheimer's disease hippocampus by analytical microscopy at the subcellular level. J. Struct. Biol.2006,153:42-54.
    Rashid A., Rafique E., Bhatti A.U., Ryan J., Bughio N., Yau S. K. Boron deficiency in wheat in Pakistan:incidence, spatial variability and management strategies Journal of Plant Nutrition,2011,34:4,600-613
    Ratha D.S., Sahu B.K. Source and distribution of metals in urban soil of Bombay, India, using multivariate statistical techniques. Environ. Geol.1993,22:276-285.
    Regvar M., Eichert D., Kaulich B., Gianoncelli A., Pongrac P., Vogel-Mikus K., Kreft I. New insights into globoids of protein storage vacuoles in wheat alcurone using synchrotron soft X-ray microscopy. J. Exper. Botany,2011,62(11):3929-3939.
    Reid R.J. Mechanisms of micronutrient uptake in plants. Aust. J. Plant Physiol.,2001, 28:659-666
    Rerkasem B., Jamjod S. Boron deficiency in wheat:a review. Field Crops Research 2004,89:173-186
    Rogan N., Serafimovski T., Dolenec M., Tasev G., Dolenec T. Heavy metal contamination of paddy soils and rice (oryza sativa L.) from Kocani Field (Macedonia). Environ. Geochem. Health 2009,31:439-451.
    Salomons W., Mook W.G. Isotope geochemistry of carbonate dissolution and reprecipitation in soils. Soil Sci.1976,122:15-24.
    Sanchez-Camazano M., Sanchez-Martin M.J., Lorenzo L.F. Lead and cadmium in soils and vegetables from urban gardens of Salamanca (Spain). Sci. Total Environ. 1994,146:163-168.
    Sangster A.G., Hodson M.J., Tubb H.J. Silicon deposition in higher plants. In:Datnoff LE, Snyder GH, Korndofer GH, eds. Studies in plant science:silicon in agriculture. Amsterdam:Elsevier Science,2001,8:85-113.
    Sauve S., Hendershot W, Allen H.E. Solid-solution partitioning of metals in contaminated soils:Dependence on pH,total metal burben, and organic matter. Environ Sci Technol.2000,34:1125-1131.
    Seuntjens P., Nowack B., Schulin R. Root-zone modeling of heavy metal uptake and leaching in the presence of organic ligands. Plant Soil 2004,265:61-73
    Shi J.C., Xu J.M., Huang P.M. Spatial variability and evaluation of status of micronutrients in selected soils around Taihu Lake, China. J Soils Sediments 2008,8:415-423.
    Shorrocks Victor M. The occurrence and correction of boron deficiency. Plant Soil 1997,193:121-148.
    Shotyk W., Cheburkin A.K., Appleby P.G., Kramers J.D. Lead in three peat bog profiles, Jura Mountains, Switzerland:Enrichment factors, isotopic composition, and chronology of atmospheric deposition Water Air Soil Pollut.1997,100: 297-310.
    Simeonov V., Einax J., Tsakovski S, et al. Multivariate statistical assessment of polluted soils. Central European Hournal of Chemistry,2005,3(1):1-9.
    Singh A., Chhabra R., Abrol I.P. Effect of fluorine and phosphorus applied to a sodic soil on their availability and on yield and chemical composition of wheat. Soil Sci. 1979,128:90-97.
    Singh S.P., Tack F.M., Verloo M.G. Heavy metal fractionation and extractability in dredged sediment derived surface soils. Water Air Soil Pollut.1998,102:313-328.
    Sloan J.J., Dowdy R.H., Dolan M.S. Recovery of biosolids-applied heavy metals sixteen years after application. J. Environ. Qual.1998,27:1312-1317.
    Smart K.E., Kilburn M.R., Salter C.J., Smith J.A.C., Grovenor C.R.M. NanoSIMS and EPMA analysis of nickel localisation in leaves of the hyperaccumulator plant Alyssum lesbiacum. Int. J. Mass Spectrom.2007,260:107-114.
    Smart K.E., Kilburn M.R., Salter C.J., Smith J. A.C., Grovenor C.R.M. NanoSIMS and EPMA analysis of nickel localisation in leaves of the hyperaccumulator plant Alyssum lesbiacum. Int. J. Mass Spectrom.2007,260:107-114.
    Song J., Zhao F.J., Luo Y.M., McGrath S.P., Zhang H. Copper uptake by Elsholtzia splendens and Silene vulgaris and assessment of copper phytoavailability in contaminated soils. Environ. Pollut.2004,128:307-315.
    Sors T.G., Ellis D.R., Salt D.E. Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynth. Res.2005,86:373-389.
    Spadoni M, Voltaggio M, Carcea M, Coni E, Raggi A, Cubadda F. Bioaccessible selenium in Italian agricultural soils:Comparison of the biogeochemical approach with a regression model based on geochemical and pedoclimatic variables. Sci Total Environ 2007,376:160-177
    Sposito G., Reginato R.J., Luxmoore R.J., et al. Opportunities in Basic Soil Science Research. Washington:SSSA Inc,1992.7-40.
    Streit B, Stumm W. Chemical properties of metals and the process of bioaccumulation in terrestrial plants. In:Market B, editor. Plants as bio-monoitors, indicators for heavy metals in terrestrial environment, chpt.2. Weinheim:VCH,1993:31.
    Stroud J.L., Broadley M.R., Foot I., Fairweather-Tait S.J., Hart D.J., Hurst R. et al. Soil factors affecting selenium concentration in wheat grain and the fate and speciation of Se fertilizers applied to soil. Plant Soil 2010,332:19-30
    Sukreeyapongse O., Holme P.E., Strobel B.W., Panichsakpatana S., Magid J., Hansen H.C.B. pH-dependent release of cadmium, copper, and lead from naturalandsludge-amendedsoils. J.Environ. Qual.2002.31:1901-1909.
    Sun G., Liu X., Williams PN, Zhu Y. Distribution and translocation of selenium from soil to grain and its speciation in paddy rice (Oryza sativa L.). Environ. Sci. Technol.2010,44:6706-6711
    Tessier A., Campbell P.G.C., Bisson M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem.1979,51:844-851.
    Tian S., Lu L., Yang X. Webb S.M., Du Y, Browne P.H. Spatial imaging and speciation of lead in the Accumulator plant Sedum alfredii by microscopically focused synchrotron X-ray investigation. Environ. Sci. Technol.2010,44: 5920-5926.
    Todt W., Cliff R.A., Hanser A., Hofmann A.W. Evaluation of a 202Pb-205Pb double spike for high-precision lead isotope analysis. Geophysical Monograph 1996,95: 429-437.
    Torri S., Lavado R. Plant absorption of trace elements in sludge amended soils and correlation with soil chemical speciation. J. Hazard. Mater.2009,166:1459-1465.
    Tyler L.D., McBride M.B. Influence of Ca, pH and humic acid on Cd uptake. Plant Soil 1982,64:259-262
    Usman A.R.A., Kuzyakov Y, Stahr K. Sorption, desorption, and immobilization of heavy metals by artificial soil. MSc. Thesis, University of Hohenhiem, Stuttgrat. 2008.
    Uzu G., Banska S., Sarretg G., Munoz M., Dumat C. Foliar lead uptake by lettuce exposed to atmospheric fallouts. Environ. Sci. Technol.2010,44:1036-1042.
    van Gestel C.A.M., Borgman E., Verweij R.A., Ortiz M.D. The influence of soil properties on the toxicity of molybdenum to three species of soil invertebrates. Ecotoxicology and Environmental Safety 2011,74:1-9.
    Van Ham R., Van Vaeck L., Adriaens A., Adams ., Hodges B., Gianotto A., Avci R., Appelhans A., Groenewold G. Static secondary ion mass spectrometry (S-SIMS) for the characterization of surface components in mineral particulates. Talanta 2006,69:91-96.
    Veysseyre A.M., Bollhofer A.F., Rosman K.J.R., Ferrari C.P., Boutron C.F. Tracing the origin of pollution in French Alpine snow and aerosols using lead isotopic ratios. Environ. Sci. Technol.2001,35:4463-9.
    Viers J., Oliva P., Nonell A., Gelabert A., Sonke J.E., Freydier R., Gainville R., Dupre B. Atmospheric deposition and isotope biogeochemistry of zinc in ombrotrophic peat. Chem Geol 2007,239:124-137.
    Voutsa D., Grimanis A., Samara C. Trace elements in vegetables grown in an industrial area in relation to soil and air particulate matter. Environ. Pollut.1996,94 (3):325-335.
    Wada T., Lott J.N.A. Light and electron microscopic and energy dispersive X-ray microanalysis studies of globoids in protein bodies of embryo tissues and the aleurone layer of rice (Oryza sativa L.) grains. Can. J. Bot.1996,75:1137-1147.
    Wagai R, Mayer LM. Sorptive stabilization of organic matter in soils by hydrous iron oxides. Geochim Cosmochim Acta 2007,71:25-35.
    Wang A.S., Angle J.S., Chaney R.L., Delorme T.A., Reeves R.D. Soil pH effects on uptake of Cd and Zn by Thlaspi caerulescens. Plant and Soil 2006,281:325-337.
    Wang C., Ji J., Yang Z., Chen L. The contamination and transfer of potentially toxic elements and their relations with iron, vanadium and titanium in the soil-rice system from Suzhou region, China. Environ Earth Sci.2012b DOI: 10.1007/s 12665-012-1699-7
    Wang C., Ji J., Yang Z., Chen L., Browne P., Yu R. Effects of soil properties on the transfer of cadmium from soil to wheat in the Yangtze River Delta region, China-a typical industry-agriculture transition area. Biol Trace Elem Res 2012a,148:264-274.
    Wang C., Yang Z., Yuan X., Browne P., Chen L., Ji J. The influences of soil properties on Cu and Zn availability in soil and their transfer to wheat (Triticum aestivum L.) in the Yangtze River delta region, China. Geoderma 2013,193-194(2):131-139
    Wang S., Nan Z., Liu X., Li Y., Qin S., Ding H. Accumulation and bioavailability of copper and nickel in wheat plants grown in contaminated soils from the oasis, northwest China. Geoderma 2009,152:290-295
    Wangstrand H., Eriksson J., Oborn I.. Cadmium concentration in winter wheat as affected by nitrogen fertilization. Europ. J. Agronomy 2007,26:209-214.
    Weiss D.J., Mason T.F.D., Zhao F.J., Kirk G.J.D., Coles B.J., Horstwood M.S.A. Isotopic discrimination of zinc in higher plants. New Phytol,2005,165:703-710.
    Welch R.M., Graham R.D. Breeding for micronutrients in staple food crops from a human nutirion perspective. J. Exp. Bot.2004,55:353-364.
    Weng L.P., Temminghoff E.M., Van Riemsdijk W.H. Contribution of individual sorbents to the control of heavy metals in asandy soil. Environ Sci Technol.2001, 35:4436-4443.
    Wenzel W.W., Blum W.E.H., Brandstetter A., et al. Effects of soil properties and cultivar on cadmium accumulation in wheat grain. Z Pflanzenernaehr Bodenkd 1996,159:609-614
    West L.T., Drees L.R., Wilding L.P., et al. Differentiation of pedogenic and lithogenic carbonate forms in Texas.Geoderma,1988,43:2712287.
    Willaert G., Verloo M. Effects of various nitrogen fertilizers on the chemical and biological activity of major and trace elements in a cadmium contaminated soil. Pedologie 1992,43:83-91.
    Wong C.S.C., Li X. Pb contamination and isotopic composition of urban soils in Hong Kong. Sci. Total Environ.2004,319:185-195.
    Yang X., Tian X., Lu X., Cao Y., Chen Z. Impacts of phosphorus and zinc levels on phosphorus and zinc nutrition and phytic acid concentration in wheat (Triticum aestivum L.). J. Sci. Food Agric.2011,91:2322-2328.
    Yoona J., Cao X.D., Zhou Q.X., Ma L.Q. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci. Total Environ.2006, 368:456-464.
    Zachara J.M., Simth S.C., Resch C.T., et al. Cadmium sorption to soil separates containing layer silicates and iron and aluminum-oxides. Soil Sci. Soc. Am. J.1992, 56:1071-1084.
    Zarcinas B.A., Pongsakul P., McLaughlin M.J., Cozens G. Heavy metals in soils and crops in southeast Asia.2. Thailand. Environ. Geochem. Health 2004,26:359-371.
    Zeng F., Ali S., Zhang H., OuYang Y., Qiu B. Wu F. The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environ. Pollut.2011,159:84-91.
    Zhang G., Yang F., Zhao W., Zhao Y., Yang J., Gong Z. Historical change of soil Pb content and Pb isotope signatures of the cultural layers in urban Nanjing. Catena 2007,69:51-56.
    Zhang X.H., Lin A.J., Gao Y.L., Reid R.J., Wong M.H., Zhu Y.G. Arbuscular mycorrhizal colonisation increases copper binding capacity of root cell walls of Oryza sativa L. and reduces copper uptake. Soil Biol. Biochem.2009,41:930-935.
    Zhang Y, Zhang FS, Li HF, Jiang RF, Accumulation of cadmium in the edible parts of six vegetable species grown in Cd-contaminated soils. J. Environ. Manage 2009, 90:1117-1122.
    Zhao A., Bao Q., Tian X., William J.G. Combined effect of iron and zinc on micronutrient levels in wheat (Triticum aestivum L.). J. Environ. Biol. 2011,32:235-239.
    Zhao C., Ren J., Xue C., Lin E. Study on the relationship between soil selenium and plant selenium uptake. Plant and Soil 2005,277:197-206
    Zhao K., Zhang W., Zhou L., Liu X., Xu J., Huang P. Modeling transfer of heavy metals in soil-rice system and their risk assessment in paddy fields. Environ Earth Sci.2009,59:519-527.
    Zhao K.L., Liu X.M., Xu .JM., Selim H.M. Heavy metal contaminations in a soil-rice system:Identification of spatial dependence in relation to soil properties of paddy fields. J. Hazard Mater.2010b,181:778-787.
    Zhao Y., Wang Z., Sun W., Huang B., Shi X., Ji J. Spatial interrelations and multi-scale sources of soil heavy metal variability in a typical urban-rural transition area in Yangtze River Delta region of China. Geoderma 2010a,156:216-227.
    Zheng J., Tan M., Shibata Y., Tanaka A., Li Y., Zhang G., Zhang Y., Shan Z. Characteristics of lead isotope ratios and elemental concentrations in PM10 fraction of airborne particulate matter in Shanghai after the phase-out of leaded gasoline. Atmospheric Environment 2004,38:1191-1200
    Zhu J., Wang N., Li S., Li L., Su H., Liu C. Distribution and transport of selenium in Yutangba, China:Impact of human activities. Sci. Total Environ.2008, 392:252-261.
    Zhuang P., McBride M.B., Xia H., Li N., Li Z. Health risk from heavy metals via consumption of food crops in the vicinity of Dabaoshan mine, South China. Sci Total Environ.2009,407:1551-1561.
    菜士悦,李顺,赵小刚等,污灌对京津唐地区生态环境的影响及其对策研究,农村生态环境,1985,(4):1-5.
    曾路生,土壤——水稻/蔬菜作物系统中镉、铅的生态效应研究,浙江大学博士论文,2006.
    陈冬基,卢敏,张钢,何云芳,杭州市大气氟污染对树木监测和评价的初步研究,环境科学,1983,4:49-52.
    陈怀满等,环境土壤学,北京:科学出版社,2005.
    陈怀满等,土壤——植物系统中的重金属污染,北京:科学出版社,1996.
    陈怀满等,土壤中化学物质的行为与环境质量,北京:科学出版社,2002.
    陈同斌,李艳霞,金燕,等,城市污泥堆肥的肥效及其对小麦重金属吸收的影响,生态学报,2002,22(5):643-648.
    陈曦,杨丽标,王甲辰,邹国元,田自华,左强,肖强,张琳,施用污泥堆肥对土壤和小麦重金属累积的影响,中国农学通报,2010,26(8):278-283
    陈以中,康平,天津市产粮氟含量初步调查,中国生态学报,2002,13:106-108.
    陈玉银,卢升高,大气氟污染源附近食桑昆虫中氟的积累和分布,应用生态学报,2002,13(1):106-108.
    戴伟,耿增超,土壤硒的研究概况,西北林学院学报,1995,10(3):93-97
    党红凯,李瑞奇,张馨文,孙亚辉,孟建,刘红彬,李雁鸣,高产冬小麦的硼素吸收、积累和分配,植物营养与肥料学报,2008,14(6):1048-1055.
    丁群英,安徽沿淮地区土壤交换性镁含量及镁对大豆营养的影响,安徽农学通报,2002,8(6):60-62.
    郭福生,彭花明,潘家永,杜杨松,刘林清,罗能辉,饶明辉,王正其,浙江江山寒武系碳酸盐岩碳氧同位素特征及其古环境意义探讨,地层学杂志,2003,27(4):289-297.
    侯有良,钟改荣,L.O'Brien,乔治军,卢保红,高硼土壤对小麦生长的影响,华北农学报,1999,14(2):1-5.
    胡蔼堂,植物营养学(下册),北京:北京农业出版社,1995.
    胡建新,汪莹,彭成林,陈雨林,曾庆宾,袁家富,攀枝花烟区土壤交换性钙-镁含量评价,西南农业学报,2011,24(4):1415-1418.
    胡文,土壤——植物系统中重金属的生物有效性及其影响因素的研究,北京林业大学博士论文,2008.
    黄成敏,王成善,艾南山,土壤次生碳酸盐碳氧稳定同位素古环境意义及应用,地球科学进展,2003,18(4):619-625.
    黄鸿翔,陈福兴,徐明岗等,红壤地区土壤镁素状况及镁肥施用技术的研究[J].土壤肥料,2000(5):19-23.
    黄震,大气氟污染的树木监测与评价,城市环境与城市生态,1992,5(2):44-48.
    江解增,许学宏,余云飞,陈庆生,廖启林,蔬菜对重金属生物富集程度的初步研究,中国蔬菜,2006(7):8-11.
    江苏地质调查研究院,江苏省国土区域生态地球化学调查(1:25万多目标)报告,2007.
    江苏省统计局,江苏统计年鉴,2008. http://www.jssb.gov.cn
    江苏土壤调查办公室,江苏土壤,北京:中国农业出版社,1995
    焦有,氟病流行区不同土壤类型氟含量状况的研究,农业环境保护,1997,16(3):129-131.
    金秉福,张云吉,宋键,长江三角洲第一硬土层中微结核的矿物化学特征及其成因,海洋地质与第四纪地质,2007,27(3):9-15.
    黎彤,倪守斌.地球和地壳的化学元素丰度,北京:地质出版社,1990.
    黎晓敏,魏光和,陈思怀,重庆地区地产小麦含氟量,环境与健康杂志,2004,21(5):316-317.
    李家熙,张光第,葛晓立等著,人体硒缺乏与过剩的地球化学环境特征及其预测,北京:地质出版社,2000,p5-8.
    李士敏,朱富强,刘方等,贵州黄壤旱地有效镁的含量与镁肥盆栽效果分析,贵州农业科学,1999,27(2):31-33.
    李天杰,土壤环境化学,北京:高等教育出版社,1995:112-113
    李延,刘星辉,庄卫民,福建山地龙眼园土壤镁素状况与龙眼缺镁调控措施,山地学报,2001,19(5):460-464.
    李艳慧,李恋卿,潘根兴,廖启林,吴新民,江苏宜兴地区农田土壤硒含量变异及其影响因素,生态与农村环境学报,2006,22(3):61-64.
    李正文,张艳玲,潘根兴,李久海,黄筱敏,王吉方,不同水稻品种籽实Cd、Cu和Se的含量差异及其人类膳食摄取风险,环境科学,2003,24(3):112-115.
    郦逸根,董岩翔,郑洁,李琰,吴小勇,朱朝晖.浙江富硒土壤资源调查与评价,第四纪研究,2005,25(3):323-330
    廖启林,华明,金洋,黄顺生,朱伯万,翁志华,潘永敏,江苏省土壤重金属分布特征与污染源初步研究,中国地质,2009,36(5):1163-1174.
    刘崇群,中国土壤硫素研究概况,见:中国科学院南京土壤研究所编,李庆逵与我国土壤科学的发展,南京:江苏科学技术出版社,1992,117-125.
    刘德绍,青长乐,大气和土壤对蔬菜汞的贡献,应用生态学报,2002,13(3):315-318.
    刘付程,史学正,于东升,近20年来太湖流域典型地区土壤酸度的时空变异特征,长江流域资源与环境,2006,15(6):740-744.
    刘建国,李坤权,张祖建,等,水稻不同品种对铅吸收、分配的差异及机理.应用生态学报,2004,15(2):291-294.
    刘晓文,干旱区典型土壤——植物系统中主要重金属行为过程及风险性研究,兰州大学博士论文,2009.
    刘铮,朱其清,唐丽华,土壤中硼的含量和分布的规律性,土壤学报,1989,26(4):353-360.
    卢瑛,龚子同,张甘霖,南京城市土壤中重金属的化学形态分布,环境化学,2003,22(2):131-136.
    罗丹,郑海峰,王果,董慧娟,赖云莲,酸性耕作土壤中Zn、Cd、Cu、Co、Ni和Pb的形态,福建农林大学学报(自然科学版),2009,38(6):616-621.
    骆永明等,长江、珠江三角洲土壤及其环境,北京:科学出版社,2012.
    马茂桐,新垦红壤旱地钾镁的供应能力及其平衡和效应的研究,土壤通报,1998,29(6):260-263.
    南君亚,刘育燕,浙江煤山二叠——三叠系界线剖面有机和无机碳同位素变化与古环境,地球化学,2004,33(1):9-18.
    南钟仁,李吉均,干旱区耕作土壤中重金属镉铅镍剖面分布及行为研究,干旱区研究,2000,17(4):39-45.
    潘根兴,成杰民,高建琴,刘世梁,郑金伟,江苏吴县土壤环境中某些重金属元素的变化,长江流域资源与环境,2000,9(1):51-55.
    钱建平,张力,陈华珍,侯明,牛云飞,许哲平,刘辉利,桂林市菜地土壤-蔬菜系统汞污染研究,地球化学,2009,38(4):369-378.
    茹德平,卢振波,赵治军,喷硼对小麦籽粒产量和品质的影响初报,农业科技通报,2006(8):122-123.
    邵学新,黄标,孙维侠,等,2006,长江三角洲典型地区工业企业的分布对土壤重金属污染的影响,土壤学报,43(3):397-404;
    沈渭洲,方一亭,倪琦生,刘燕,南京汤山寒武系一奥陶系界线地层地球化学特征,地层学杂志,1996,20(3):175-182.
    史贵涛,痕量有毒元素在农田土壤——作物系统中的生物地球化学循环,华东师范大学博士论文,2009.
    宋垠先,长江三角洲沉积物和土壤重金属生态地球化学研究,南京大学博士论文,2011.
    孙中党,魏荣峰,张涛,尹志良,贾小成,乡镇企业铝厂大气氟污染对区域冬小麦生长的影响,农业环境保护,1998,17(1):22-25.
    谭见安,生命元素硒的地域分异与健康,中国地方病学杂志,1996,15(2):67.
    唐诵六,环境中若干个元素的自然背景值机研究方法:南京地区土壤重金属浓度的概率分布,中国科学院环境背景值学术交流会论文文集,1982:9-15.
    唐文伟,赵建夫,顾国维,曾新平,燃煤电厂氟对灰场复垦土壤和农作物的影响,农村生态环境,1999,15(3):36-38
    万红友,周生路,赵其国,廖启林,华明,苏南经济快速发展区土壤有效态镉含量影响因素及分布特征,长江流域资源与环境,2006,15(2):213-218.
    万红友,周生路,赵其国,苏南经济快速发展区土壤Cu形态含量影响因素定量分析,长江流域资源与环境,2010,19(4):438-444.
    汪庆华,董岩翔,郑文,周国华,浙江土壤地球化学基准值与环境背景值.地质通报,2007,26(5):590-597.
    王定勇,牟树森,青长乐,大气汞对土壤-植物系统汞累积的影响研究,环境科学学报.1998,18(2):194-198.
    王冬艳,李月芬,尚媛,白荣杰,徐倩,吉林延边地区土壤钙元素生态地球化学.吉林大学学报(地球科学版),2011,41(1):215-221.
    王芳,刘鹏,徐根娣,土壤中的镁及其有效性研究概述.河南农业科学,2004(1):33-36.
    王高,华明,郑俊,朱佰万,江都市土壤重金属分布特征及污染评价,江苏地质,2006,30(4),294-298.
    王国梁,周生路,赵其国,等,菜地土壤剖面上重金属元素含量随时间的变化规律研究,农业工程学报,2006,22(1):79-84.
    王晓瑞,周生路,吴绍华,长江三角洲地区小麦植株的重金属分布及其相关性——以昆山市为例,地理科学,2011,31(2):226-231.
    王新,吴燕玉,重金属在土壤——水稻系统中的行为特性.生态学杂志,1997,16(4):10-14.
    魏复盛,陈静生,吴燕玉,郑春江,中国土壤背景值研究,见:国家环境保护局编,环境背景值和环境容量研究,北京:科学出版社,1993,p3-12.
    吴刚,李金英,曾晓舵,土壤钙的生物有效性及与其它元素的相互作用,土壤与环境,2002,11(3):319-322
    吴名字,李顺义,张杨珠,土壤锰研究进展与展望,作物研究,2005,19(2):137-142.
    吴启堂,陈卢,王广寿,水稻不同品种对Cd吸收累积的差异和机理研究,生态学报,1999,19:104-107.
    吴卫红,谢正苗,徐建明,洪紫萍,刘超,不同土壤中氟赋存形态特征及其影响因素,环境科学,2002,23(2):104-108.
    吴燕玉,辽宁省土壤元素背景值,北京:中国环境科学出版社,1994.
    武少兴,龚子同,黄标,我国土壤中的溶态硒含量及其与土壤理化性质的关系,中国环境科学,1997,17(6):522-525.
    夏增禄等,土壤元素背景值及其研究方法,北京:气象出版社,1987.
    相震,王宁,李兆佳,吴向培,姬海莲,慢性氟中毒与环境中氟的关系.职业与健康,2004,20(7):8-11.
    小山熊生,土壤和作物中的砷(杨国治译),土壤农化,1976,6:41-51.
    谢建昌,陈际型,朱月珍等,红壤区几种主要土壤的镁素供应状况及镁肥肥效的初步研究,土壤学报,1963,11(3):294-305.
    谢正苗,黄昌勇,土壤环境中砷及其化学平衡,见:何振立主编,污染及有益元素的土壤化学平衡,北京:中国环境科学出版社,1998.
    刑光熹,朱建国,等,土壤微量元素和稀土元素化学,北京:科学出版社,2002.
    徐建明,毛善国,张美圆,硼对小麦幼苗生长及体内SOD、POD (?)舌性的影响.江苏农业科学,2006,6:49-51.
    徐勇贤,王洪杰,黄标,史学正,于东升,常青,Ingrid Oborn,长三角工业型城乡交错区蔬菜生产系统重金属平衡及健康风险,土壤,2009,41(4):548-555.
    徐勇贤,长江三角洲典型城乡交错区土壤重金属平衡及生态效应,南京农业大学硕士论文,2007.
    许嘉琳,陆地生态系统中的重金属,北京:中国环境科学出版社,1995,175-177.
    许仙菊,陈明昌,张强,杨治平,土壤与植物中钙营养的研究进展.山西农业科学,2004,32(1):33-38.
    许学宏,余云飞,陈庆生,江解增,廖启林,王绪奎,江苏南北典型县域表层土壤化学元素差异性及农业评价,农业环境科学学报,2006,25(增刊):565-569.
    严连香,黄标,邵学新,赵永存,孙维侠,阮心玲,不同工业企业周围土壤-作物系统重金属Pb、Cd的空间变异及其迁移规律,土壤学报,2009,46(1):52-61.
    杨居荣,查燕,刘虹,污染稻、麦籽实中Cd, Cu, Pb的分布及其存在形态初探,中国环境科学,1990,19(6):500-504.
    杨军,陈同斌,郑袁明,罗金发,刘洪禄,吴文勇,陈玉成.北京市凉凤灌区小麦重金属含量的动态变化及健康风险分析——兼论土壤重金属有效性测定指标的可靠性,环境科学学报,2005,25(12):1661-1668.
    杨黎芳,李贵桐,李保国,土壤发生性碳酸盐碳稳定性同位素模型及其应用,地球科学进展,2006,21(9):973-981.
    杨力,刘光栋,宋国菡,泉维洁,卢桂菊,丁光国,山东省土壤交换性镁含量及 分布,山东农业科学,1998(3):8-12.
    杨力,刘光栋,宋国菡,泉维洁,卢桂菊,万连部,山东省土壤交换性钙含量及分布,山东农业科学,1998(4):17-21.
    杨楠楠,长三角地区土壤重金属的空间分异特征及风险评价研究,山东师范大学硕士论文,2010.
    杨清,我国锌肥应用现状与展望.土壤肥料,1988,6:22-25.
    杨学义,环境中若干个元素的自然背景值机研究方法:南京地区土壤背景值与母质的关系,中国科学院环境背景值学术交流会论文文集,中国科学院出版,1982:16-20.
    杨学义,南京地区土壤背景值与母质的关系,引自中国科学院土壤背景协作组等,环境中若干元素的自然背景值及其研究方法,科学出版社,1982,pp16-20.
    杨忠芳,陈岳龙,钱醺等,土壤pH对镉存在形态影响的模拟实验研究,地学前缘,2005,12(1):252-260.
    尹钧,朱晋云,Paull J.G., Rathjen A.J.,磷素对高硼土壤小麦生长的影响,生态农业研究,1999,7(3):51-54.
    袁可能,植物营养元素的土壤化学,北京:科学出版社,1983,261-293.
    袁旭音,陶于祥,王润华等,湖州市不同土壤重金属的污染现状,上海地质,2002,83(3):6-11.;
    张辉,土壤环境学,北京:化学工业出版社,2006.
    张桥,吴启堂,黄焕忠,等,施用污泥堆肥对作物和土壤的影响,土壤与环境,2009(4):277-280.
    张秋芳,王果,杨佩艺,等,有机物料对土壤镉形态及其生物有效性的影响.应用生态学报,2002,13(12):1659-1662.
    张新生,熊学林,周卫等,苹果钙营养研究进展,土壤肥料,1999(4):3-6.
    张鑫,周涛发,袁锋等,铜陵矿区土壤中镉存在形态及生物有效性,生态环境,2004,13(4):572-574.
    张珍,陆开形,孟秋峰,蔬菜重金属污染研究进展与防治措施,宁波大学学报(理工版),2010,23(3):22-26.
    赵科理,土壤——水稻系统重金属空间对应关系和定量模型研究,浙江大学博士 论文,2010.
    浙江省统计局,浙江统计年鉴,2008,http://www.zj.stats.gov.cn.
    浙江土壤普查办公室,1994,浙江土壤,杭州:浙江科学技术出版社.
    郑路,安徽省长江以北地区土壤水溶性氟含量及分布特征,农村生态环境,1997,13(3):127-131.
    郑明霞,冯流,刘洁等,螯合剂对土壤中镉赋存形态及其生物有效性的影响.环境化学,2007,26(5):606-609.
    中国环保部,土壤环境质量标准(GB15618-1995),北京:中国标准出版社,1995.
    中国环境监测总站,中国土壤元素背景值,北京:中国环境科学出版社,1990.
    中国农业科学院土壤肥料研究所,中国肥料,上海:上海科学技术出版社,1994.
    中国土壤学会农业化学专业委员会,土壤农业化学常规分析方法,北京:科学出版社,1983.
    中国卫生部,食物中污染物最大允许浓度(GB2762-2005),北京:中国标准出版社,2005.
    中科院土壤研究所,土壤理化分析,上海科学技术出版社,1978.
    钟晓兰,周生路,李江涛等,长江三角洲地区土壤重金属生物有效性的研究——以江苏昆山市为例,土壤学报,2008,45(2):240-248.
    周启星,吴燕玉,熊先哲,重金属Cd-Zn对水稻的复合污染和生态效应,应用生态学报,1994,5:438-444.
    朱法华,张菊荣,姚少平,章敏,徐州地氟病区氟的生物地球化学研究,环境科学学报,2000,20(1):111-116.
    朱亮,邵孝侯,耕作层中重金属Cd形态分布规律及职务有效性研究,河海大学学报,1997,25(3):50-56.
    左景勋,童金南,邱海鸥,赵来时,下扬子地区早三叠世碳酸盐岩碳同位素组成
    的演化特征,中国科学D辑(地球科学),2006,36(2):109-122.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700