用户名: 密码: 验证码:
走滑断裂带变形局部化和地震成核过程探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代板块边界是现代构造运动最强烈的地带,也是地震强度最大、频度最高的地带。板块间的相互作用,加之欧亚板块内部构造和深部动力的联合作用造就了中国大陆不同类型的活动构造,控制着中国大陆强震的空间分布格局,其最显著的特征就是巨大的晚第四纪活动断裂发育,将中国大陆切割成不同级别的活动断块。活动断块边界构造带是板内大地震集中发生的场所,这是因为在整个构造形变场中断块边界构造带是一个不连续构造变形带,应力在此释放,应变在此局部化,位移在此发生。所以,无论是区域性活动断块区,还是地区性活动断块的边界构造带都是大地震发生带。在这些边界构造带中,走滑断裂活动和走滑型地震尤其显著。
     地震前的变形是如何集中在断层上及断层的某一段落,即变形局部化,是目前和未来地学领域的重要问题之一。同样,由于地震成核、孕育和发生过程在地震预测上非常重要,它也是现代地震研究中的热点。变形局部化和地震成核问题实质上反映了震源在断层的某个位置上形成、发展和破裂的过程,是一个极为复杂且尚未被认识的过程。本文对走滑断裂枢纽运动的研究就是其中一个方面。
     本文以前人对走滑断裂枢纽运动模型及其控制的构造地貌、形变、孕震特征和初步的力学分析为基础,以则木河断裂大箐断层和富蕴断裂两个枢纽运动十分典型的断裂为研究对象,结合构造地貌测量、探槽剖面分析、计算机数值模拟等方法,深入地定量分析走滑断裂枢纽运动模型,进一步分析和阐述了走滑断裂变形和孕震特点。这一研究丰富了活动断裂的研究内容,有助于更深入的理解地震孕震和发生过程。
     通过总结走滑断裂枢纽运动实例、理论模型、野外观测和数值模拟结果,对走滑断裂的运动特征和过程,应力演化及其局部化过程,可以得到如下认识:
     1.走滑断层运动分成两个阶段,分别是枢纽运动阶段和大滑移阶段。枢纽运动阶段积累应力,应变局部化和集中,时间漫长,以垂直运动为主,孕育地震;大滑移阶段释放应力,时间短暂,以水平运动为主,发生地震。
     2.枢纽运动是断层在垂直方向上的运动。枢纽运动有两种模式:(1)存在与主断面相交的横向构造,称为横断型;(2)没有与主断面相交的横向构造,只沿主断面滑动,称为主滑型。主滑型也有两种表现形式:一种是简单的掀斜,例如富蕴断裂;另一种更加复杂,在掀斜的基础上还发生旋转,例如则木河断裂大箐断层。枢纽运动形成构造和地貌的四象限分布,是走滑断层枢纽作用形成局部应力场和应变场的结果,不是区域变形。枢纽轴部是断层两盘发生升降的支撑点,是枢纽型地震的发震部位,是走滑断裂的闭锁区。它在枢纽运动过程中处于最强烈挤压的状态,应力将在这里集中与释放。
     3.有三个因素可以影响枢纽运动:(1)断层面倾角,随着断层面倾角的减小,隆起和下陷的垂直位移量一直在增大,掀斜运动持续进行;(2)闭锁区面积,随着断层面闭锁区面积的增大,隆起和下陷的垂直位移量显著减小,掀斜运动明显受阻;(3)闭锁方式,富蕴型和大箐型实际上包含了两种闭锁方式,运动闭锁(局部摩擦增大阻碍运动)和结构闭锁(断层面倾向变化),尤其是大箐型受两种闭锁方式控制。模拟结果表明:(1)在运动闭锁的基础上增加结构闭锁作用后,大箐型断层北段东盘抬升量移和南段东盘下降量明显减小;(2)运动闭锁(局部摩擦增大阻碍运动)起主要的作用,只有结构闭锁(断层面倾向变化)作用似乎不能使断层产生枢纽运动。
     4.枢纽运动阶段,断层面上应力从四周向闭锁区集中。在闭锁区及其附近存在一个相对稳定的区域(应力集中区)使得应力由外向内一直处于积累状态,面积不断增大。其内部核心具有最大的应力。应力集中区可能比闭锁区面积大,但是核心的面积肯定比闭锁区面积小很多。这个核心的形成过程,就是应力局部化和集中的过程,也是地震成核的过程。这种成核作用是长期存在的,贯穿枢纽运动始终,与地球物理概念中的短期震源成核有很大区别。
     5.大滑移阶段,应力积累突破核心区的极限,使得应力迅速释放,一方面使得水平剪切作用显著增强,出现巨大的水平位移,走滑运动取代了垂直运动成为主要的运动方式;另一方面,在近地表震中附近应力释放过程比闭锁区长,水平位移量最大。
Modern plate boundaries are the zones with the most intense tectonic activities, as well as the largest earthquake intensity and the highest earthquake frequency. Interaction between plates, combined with Eura-Asia plate internal deep dynamic action result in different types of active tectonics and control large earthquake distribution in space in mainland China. The most obvious characteristic is large faults in late Quaternary which cut mainland into fault-blocks in different levels.Active fault-block boundary tectonic zones produce large intraplate earthquakes, bcause boundaries of active fault-blocks act as discontinuous zones with the most intense differential movements during the processes of active tectonic deformation, stress releases, strain localizations, and displacement occurrence. Boundary tectonic zones of regional fault-block zones and fault-blocks can generate large earthquakes. Strike-slip fault activity and earthquakes of strike-slip type are obvious in these tectonic zones.
     One of the important issues in geology is how deformation concentrates on a fault or some part of the segment (deformation localization). Because earthquake nucleation is valuable in earthquake forecast, it is one of the focused issues in earthquake research as well. In fact, both of them reflect the process of seismic source forming, developing and rupturing in some place. This process is complicated and has not realized yet. This work studies the pivotal movement pattern as one part of the process.
     This thesis is on the basis of the pivotal movement model and characteristics of tectonic geomorphology, deformation, seismogenic process and mechanical analysis. The research objects are the Zemuhe fault Daqing segment and Fuyun fault, whose pivotal movements are typical. Combined with tectonic geomorphology measurements, trench analysis and numerical simulation, pivotal movement is analyzed quantitatively. Then this work further analysed and described the characteristics of deformation and seismogenics of strike-slip faults, to enrich the research content and try to understand the process of seismogenics and occurrence of earthquakes, which support the further understanding generation and occurrence process of earthquakes.
     According to summarized examples of pivotal movement, theory models, field observations and numerical simulation, the results on kinematic characteristics and process, stress, strain evolution and deformation localization of strike-slip faults are as follows:
     1.There are two different stages in strike-slip process:pivotal movement stage and big stick-slip stage. In pivotal movement stage, stress accumulates, strain localizes and centralizes to generate earthquakes, and vertical displacement is notable. The stage will be a very long time. In big stick-slip stage, stress is released, earthquakes occurred, and horizontal displacement is dominant. This stage is very short.
     2.Pivotal movement is an important form of structure and geomorphology deformation of strike-slip faults. There are two types ofthis motion:(1)transverse type, there is transverse structure intersect to fault plane;(2)slip type, there is no transverse structure. There are two types of slip as well, one is simple titling, just like the Fuyun fault, for example. The other is more complex, not only titling but also rotating. The Zemuhe fault Daqing segment is this type.Tectonics and geomorphology are distributed as four quadrants resulted from local stress field caused by pivotal movement, which is not regional deformation. Pivotal axis is the point of support of two walls's movement,which is the aera where earthquakes occur, and strike-slip is blocked.In the whole stage of pivotal movement, the axis is the place where compression is the most intense,stress is localized and released.
     3.There are three factors which can influence the pivotal movement:(1) Dip angle of fault plane.When the angle increases, vertical displacement increases as well and titling is going on;(2) The area of theblock region. When the area increases, vertical displacement decreases and titling is blocked.(3) Block type. Fuyun and Daqing have two block types, movement block (friction block) and structure block(inclination of fault plane changes). Fuyun is controlled by the movement block, and Daqing is controlled by both. Movement block and structure block make vertical displacement decrease. Movement block is the major block factor, and structure block can not generate pivotal movement alone.
     4.In pivotal movement stage, stress on fault plane centralizes from all directions to the block region. There will be one stress centralization area to keep accumulating stress, and stress centralizes from outside to the core, like a concentric circle,growing large all the time. The largest stress in the whole stage always occurs in the core, and the core is much smaller than the block region. This process exists in a long period, in the whole stage of pivotal movement, different from earthquake nucleation in short-term in geophysics.
     5.In big stick-slip stage, stress values exceed the limit of the core, and the stress will release in a very short time. On the one hand shear stress increases obviously, large horizontal displacement appears and replaces vertical displacement. On the other hand, the stress in initial rupture releases slower than the hypocenter, and the largest horizontal displacement occurs.
引文
安艳芬.鲜水河断裂带地震破裂段落的边界特征研究.博士学位论文.中国地震局地质研究所.2010
    陈富斌,赵永涛.四川西昌大箐梁子组时代的确定及其意义.见:中国地质学会第四纪冰川与第四纪地质专业委员会主编,第四纪冰川与第四纪地质论文集.北京:地质出版社.1988
    陈富斌,赵永涛.攀西地区新构造.成都:四川科学技术出版社.1989
    陈富斌,赵永涛,徐毅峰.四川西南部上第四系大箐梁子剖面研究.见:陈富斌主编,横断山系新构造研究.成都:成都地图出版社.1992
    陈社发.南、西华山断裂带的构造演化与拉分盆地.博士学位论文.中国地震局地质研究所.1984
    陈社发,邓起东.南、西华山断裂带中拉分盆地的构造组合及其演化模式.现代地壳运动,1985,(1):98-106
    陈学忠,郭铁栓,朱令人.一次大陆强震前震成核的实例.地震学报,2001,23:213-216
    程万正.安宁河—则木河—小江带的强震构造环境和运动速率.四川地震,2003,2:7-11
    川西滇北第四纪冰川考察组.关于川西滇北某些地区的古冰川问题.西昌地质,1983,17
    戴华光.1947年青海达日73/4级地震.西北地震学报,1983,5(3):71-77
    邓起东,钟嘉猷,马宗晋.剪切破裂带的特征及其形成条件.地质科学,1966,(3):227-237
    邓起东.中国新生代断块构造的主要特征.见:国际交流地质学术论文集—为第26届国际地质大会撰写,地质、地质力学.北京:地质出版社.1980
    邓起东.断层性状、盆地类型及其形成机制.地震科学研究,1-6连载,1984,(1):59-64;(2)57-64;(3)56-64;(4)58-64:(5):58-64;(6)51-59
    邓起东.富蕴地震带的破裂机制,见《富蕴地震断裂带》第五章,新疆维吾尔自治区地震局.北京:地震出版社.1985,105-119
    邓起东,张维岐,张培震,等.海原走滑断裂带及其尾端挤压构造.地震地质,1989,11(1):1-14
    邓起东,刘百篪,张培震,等.活动断裂工程安全评价和位错量的定量评估.见:国家地震局地质研究所编,活动断裂研究(2).北京:地震出版社.1992
    邓起东,徐锡伟,于贵华.中国活动断裂的分区特征.见:中国地震学会地震地质专业委员会主编.中国活动断层研究.北京:地震出版社.1994
    邓起东,张培震.活动断裂分段研究的原则和方法(一).见:国家地震局地质研究所编.现代地壳运动研究(6).北京:地震出版社.1995
    邓起东.中国活动构造研究的进展与展望.地质论评,2002,48(2):168-177
    邓起东.城市活动探测和地震危险性评价问题.地震地质,2002b,24(4):601-605
    邓起东,张培震,冉勇康,等.中国活动构造基本特征.中国科学D辑,2002,32(12):1020-1031
    邓起东,徐锡伟,张先康,等.城市活动断裂探测的方法和技术.地学前缘,2003,10(1):93-104
    邓起东,张培震,冉勇康,等.中国活动构造与地震活动.地学前缘,2003,10(特刊):66-73
    邓起东,闻学泽.活动构造研究—历史、进展与建议.地震地质,2008,30(1):1-30
    邓起东,高翔,杨虎.断块构造、活动断块构造与地震活动.地质科学,2009,44(4):1083-1093
    邓起东,高翔,陈桂华,等.青藏高原昆仑—汶川地震系列与巴颜喀喇断块的最新活动.地学前缘,2010,17(5):163-178
    邓起东.在科学研究的实践中学习和进步——纪念海原大地震90周年,为地震预测和防震减灾事业而努力,地震地质,2011,33(1):1-14
    丁国瑜.有关活断层分段的一些问题.中国地震,1992,8(2):1-10
    丁国瑜,田勤俭,孔凡臣,等.活断层分段—原则、方法及应用.北京:地震出版社.1993
    杜平山.则木河断裂带的走滑位移和滑动速率.四川地震,2000,1-2:49-64
    杜平山.则木河活动断裂带大地震重复间隔.四川地震,2000,1-2:102-118
    方盛明,张先康,刘保金,等.探测大城市活断层的地球物理方法.地震地质,2002,24(4):606-613
    冯元保,杜平山,黄玉书.1850年西昌地震地表破裂带.四川地震,2000,1:80-96
    冯元保,蒋远明.川滇块体东缘的活动构造.四川地震,2000,1-2:5-23
    虢顺民,计凤桔,向宏发,等.红河活动断裂带.北京:海洋出版社.2001
    国家地震局兰州地震研究所,宁夏回族自治区地震队.一九二0年海原大地震.北京:地震出版社.1980
    国家地震局《一九七六年唐山地震》编辑组.一九七六年唐山地震.北京:地震出版社.1982
    国家地震局地质研究所,宁夏回族自治区地震局.海原活动断裂带地质图(1:5万).北京:地震出版社.1989
    国家地震局地质研究所,宁夏回族自治区地震局.海原活动断裂带.北京:地震出版社.1990
    国家地震局《阿尔金活动断裂带》课题组.阿尔金活动断裂带.北京:地震出版社.1992
    国家地震局地质研究所,甘肃地震局兰州地震研究所.祁连山-河西走廊活动断裂带.北京:地震出版社.1993
    郭增建,秦保燕.震源物理.北京:地震出版社.1979
    郭增建,秦保燕.震源成核过程研究综述.国际地震动态,1996,2:1-5
    韩竹军,任伏虎,小川雄二郎,等.1995年1月17日日本阪神7.2级地震的构造条件研究.地震学报,1996,18(4):523-528
    何昌荣.断层上的地震成核过程与前兆模拟研究.中国地震,2000,16(1):1-13
    胡勐乾.并行计算三维数值模拟在华北地区现今构造变形分析中的应用研究.硕士学位论文.中国地震局地质研究所.2010
    黄汲清,任纪舜,姜春发.中国大地构造及其演化.北京:科学出版社.1980
    江娃利.试论地质学者的地震理念.地震地质,2008,30(1):305-323
    阚荣举,张四昌,晏凤桐,等.我国西南地区现代构造应力场与现代构造活动特征的探讨.地球物理学报,1977,20(2):96-109
    李春昱,王荃,刘雪亚.中国的内生成矿与板块构造.地球物理学报,1981,55(3):195-204
    李建中.鲜水河断裂的现今构造形变.见:鲜水河断裂带地震学术讨论会文集.北京:地震出版社.1985
    李玶,汪良谋.云南川西地区地震地质基本特征.地质科学,1975,(4):308-326
    李玶.鲜水河-小江断裂带.北京:地震出版社.1993
    李天袑.鲜水河断裂带北西段的枢纽运动与强震的发生.四川地震,1996,4:62-70
    李天袑,杜其芳,游泽李,等.鲜水河活动断裂带及强震危险性评估.成都:成都地图出版社.1997
    李志海,马宏生,曲延军.2008年3年21日新疆于田7.3级地震构造与震前地震活 动特征研究.中国地震,2009,25(2):199-205
    刘力强.构造变形场实验观测系统及其应用.博士学位论文.中国地震局地质研究所.1995,
    刘力强,马瑾,马胜利.雁列构造的几何及其应力场的数值模拟,地震地质,1998,20(1):44-53
    刘肇昌.板块构造学.成都:四川省科学技术出版社.1985
    刘祖荫,皇甫岗,金志林,等.1970年通海地震.北京:地震出版社.1999
    陆克政,朱筱敏,漆家福,等.含油气盆地分析.北京:石油大学出版社.2003
    罗灼礼.震源应力场、形变场和倾斜场.地震学报,1980,2(2):169-185
    马胜利,马瑾,刘力强.地震成核相的实验证据.科学通报,2002,47(5):387-391
    马杏垣.中国岩石圈动力学图.北京:地图出版社.1989
    马晓静.正断层发生地震的动力学过程数值模拟研究.博士学位论文.中国地震局地质研究所.2012
    青海省地震局,中国地震局地壳应力研究所.东昆仑活动断裂带.北京:地震出版社.1999
    冉勇康,汪一鹏.对活动断层分段性的初浅认识和建议.见:国家地震局地质研究所编.现代地壳运动研究(6).北京:地震出版社.1995
    任金卫.四川西昌一八五零年地震的地震构造研究及则木河断裂带古地震初探.硕士学位论文.中国地震局地质研究所.1986
    任金卫,李砰.则木河断裂带北段地震地貌及古地震研究.地震地质,1989,11(1):27—-33
    任金卫.川西则木河断裂带强震复发周期的初步研究.内陆地震,1990,4(2):107-115
    任金卫,李砰.四川西昌1850年地震地表破裂特征研究.地震地质,1993,15(2):97-106
    任治坤,田勤俭,张军龙.后差分GPS测量则木河断裂地震微地貌特征.地震,2007,27(3):97-104
    单新建,马瑾,王长林,等.利用星载D-INSAR技术获取的地表形变场提取玛尼地震震源断层参数.中国科学D辑,2002,32(10):837-844
    尚晓江,邱峰,赵海峰,等ANSYS结构有限元高级分析方法与范例应用.北京:中国水利水电出版社.2008
    时振梁,环文林,姚国干,等.1932年昌马地震破裂带及其形成原因的初步探讨.地球物理学报,1974,17(4):272-287
    四川省地震局.1:20万西昌幅区域地质测量报告.1965
    四川省地震局.攀西地区地震危险性研究.成都:四川科学技术出版社.1986,
    宋方敏,汪一鹏,俞维贤,等.小江活动断裂带.北京:地震出版社.1998
    唐荣昌,黄祖智,伍先国,等.则木河断裂全新世以来的新活动与地震.中国地震,1986,2(4):82-88
    唐荣昌,韩渭宾.四川活动断裂与地震.北京:地震出版社.1993,
    田勤俭,任治坤,张军龙.则木河断裂带大箐梁子附近古地震组合探槽研究.地震地质,2008,30(2):400-411
    汪一鹏,等.1920年海原地震震中区地震断层的位移分布特征与破裂机制.见:地震断层讨论会摘要汇编.1983
    王华林.昌马断裂的运动方式与1932年昌马地震.地震研究,1989,12(1):29-36
    王烈.调查甘肃地震之报告.1921年6月23日晨报
    王绳祖,张流.地壳温压条件下周口店花岗闪长岩的变形破坏,地震地质,1982,4(4):68
    王勋成.有限单元法.北京:清华大学出版社.2003
    王有学,韩果花,姜枚,等.阿尔泰—阿尔金地学断面地壳结构.地球物理学报,2004,2:20-249
    王椿镛,楼海,姚志祥,等.龙门山及其邻区的地壳厚度和泊松比.第四纪研究,2010,30(4):652-661
    闻学泽,黄圣睦,江在雄.甘孜-玉树断裂带的新构造特征与地震危险性评价.地震地质,1985,7(3):23-32
    闻学泽.四川西部鲜水河—安宁河—则木河断裂带的地震破裂分段特征.地震地质,2000,22(3):239-249
    闻学泽.活动断裂的可变破裂尺度地震行为与级联破裂模式的应用.地震学报,2001a,23(4):380-390
    翁文灏.民国九年十二月六日甘肃的地震.科学,1922,7(2):105-114
    翁文灏.地震.上海:商务印书馆.1929
    翁文灏.甘肃地震考.维指集,1930.见:陈尚平等编.中国近代地震文献编要,300-306
    吴章明.西藏崩错八级地震地表破裂带形变特征及其破裂机制.博士学位论文.中国地震局地质研究所.1986
    吴章明.内部张剪切断层与强震发生的构造部位.华北地震科学,1993,11(1):11-18
    谢家荣.民国9年12月16日甘肃及其它各省之地震情形.地学杂志,1922,13(8-9).见:陈尚平等编.中国近代地震文献编要,274-282
    新疆维吾尔族自治区地质局.地质图说明书.1972
    新疆地震大队地震地质队烈度组.新疆富蕴地震调查报告,1973
    新疆维吾尔族自治区地质局.区域地质调查报告.1978
    新疆维吾尔族自治区地震局.一九三一年富蕴地震断裂带特征及地震成因的初步探讨.1979
    新疆维吾尔自治区地震局.富蕴地震断裂带.北京:地震出版社.1985
    徐嘉炜.郯城—庐江深断裂带的平移运动.华东地质,1964,5:15-20
    徐开礼,朱志澄.构造地质学.北京:地质出版社.1987
    徐锡伟.山西忻定盆地的活动断裂与地震活动性——晋北剪切带尾端张性区构造特征研究.硕士学位论文.中国地震局地质研究所.1986
    徐锡伟.山西地堑系的新构造活动特征及其形成机制.博士学位论文.中国地震局地质研究所.1989
    徐锡伟,邓起东.不连续剪切带尾端张、压性效应有限元模拟及其构造特征的研究.地震地质,1990,12(3):221-228
    徐锡伟,陈文彬,于贵华,等.2001年11月14日昆仑山库赛湖地震(Ms8.1)地表破裂带的基本特征.地震地质,2002,24(1):1-13
    徐锡伟,于贵华,马文涛,等.活动断裂地震地表破裂“避让带”宽度确定的依据与方法.地震地质,2002a,24(4):470-483
    徐锡伟,闻学泽,郑荣章,等.川滇地区活动块体最新构造变动样式及其动力来源.中国科学D辑,2003,33(增刊):151-162
    徐锡伟,闻学泽,叶建青,等.汶川Ms8.0地震地表破裂带及其发震构造.地震地质,2008,30(3):597-629
    徐锡伟,于贵华,马文涛,等.昆仑山地震(Mw7.8)破裂行为、变形局部化特征及其构造内涵讨论.中国科学D辑,2008,38(7):785-796
    易桂喜,闻学泽,范军,等.由地震活动参数分析安宁河-则木河断裂带的现今活动习性及地震危险性.地震学报,2004,26(3):294-303
    尹光华,蒋靖祥,吴国栋.2008年3月12日于田7.4级地震的构造背景.干旱区地理,2008,31(4):343-349
    云南省地震局地震地质队.曲江断裂现代构造运动与地震.1990
    俞维贤,宋方敏,闻学泽,等.1850年地震地表破裂带的考察研究.地震研究,2001,23(4):346-350
    俞维贤,王彬,刘玉权,等.曲江断裂及其周边地区现今地壳垂直形变特征.大地测量与地球动力学,2004,24(1):85-89
    张国民,张培震.“大陆强震机理与预测”中期学术进展.中国基础科学,2000,10:4-10
    张四昌,刘百篪.1970年通海地震的地震地质特征.地质科学,1978, (4):323-335
    张培震.富蕴地震断层带的变形特征与破裂机制—一条脆性建且破裂带的研究.硕士学位论文.中国地震局地质研究所.1982
    张培震,邓起东.活动断裂分段研究的原则和方法(二).见:国家地震局地质研究所编.现代地壳运动研究(6).北京:地震出版社.1995
    张培震,邓起东,张国明,等.中国大陆的强震活动与活动地块.中国科学D辑,2003,33(增刊):12-20
    张世民,谢富仁.鲜水河—小江断裂带7级以上强震构造区的划分及其构造地貌特征.地震学报,2001,23(1):37.44
    张文佑.断块构造导论.北京:石油工业出版社.1984
    赵小麟,邓起东,陈社发.岷山隆起的构造地貌学研究,地震地质,1994,16(4):429-439
    中国地震局.中国地震活动断层探测技术系统技术规程.北京:地震出版社.2005
    中国地震学会地震地质专业委员会.中国活动断裂.北京:地震出版社.1982
    周永胜,李建国,王绳祖.用物理模拟实验研究走滑断裂和拉分盆地.地质力学学报,2003,9(1):1-13
    邹定元.我国走滑型断层地震地裂缝水平位移分布的考察与研究,地震科学研究,1984,2:1-10
    朱艾斓.川西地区主干活动断裂间震期滑动习性与运动状态的地震学初步研究.博士学位论文.中国地震局地质研究所.2005
    活动断层研究会.日本の活动断层.东京:东京大学出版会.1980
    Aki K. Characterization barriers on an earthquake fault. J. G. R,1979,84(B11):6140-6148
    Aki K. Asperities, barriers, characteristic earthquakes, and strong motion prediction. J.G.R,1984, 89:5867-5872
    Allen C R. The tectonic environment of seismically active and inactive areas along the San Andres fault system. Stanford Univ. Pubs. Geol. Sciences,1967,1(11):70-82.
    Anderson E M. The dynamics of faulting. Edinburgh Geological Society Transaction,1905, 8(3):387-402
    Sylvester A G. Strike-slip fault. Geological society of America Bulletin,1988,1666-1703
    Aydin A, Nur A. Evolution of Pull-apart basins and their scale independence. Tectonics,1982, 1:91-105
    Aykut B, et al. Effect of restraining stepovers on earthquake rupture. USGS Open—file Report, 1989,89-315
    Bahat D. New aspects of rhomb structures. Journal of Structural Geology,1983,5:591-601
    Ballance P F, Reading H G, et al. Sedimentation in oblique-slip mobile zones. International Association of sedimentologists Special Publication,1980,4:265
    Bally A W. Seismic expression of Structural style. American Association of Petroleum Geologists Studies in Geology,1983,15(3):13-18
    Ben A Z. Structural framework of the Gulf of Elat (Aqaba), north Red Sea. Journal of Geophysical Research,1985,90:703-726
    Ben A Z, Almagor G, Garfunkel Z. Sediments and structure of the Gulf of Elat (Aqaba), north Red Sea. Sedimentary Geology,1979,23:239-267
    Benjamin S. Modern strain localization in the central Walker Lane, weatern United States: implications for the evolution of intraplate deformation in transtensional settings. Tectonophysics,2008,457:239-253
    Beroza G C, Ellsworth W L. Properties of the seismic nucleation phase. Tectonophysics,1996, 261:209-227
    Brace W F, Bombolakis E G. A note on brittle crack growth in compression. J. G. R,1963, 68 (B12):3709-3713
    Burchfiel B C, Stewart J H. "Pull-apart" origin of the central segment of Death valley, California. Geo Soc Am Bull,1966,77:439-442
    Burchfiel B C,Hodges K V, Royden L H. Geology of Panamint Valley-Saline Valley Pull-Apart System, California:Palinspastic Evidence for Low-Angle Geometry of a Neogene Range-Bounding Fault. Journal of Geophysical Research,1987,92(B10):10422-10426
    Chinnery M A. The Deformation of the ground around Surface Fault. B. S. S. A,1961,51: 355-372
    Chinnery M A. The stress changes that accompany strike-slip faulting. B. S. S. A,1963,53(5): 921-932
    Christie B N, Biddle K T. Deformation and basin formation along strike-slip fault. in Biddle K T and Christie B N eds. Strike-slip deformation, basin formation, and sedimentation. Society of Economic Paleontologists and Mineralogists Special Publication,1985,37:1-34
    Clark M M. Map showing recently active breaks of the San Andreas fault and associated faults between Salton Sea and Whitewater River, Mission Creek, California. USGS Miscellaneous Geologic Invertigations Mao,1984
    Cloos H. Experimente zur inner Tektonik. Zentrablatt fur Mineralogie und Palaeontologie,1928, 609-621
    Crowell J C. Sedimentation along the San Andres fault, California. in Dott, R H Jr and Shaver R H eds. Modern and ancient geosynclinal sedimentation. Society of Economic Paleontologists and Mineralogists Special Publication,1974a,19:292-303
    Crowell J C. Origin of Late Cenozoic basins in southern California. in Dickinson W R ed. Tectonics and sedimentation. Society of Economic Paleontologists and Mineralogists Special Publication,1974b,22:190-204
    Crowell J C. Late Cenozoic basins of onshore southern California:Complexity in the hallmark of their tectonic history. in Ingersoll R V and Ernst W G eds. Cenozoic development of coast California. Englewood Cliffs, New Jersey, Prentice-Hall, Inc.1987, chap 9:207-241
    Deng Q D, Zhang P Z. Research on the geometry of shear fracture Zone. J. G. R,1984,89(B7): 5699-5710
    Deng QD, Wu D, Zhang P Z, et al. Structure and deformational charater of strike-slip fault zones。Pure and Applied Geophysics,1986,124(1/2):203-223
    Depolo C M, Clark D G, Slemmons D B, et al. Historical Basin and Range Province faulting and fault segmentation. U.S. Geol Servy, Open-File Report,1989, (89-135):131-162
    Dibblee T W Jr. Strike-slip tectonics of the San Andereas fault and its role in Cenozoic basin evolvement. in Nilsen, T.H ed. Late Mesozoic and Cenozoic sedimentation and tectonics in California:Bakersfield, California, San Joaquin Geological Society,1977a,26-28
    Dieterich J H. A model for the nucleation Of earthquake slip. Am. Geophys Union Geophys Monogr,1986,16:7-47
    Dieterich J H. Earthquake nucleation on faults with rate and state-dependent strength. Tectonophysics,1992,211:115-134
    Dodge D A, Beroza G C. Foreshock sequence of 1992 Landers California, earthquake and its implication for earthquake nucleation. J. Geophys Res,1995,100:9865-9880
    Dodge D A, Beroza G C, Ellsworth W L. Detailed observations of California foreshock sequences:Implication s for the earthquake initiation process. J. Geophys Res,1996,100: 22371-22392
    Ellsworth W L, Beroza G C. Seismic evidence for an earthquake nucleation phase. Science,1995, 268:851-855
    Fuis G S. Displacement on the Superstition Hills fault triggered by the earthquake, in The Imperial Vally, California, earthquake of October 15,1979. USGS Professional Paper 1982,1254: 145-154
    Ginzburg A, Kashi E. Seismic measurements in the southern Dead Sea. Tectonophysics,1981, 80:67-80
    He H L, Song FM, Li C Y. Topographic survey of microfaulted landform and estimation of srike slip rate for the Zemuhe fault,Sichuan province. Seismology and Geology,1999,21(4): 361-369
    HeHL, Ren JW. Holocene earthquakes on the Zemuhe fault in Southwestern China. Annals of Geophysics,2003,46(5):1035-1051
    Hempton M R. Evolution of thought concerning sedimentation in pull-apart basins, in Boardman SJed. Revolution in the earth science,1983,167-180
    Hempton M R, Dunne L A. Sedimentation of pull-apart basins:Active examples in eastern Turkey. Journal of Geology,1984,92:513-530
    Hoek E, et al. Brittle fracture propagation in rock under compression. International Journal of Fracture Mechamics,1984,26:274-294
    Howell D G, Crouch J K, Greene H G, et a. Basin development along the late Mesozoic and Cainozoic California margin:A plate tectonic margin of subduction, oblique subduction and transform tectonics. in Ballance P T, and Reding H G ed. Sedimentation in oblique-slip mobile zones:International Association of Sedimentologists Special Publication,1980,4: 43-62
    Hurukawa N. The 1995 Of Etorofu earthquake Joint relocation of foreshocks, the mainshock and aftershocks and implication for earthquake nucleation process. B.S.S.A,1998,88:1112-1126
    Jerome V W, Tapponnier P, Frederick J R, et al. Uniform postglacial slip-rate along the central 600 km of the Kunlun Fault (Tibet), from 26A1, 10Be, and 14C dating of riseroffsets, and climatic origin of the regional morphology. Geophys. J. Int,2002,148:356-388
    Karner G D, Dewey J F. Rifting:Lithospheric versus crustal extension as applied to the Ridge Basin of southern California, in Halbouty M T ed. Future petroleum provinces of the world. AAPG Memoir,1986,40:317-337
    Kato N, Yamamoto K, Yamamoto H, et al. Strain—rate effect on frictional strength and the slip nucleation process. Tectonophysics,1992,211:269-282
    Kato N, Hirasawa T. Effect of strain rate and strength nonuniformity on the slip nucleation process:A numerical experiment. Tectonophysics,1996,265:299-311
    KennedyWQ. The Great Glen fault. Geological Society of London Quarterly Journal.1946,102: 47-76
    Kerry ES. Prehistoric large earthquakes produced by slip on the San Andreas Fault at Pallett Creek, California. Journal of Geophysical Research,1978,83(B8):3907-3939
    Kerry E S. Lateral offsets and revised dates of large earthquakes at Pallett Creek, California. J Geophy Res,1978,89:7641-7670
    Kerry E S, Jahns R H. Holocene activity of the San Andreas Fault at Wallace Creek, California. Geol Soc Am Bull,,1984,95(8):883-896
    Koto B. On the cause of great earthquake in central Japan,1891. Journal of College of Science. Imperial University of Japan,1893,5(4):296-353
    Knuepfer,P. Implication of the characteristics of end—points of historial surface fault ruptures for the nature of fault egmentation. USGS Open—file Report,1989,89-315
    Kunihiko S, Takashi N. Time-Predictable recurrence model for large earthquakes. Geophysical Research Letters,1980,7(4):279-282
    Machette N M, Personius S F, Nelson A R, et al. Segmentation models and Holocene movement history of the Wasatch Fault zone. Utah,U.S. Geol Servy, Open-File Report,1989, (89-135): 229-245
    Mackay A. On the earthquake of September 1888 in the Aumri and Mariborough Districts of the South Island. New Zealand Geological Survey Report of Geological Exploration 1888-1889, 1890,20:1-16
    Molnar P, Tapponnier P. Cenozoic tectonics of Asia:Effects of a continential collision. Science, 1975,189:419-426
    Moody J.D, Hill M.J. Wrench fault tectonics. Geological Society of America Bulletin,1956, 67(9):1207-1246
    Morgenstern N R, Tachlenko J S. Micoroscopic structures in kaolin subjected to direct shear. Geotechnique,1967,17:309-328
    New Departures in Structural Geology and Tectonic. White paper.2002
    Ohnaka M, Kuwahara Y. Characteristic features of local breakdown near a crack-tip in the transition zone from nucleation zone from nucleation to unstable rupture during stick-slip shear failure. Tectonophysics,1990,175:197-220
    Ohnaka M. Earthquake source nucleation A physical model for short-term precursors. Tectonophysics,1992,211:149-178
    Paul M, Mark R H, Dwight C, et al. Development of Pull-apart basins. Journal of Geology, 1983,91:529-554
    Rastogi B K, Mandal P. Foreshocks and nucleation of small to moderate sized Koyna earthquakes(India). B.S.S.A,1999,89:829-836
    Reid H F. The mechanism of the earthquake, in the California earthquake of April 18,1906-Report of the state earthquake investigation commission2. Washingtong D.C, Carnegie Institution, 1910
    Remsay J G. Shear zone geometry:a review. Journal of structural Geology,1980,2(1/2):83-99
    Robert E W. Earthquake Recurrence Intervals on the San Andreas Fault. Geological Society of America Bulletin,1970,81:2875-2890
    Rodgers D A. Analysis of pull-apart basin development produced by an echelon strike-slip fault. in Ballance P E and Reading H G eds. Sedimentation in oblique-slip mobile Zones. Assoc. Sed. Publ,1980,27-41
    Royden L H. The Vienna basin:A thin-skinned pull-apart basin. Society of Economic Paleontologists and Mineralogists Special Publication,1985,37:319-338
    Sander C O. Fault segmentation and earthquake occurrence in the strike—slip San Jacinto fault Zone, California. USGS Open-flie Report.1989,324-349
    Segall P, Pollard D D. Mechanics of discontinuous faults. J. G. R,1980,85:4337-4350
    Segall P, Pollard D D. Nucleation and Growth of Strike Slip Faults in Granite. J.G.R,1983, 88 (B1):555-568
    SengorA M C, Gorur N, Saroglu F. Strike-slip faulting and related basin formation in zones of tectonic escape:Turkey as a case study. Society of Economic Paleontologists and Mineralogists Special Publication,1985,37:227-264
    Sibson R. Stopping of earthquakes ruptures at dilational faultjogs. Nature,1985,1(316):248-251
    Skempton A W. Some observations on tectonic shear zone. First International Congress on Rock Mechamics, Proceedings,1966,1:329-335
    Zhao S, Wu X, Hori T. Deformation and stress localization at the Nankai subduction zone,southwest Japan. Earth and Planetary Science Letters,2003,206:145-160
    Taira A, Saito Y, Hashimoto M. The role of oblique subduction and strike-slip tectonics in the evolution of Japan. Geodynamics of the Western Pacific-Indonesian Region, Geodynamics Series, American Geophysical Union,1983,5(11):303-316
    Tang R C, et al. On the recent tectonicmovement and Seismicity along the Xianshuihe fracture zone. International Symposim on Continental Seismicity and Earthquake Prediction,1982
    Tapponnier P, Peltzer G, Armijo R. On the mechanics of the collision between India and Asia. Geological Society, London, Special Publication,1986,19:113-157
    Tchalenko J S. Similarities between shear zone of different magnitudes. Geological Society of America Bulletin,1970,81:1625-1640
    Tchalenko J S, Ambrasey N N. Structural analysis of the Dasht-e Bayaz(Iran) earthquake fractures. Geological Society of America Bulletin,1970,81:41-66
    Teng C T, Chang Y M, HuK L, et al. Tectonic stress field in China and its relation to plate movement,phys. Earth and Plant Inter,1979,18:257-273
    Wallace R E. Profiles and ages of young fault scarps, north-central Nevada. Bull Geol Soc Am, 1977,88:1267-1278
    Wilson J T. A new class of faults and their bearing on contiential drift. Natur,1965,207:343-347
    Working Group on California Earthquake Probabilities. Probabilities of large earthquake occurring in California on the San Andreas faults. U. S. Geological Survey Open-File Report.,1988,88-398
    Yamashita T, Ohnaka M. Nucleation process of unstable rupture in the brittle regime:A theoretical approach based an experimentally inferred relation. J. Geophys. Res,1991,96: 8351-8367
    Zolnai G. Continental wrench tectonics and hydrocarbon habitat. AAPG Continuing Education Course Note Series,30, Second edition,1991

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700