用户名: 密码: 验证码:
RpoS在大肠杆菌自然遗传转化中的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大肠杆菌人工转化是分子生物学研究中的常规操作,但大肠杆菌自然遗传转化,是近年新发现的一种细菌转化模式,包括自然感受态的建立、外源DNA摄取以及外源基因表达等步骤。它的发现打破了传统上认为大肠杆菌不具备在自然状态下建立感受态并摄取外源DNA能力的观点,在遗传学上具有相当重要的意义。同时,作为基因工程最常用的实验材料之一,大肠杆菌通过自然遗传转化发生基因转移会严重影响其生物安全性。因此,研究大肠杆菌自然遗传转化的调控机理对于深入了解细菌遗传转化机理及评估大肠杆菌的生物安全性具有重要的理论及应用意义。
     普遍压力应答因子σs,又称RpoS,是一种可激活大量RpoS依赖基因转录的选择性σ因子,它在压力环境下可以一定程度上替代管家6因子RpoD (σ70)启动特定压力抗逆基因的表达,使细菌应对不利环境。RpoS蛋白自身的表达具有“在快速生长的对数期很低,面对压力环境迅速升高”的特点。同时RpoS也被报道可能参与了大肠杆菌自然遗传转化调控过程。
     本研究采用了开放系统下的大肠杆菌自然遗传转化体系,研究了RpoS在大肠杆菌自然遗传转化中的功能。
     要研究RpoS在大肠杆菌自然遗传转化中的作用首先需要进一步确定RpoS在大肠杆菌自然遗传转化中是否发挥功能。本研究采用基因缺失及回补的方法,比较发现,在RpoS缺失的情况下,大肠杆菌自然遗传转化频率下降至野生型的10%以下,回补RpoS后转化频率得到恢复;通过比较RpoS缺陷株在不同筛选条件下的成活率可以发现,RpoS缺失不影响转化子的生存能力。因此,RpoS在大肠杆菌自然遗传转化中发挥作用。那么,RpoS是否参与大肠杆菌其他遗传转化过程?通过比较研究发现,RpoS缺失,大肠杆菌人工转化能力没有明显变化,此结果表明,RpoS对转化的作用为大肠杆菌自然遗传转化独有。因此,RpoS对大肠杆菌自然遗传转化确实存在影响,研究RpoS参与大肠杆菌自然遗传转化调控机理探究有助于对细菌转化机制的认识。
     大肠杆菌自然遗传转化的过程包括:液体振荡培养和静置培养建立感受态以及固体培养完成DNA摄取两个阶段,明确RpoS在哪一个环节发挥功能,有助于了解其对自然遗传转化的调控机理。
     发生在固相基质表面(培养平板)的DNA摄取过程是开放系统下的大肠杆菌自然遗传转化的特点之一。首先,通过DNA酶实验中断外源DNA供给的方法检测了自然遗传转化中DNA摄取发生的具体时间,结果表明,大肠杆菌细胞接触固相基质表面的瞬间即可完成DNA摄取,而且RpoS缺失不影响DNA摄取时期。随后,为检测在固相基质表面RpoS的转录水平,采用了PrpoS融合lacZ标记PrpoS的方法,结果示PrpoS活性在感受态细胞与固相基质接触瞬间并未明显上调;采用Western Blotting测量蛋白质水平的变化,发现RpoS在感受态与固相基质接触瞬间非但没有上升还有所下降。最后,通过诱导表达改变胞内RpoS含量发现RpoS表达量的高低不能显著影响转化频率。综合上述结果可以得出,RpoS是大肠杆菌发生高水平自然转化的必要因素,依旧不是充分条件;大肠杆菌完成自然遗传转化过程,需含有RpoS的的细胞与固相基质的接触,但RpoS的调控作用对固体培养以及DNA摄取过程无明显影响。
     ‘开放系统”大肠杆菌自然遗传转化不同于其他细菌自然转化的另一个特征是“自然感受态的建立经过了液体振荡培养和开放静置培养两个培养阶段”。本研究通过诱导表达调节胞内RpoS含量分别检测了不同培养时期诱导RpoS表达对自然转化能力的影响。结果显示,振荡培养期诱导RpoS表达能使转化频率上升约70%,静置培养期诱导RpoS表达可使转化频率上升约20%,而在两个培养时期均诱导RpoS表达使转化频率上升了140%,由此可见,通过诱导表达RpoS可以显著提高大肠杆菌自然遗传转化能力,胞内RpoS的含量可能与大肠杆菌自然遗传转化能力高低有关。而且,振荡培养期诱导作用明显表明大肠杆菌自然遗传感受态建立在振荡培养期。经过一步比较分析发现,在振荡培养对数前期诱导RpoS表达对自然遗传转化影响显著,对数中后期至稳定期诱导RpoS表达对于转化的影响不显著,结果显示,在振荡培养过程中对数前期细胞内RpoS含量决定转化能力的强弱。在静置培养过程中,通过对比不同胞内RpoS含量的大肠杆菌的转化频率变化规律发现,静置培养可以在一定程度上提升转化能力,该提升过程需要时间的积累(约8h完成),而在该培养阶段提高胞内RpoS的水平,可缩短积累所耗的时间(约4~6h即可完成),结合转化频率总体上升20%的结果,证明了静置培养阶段的胞内RpoS表达量对自然转化具有促进作用,但并不起决定作用。综上所述,胞内RpoS的含量对于大肠杆菌自然遗传感受态的建立很重要;对数前期的RpoS含量决定自然转化频率的高低;静置培养期的RpoS含量对转化能力具有促进作用。
     核苷酸及其衍生物可作为营养物质被处于营养饥饿的大肠杆菌细胞所吸收,有报道单核苷酸参与流感嗜血杆菌等细菌自然转化的调控。那么,大肠杆菌自然遗传转化过程是否受到单核苷酸的影响呢?
     单磷酸腺苷(AMP)在流感嗜血杆菌的自然转化中,通过抑制一些转化基因的转录而抑制遗传转化的发生,但在大肠杆菌的遗传转化中,是否也有类似的作用未见报道。鉴于人工转化的机制研究较为系统,本工作首先研究了AMP对大肠杆菌人工转化的作用。本研究比较研究了外源单核苷酸衍生物对大肠杆菌人工转化能力的影响,结果显示,外源AMP可能通过能量流动改变了胞内的能量状态,从而抑制了人工转化的发生。而在大肠杆菌的自然遗传转化中,外源AMP却有促进作用,是否也是通过能量流动引起的改变有待进一步验证。
     综上所述,本研究工作借助分子生物学和遗传学的手段,揭示了普遍压力应答因子RpoS与大肠杆菌自然遗传转化能力相关性,并对参与大肠杆菌自然转化的AMP等因素进行了探讨,为更好的理解大肠杆菌自然遗传转化的调控机理以及RpoS在大肠杆菌中的功能提供了实验依据;另外,对单核苷酸AMP在大肠杆菌自然遗传转化中作用的研究,为进一步认识大肠杆菌自然转化的调控机理提供了依据。本工作为探讨细菌自然遗传转化的普遍规律提供了新的线索。
As a novel transformation system reported these years, Escherichia coli natural transformation contains these processes:natural competence development, DNA uptake and transformants determination. The finding of E. coli natural transformation was of good biology value, since it breaks the traditional view that E. coli could not take exogenous DNA and transform without artificial treatment. Moreover, because E. coli is also one of the most common used materials in genetic engineering, its biosecurity comes under question for its ability of natural gene transfer. So there is extensive space and requirement in the study of mechanism of this transformation system.
     The general stress response factor σS, so-called RpoS, is an alternative σ factor of RNA polymerase in Escherichia coli. It can partially replace the "housekeeping" σ factor σ70(RpoD) under many stress conditions. RpoS intacts with the core RNA polymerase (RNAP) and controls the expression of a specific but large set of genes. Directly or indirectly, RpoS regulates10%of the E. coli genome (approximately500genes). With the characteristic of "low-expression in exponential phase and high-expression under stress conditions", RpoS was mentioned as a regulator of E. coli natural transformation.
     In this study, we investigate the effect of RpoS on E. coli natural transformation in an "open system". Some regulation mechanisms was discussed in detail too.
     In order to make sure whether RpoS has influence exactly on natural transformation process, we continuously exclude the interference of RpoS regulation on other transformation system and the disturbation of transformants survival. The results expressed that, RpoS affects the natural transformation frequency in E. coli, while has no effect on artificial transformation. The transformant survival was not interrupted by RpoS. So the RpoS regulation was exactly on the process of natural transformation.
     E. coli natural transformation process contains natural competence development and DNA uptake. The RpoS's effects on which step determin the transformation frequency were investigated in the following work.
     DNA uptake carried out on plate is one characteristic in natural transformation different from the classical artificial transformation with Ca2+. In order to determine the relationship between RpoS expression and the DNA uptake, three questions should be answered:whether the RpoS deletion would disturb the time that DNA uptake takes place, whether the RpoS expression was changed by the plating which promotes DNA uptake and if the transformation frequency would be changed by the RpoS expression changing in DNA uptake. We finally demonstrate that, although RpoS positive controls the natural transformation, it is not sufficient for transformation complete. The contact of natural competence with solid substrate was necessary for DNA uptake, but this process has nothing to do with RpoS expression.
     Another characteristic of open system natural transformation is that the process of natural competence development contains two parts:shaking culture and static cultivation. In which step RpoS plays the major role on natural transformation was discussed in the following work. The results demonstrate that the intracellular RpoS content of cells in the process of natural competence development, especially in the early exponential phase, determines the level of transformation frequency. Although not as important as in early exponential phase, the RpoS content in static cultivation enhances the natural transformation.
     In order to investigate the natural transformation regulation from various angles, besides the function research of single gene rpoS on the natural transformation, another factor AMP, which has been reported to inhibit the natural transformation of Haemophilus influenza, was discussed both in E. coli artificial and natural transformations. We found that intracellular AMP could changes the flow of energy by breaking the energy charge of the competence. This flow of energy blocks the E. coli artificial transformation. However, it enhances the natural transformation at the early exponential phase just like the RpoS regulation.
     In conclusion, we demonstrate that the intracellular RpoS content in early exponential phase determines the level of transformation frequency, which has not been studies in previous work. Then one regulatory factor in H. influenza natural transformation AMP was found has different effect on E. coli natural transformation. These findings provide detailed understanding of RpoS effect on natural transformation.
引文
1. Zuckerkandl, E., and Pauling, L. (1965). Molecules as documents of evolutionary history. J Theor Biol 8,357-366.
    2. Woese, C.R., Kandler, O., and Wheelis, M.L. (1990). Towards a natural system of organisms:proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA 87, 4576-4579.
    3. Hilario, E., and Gogarten, J.P. (1993). Horizontal transfer of ATPase genes--the tree of life becomes a net of life. Biosystems 31,111-119.
    4. Gupta, R.S., and Singh, B. (1994). Phylogenetic analysis of 70 kD heat shock protein sequences suggests a chimeric origin for the eukaryotic cell nucleus. Curr Biol 4,1104-1114.
    5. Golding, G.B., and Gupta, R.S. (1995). Protein-based phylogenies support a chimeric origin for the eukaryotic genome. Mol Biol Evol 12,1-6.
    6. Whitehouse, D.B., Tomkins, J., Lovegrove, J.U., Hopkinson, D.A., and McMillan, W.O. (1998). A phylogenetic approach to the identification of phosphoglucomutase genes. Mol Biol Evol 15,456-462.
    7. Lederberg, J., and Tatum, E.L. (1946). Gene recombination in Escherichia coli. Nature 158,558.
    8. Zinder, N.D., and Lederberg, J. (1952). Genetic exchange in Salmonella. J Bacteriol 64, 679-699.
    9. Stocker, B.A. (1953). Transduction of flagellar characters in Salmonella. J Gen Microbiol 9,410-433.
    10. Syvanen, M. (1985). Cross-species gene transfer; implications for a new theory of evolution. J Theor Biol 112,333-343.
    11. Saunders, N.J., Hood, D.W., and Moxon, E.R. (1999). Bacterial evolution:bacteria play pass the gene. Curr Biol 9, R180-183.
    12. Ochman, H., Lawrence, J.G., and Groisman, E.A. (2000). Lateral gene transfer and the nature of bacterial innovation. Nature 405,299-304.
    13. Doolittle, W.F., and Logsdon, J.M., Jr. (1998). Archaeal genomics:do archaea have a mixed heritage? Curr Biol 8, R209-211.
    14. Faguy, D.M., and Doolittle, W.F. (1999). Lessons from the Aeropyrum pernix genome. Curr Biol 9, R883-886.
    15. Andersson, J.O. (2005). Lateral gene transfer in eukaryotes. Cell Mol Life Sci 62, 1182-1197.
    16. Gogarten, J.P., Doolittle, W.F., and Lawrence, J.G. (2002). Prokaryotic evolution in light of gene transfer. Mol Biol Evol 19,2226-2238.
    17. Lerat, E., Daubin, V., Ochman, H., and Moran, N.A. (2005). Evolutionary origins of genomic repertoires in bacteria. PLoS Biol 3, e130.
    18. Rest, J.S., and Mindell, D.P. (2003). Retroids in archaea:phylogeny and lateral origins. Mol Biol Evol 20,1134-1142.
    19. Gophna, U., Charlebois, R.L., and Doolittle, W.F. (2004). Have archaeal genes contributed to bacterial virulence? Trends Microbiol 12,213-219.
    20. Andersson, J.O., Sjogren, A.M., Davis, L.A., Embley, T.M., and Roger, A.J. (2003). Phylogenetic analyses of diplomonad genes reveal frequent lateral gene transfers affecting eukaryotes. Curr Biol 13,94-104.
    21. Watkins, R.F., and Gray, M.W. (2006). The frequency of eubacterium-to-eukaryote lateral gene transfers shows significant cross-taxa variation within amoebozoa. J Mol Evol 63, 801-814.
    22. Guljamow, A., Jenke-Kodama, H., Saumweber, H., Quillardet, P., Frangeul, L., Castets, A.M., Bouchier, C., Tandeau de Marsac, N., and Dittmann, E. (2007). Horizontal gene transfer of two cytoskeletal elements from a eukaryote to a cyano bacterium. Curr Biol 17, R757-759.
    23. Nedelcu, A.M., Miles, I.H., Fagir, A.M., and Karol, K. (2008). Adaptive eukaryote-to-eukaryote lateral gene transfer:stress-related genes of algal origin in the closest unicellular relatives of animals. J Evol Biol 21,1852-1860.
    24. Fournier, G.P., and Gogarten, J.P. (2008). Evolution of acetoclastic methanogenesis in Methanosarcina via horizontal gene transfer from cellulolytic Clostridia. J Bacteriol 190,1124-1127.
    25. Ragan, M.A. (2001). Detection of lateral gene transfer among microbial genomes. Curr Opin Genet Dev11,620-626.
    26. Lawrence, J.G., and Ochman, H. (2002). Reconciling the many faces of lateral gene transfer. Trends Microbiol 10,1-4.
    27. Koski, L.B.. Morton, R.A., and Golding, G.B. (2001). Codon bias and base composition are poor indicators of horizontally transferred genes. Mol Biol Evol 18,404-412.
    28. Kuo, C.H., and Ochman, H. (2009). The fate of new bacterial genes. FEMS Microbiol Rev 33,38-43.
    29. Marri, P.R., and Golding, G.B. (2008). Gene amelioration demonstrated:the journey of nascent genes in bacteria. Genome 51,164-168.
    30. Snel, B., Bork, P., and Huynen, M.A. (2002). Genomes in flux:the evolution of archaeal and proteobacterial gene content. Genome Res 12,17-25-
    31. Feder, M.E. (2007). Evolvability of physiological and biochemical traits:evolutionary mechanisms including and beyond single-nucleotide mutation. J Exp Biol 210,1653-1660.
    32. Gogarten, J.P., and Townsend, J.P. (2005). Horizontal gene transfer, genome innovation and evolution. Nat Rev Microbiol 3,679-687.
    33. Nelson, K.E., Clayton, R.A., Gill, S.R., Gwinn, M.L., Dodson, R.J., Haft, D.H., Hickey, E.K., Peterson, J.D., Nelson, W.C., Ketchum, K.A., et al. (1999). Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima. Nature 399, 323-329.
    34. Ochman, H. (2001). Lateral and oblique gene transfer. Curr Opin Genet Dev 11, 616-619.
    35. Kurland, C.G., Canback, B., and Berg, O.G. (2003). Horizontal gene transfer:a critical view. Proc Natl Acad Sci U S A 100,9658-9662.
    36. Philippe, H., and Douady, C.J. (2003). Horizontal gene transfer and phylogenetics. Curr Opin Microbiol 6,498-505.
    37. Pal, C., Papp, B., and Lercher, M.J. (2005). Adaptive evolution of bacterial metabolic networks by horizontal gene transfer. Nat Genet 37,1372-1375.
    38. Choi, I.G., and Kim, S.H. (2007). Global extent of horizontal gene transfer. Proc Natl Acad Sci U S A 104,4489-4494.
    39. Koonin, E.V., and Wolf, Y.I. (2008). Genomics of bacteria and archaea:the emerging dynamic view of the prokaryotic world. Nucleic Acids Res 36,6688-6719.
    40. Arber, W. (2008). Molecular mechanisms driving Darwinian evolution. Mathematical and Computer Modelling 47,666-674.
    41. Dobzhansky, Y. ed. (1937). Genetics and the origin of species (New York:Columbia University Press).
    42. Mayr, E. (1993). What was the evolutionary synthesis? Trends Ecol Evol 8,31-34.
    43. Ohno, S. ed. (1970). Evolution by gene and genome duplication (Berlin:Springer).
    44. Rivera, M.C., and Lake, J.A. (2004). The ring of life provides evidence for a genome fusion origin of eukaryotes. Nature 431,152-155.
    45. Seehausen, O. (2004). Hybridization and adaptive radiation. Trends Ecol Evol 19, 198-207.
    46. O'Malley, M.A., and Boucher, Y. (2005). Paradigm change in evolutionary microbiology. Stud Hist Philos Biol Biomed Sci 36,183-208.
    47. Koonin, E.V. (2009). Darwinian evolution in the light of genomics. Nucleic Acids Res 37, 1011-1034.
    48. Lorenz, M.G., and Wackernagel, W. (1994). Bacterial gene transfer by natural genetic transformation in the environment. Microbiol Rev 58,563-602.
    49. S. B. Levy, R. V.M. ed. (1989). Gene transfer in the enviromnent. (New York: McGraw-Hill Book Co.),139-164.
    50. S. B. Levy, R.V.M. ed. (1989). Gene transfer in the environment. (New York: McGraw-Hill Book Co.),33-72.
    51. S. B. Levy, R.V.M. ed. (1989). Gene transfer in the enviromnent. (New York: McGraw-Hill Book Co.),165-222.
    52. S. B. Levy, R.V.M. ed. (1989). Gene transfer in the environment. (New York: McGraw-Hill Book Co.),73-97.
    53. Leff, L.G., McArthur, J.V., and Shimkets, L.J. (1992). Information spiraling:movement of bacteria and their genes in streams. Microbial Ecology 24,11-24.
    54. Sparling, P.F. (1966). Genetic transformation of Neisseria gonorrhoeae to streptomycin resistance. J Bacteriol 92,1364-1371.
    55. Smith, H.O., Danner, D.B., and Deich, R.A. (1981). Genetic transformation. Annu Rev Biochem 50,41-68.
    56. Palmen, R., Vosman, B., Kok, R., van der Zee, J.R., and Hellingwerf, K.J. (1992). Characterization of transformation-deficient mutants of Acinetobacter calcoaceticus. Mol Microbiol 6,1747-1754.
    57. Page, W.J., and Sadoff, H.L. (1976). Physiological factors affecting transformation of Azotobacter vinelandii. J Bacteriol 125,1080-1087.
    58. Rudin, L., Sjostrom, J.E., Lindberg, M., and Philipson, L. (1974). Factors affecting competence for transformation in Staphylococcus aureus. J Bacteriol 118,155-164.
    59. Chauvat, F., Astier, C., Vedel, F., and Joset-Espardellier, F. (1983). Transformation in the cyanobacterium Synechococcus R2:improvement of efficiency; role of the pUH24 plasmid. Mol Gen Genet 191,39-45.
    60. Shilo, M. ed. (1979). Strategies of microbial life in extreme environments. (Berlin: Springer-Verlag KG).
    61. J. M. Olson, J.G.O., J. Amesz, E. Stackebrandt, H. G. Truper ed. (1988). Green photosynthetic bacteria (New York:Plenum Press).
    62. O'Connor, M., Wopat, A., and Hanson, R.S. (1977). Genetic transformation in Methylobacterium organophilum. J Gen Microbiol 98,265-272.
    63. Carlson, C.A., Pierson, L.S., Rosen, J.J., and Ingraham, J.L. (1983). Pseudomonas stutzeri and related species undergo natural transformation. J Bacteriol 153,93-99.
    64. Lorenz, M.G., and Wackernagel, W. (1990). Natural genetic transformation of Pseudomonas stutzeri by sand-adsorbed DNA. Arch Microbiol 154,380-385
    65. Grigorieva, G., and Shestakov, S. (1982). Transformation in the cyanobacterium Synechocystis sp.6803. FEMS Microbiol Lett 13,367-370.
    66. R. Guerrero, C.P.-A. ed. (1993). Trends in microbial ecology. (Barcelona:Spanish Society for Microbiology).
    67. Frischer, M.E., Thurmond, J.M., and Paul, J.H. (1993). Factors affecting competence in a high frequency of transformation marine Vibrio. J Gen Microbiol 139,753-761.
    68. Stevens, S.E., and Porter, R.D. (1980). Transformation in Agmenellum quadruplicatum. Proc Natl Acad Sci U S A 77,6052-6056.
    69. Tirgari, S., and Moseley, B. (1980). Transformation in Micrococcus radiodurans: measurement of various parameters and evidence for multiple, independently segregating genomes per cell. J Gen Microbiol 119,287-296.
    70. Palmen, R., Vosman, B., Buijsman, P., Breek, C.K., and Hellingwerf, K.J. (1993). Physiological characterization of natural transformation in Acinetobacter calcoaceticus. J Gen Microbiol 139,295-305.
    71. Doran, J.L., Bingle, W.H., Roy, K.L., Hiratsuka, K., and Page, W.J. (1987). Plasmid transformation of Azotobacter vinelandii OP. J Gen Microbiol 133,2059-2072.
    72. Glick, B.R., Brooks, H.E., and Pasternak, J.J. (1985). Transformation of Azotobacter vinelandii with plasmid DNA. J Bacteriol 162,276-279.
    73. Hui, F.M., and Morrison, D.A. (1991). Genetic transformation in Streptococcus pneumoniae:nucleotide sequence analysis shows comA, a gene required for competence induction, to be a member of the bacterial ATP-dependent transport protein family. J Bacteriol 173,372-381.
    74. Larson, T.G., Roszczyk, E., and Goodgal, S.H. (1991). Molecular cloning of two linked loci that increase the transformability of transformation-deficient mutants of Haemophilus influenzae. J Bacteriol 173,4675-4682.
    75. Larson, T.G., and Goodgal, S.H. (1991). Sequence and transcriptional regulation of com101A, a locus required for genetic transformation in Haemophilus influenzae. J Bacteriol 173, 4683-4691.
    76. Mandel, M., and Higa, A. (1970). Calcium-dependent bacteriophage DNA infection. J MolBiol 53,159-162.
    77. Cosloy, S.D., and Oishi, M. (1973). Genetic transformation in Escherichia coli K12. Proc Natl Acad Sci U S A 70,84-87.
    78. Cohen, S.N., Chang, A.C., and Hsu, L. (1972). Nonchromosomal antibiotic resistance in bacteria:genetic transformation of Escherichia coli by R-factor DNA. Proc Natl Acad Sci USA 69, 2110-2114.
    79. Taketo, A. (1972). Sensitivity of Escherichia coli to viral nucleic acid. V. Competence of calcium-treated cells. J Biochem 72,973-979.
    80. Taketo, A., and Kuno, S. (1974). Sensitivity of Escherichia coli to viral nucleic acid. Vll. Further studies on Ca2+-induced competence. J Biochem 75,59-67.
    81. Taketo, A. (1975). Sensitivity of Escherichia coli to viral nucleic acid, X. Ba2+-induced competence for transfecting DNA. Z Naturforsch C 30,520-522.
    82. Taketo, A. (1974). Sensitivity of Escherichia coli to viral nucleic acid. Ⅷ. Idiosyncrasy of Ca2+-dependent competence for DNA. J Biochem 75,895-904.
    83. Cosloy, S.D., and Oishi, M. (1973). The nature of the transformation process in Escherichia coli K12. Mol Gen Genet 124,1-10.
    84. Sabelnikov, A.G., Avdeeva, A.V., and llyashenko (1975). Enhanced uptake of donor DNA by Ca2+treated Escherichia coli cells. Mol Gen Genet 138,351-358.
    85. Bergmans, H.E., van Die, I.M., and Hoekstra, W.P. (1981). Transformation in Escherichia coli:stages in the process. J Bacteriol 146,564-570.
    86. Lederberg, E.M., and Cohen, S.N. (1974). Transformation of Salmonella typhimurium by plasmid deoxyribonucleic acid. J Bacteriol 119,1072-1074.
    87. Kretschmer, F.J., Chang, A.C., and Cohen, S.N. (1975). Indirect selection of bacterial plasmids lacking identifiable phenotypic properties. J Bacteriol 124,225-231.
    88. Norgard, M.V., Keem, K., and Monahan, J.J. (1978). Factors affecting the transformation of Escherichia coli strain chi1776 by pBR322 plasmid DNA. Gene 3,279-292.
    89. Strike, P., Humphreys, C.O., and Roberts, R.J. (1979). Nature of transforming deoxyribonucleic acid in calcium-treated Escherichia coli. J Bacteriol 138,1033-1035.
    90. Weston, A., Humphreys, G.O., Brown, M.G., and Saunders, J.R. (1979). Simultaneous transformation of Escherichia coli by pairs of compatible and incompatible plasmid DNA molecules. Mol Gen Genet172,113-118.
    91. Sabelnikov, A.G., and Domaradsky, I.V. (1979). Proton conductor vs. cold in induction of Ca2+-dependent competence in Escherichia coli. Mol Gen Genet172,313-317.
    92. Dagert, M., and Ehrlich, S.D. (1979). Prolonged incubation in calcium chloride improves the competence of Escherichia coli cells. Gene 6,23-28.
    93. Bergmans, H., Kooijman, D., and Hoekstra, W. (1980). Cotransformation of linear chromosomal DNA and plasmid DNA in Escherichia coli. FEMS Microbiol Lett 9,211-214.
    94. Jones, I.M., Primrose, S.B., Robinson, A., and Ellwood, D.C. (1981). Effect of growth rate and nutrient limitation on the transformability of Escherichia coli with plasmid deoxyribonucleic acid. J Bacteriol 146,841-846.
    95. Wensink, P.C., Finnegan, D.J., Donelson, J.E., and Hogness, D.S. (1974). A system for mapping DNA sequences in the chromosomes of Drosophila melanogaster. Cell 3,315-325.
    96. Enea, V., Vovis, G.F., and Zinder, N.D. (1975). Genetic studies with heteroduplex DNA of bacteriophage fl. Asymmetric segregation, base correction and implications for the mechanism of genetic recombination. J Mol Biol 96,495-509.
    97. Boyer, H.B., Nicosia, S., ed. (1978). In genetic engineering (Amsterdam:Elsevier).
    98. Solomon, J.M., and Grossman, A.D. (1996). Who's competent and when:regulation of natural genetic competence in bacteria. Trends Genet 12,150-155.
    99. Baur, B., Hanselmann, K., Schlimme, W., and Jenni, B. (1996). Genetic transformation in freshwater:Escherichia coli is able to develop natural competence. Appl Environ Microbiol 62, 3673-3678.
    100. Li, W., Xie, Z., Guo, P., Chen, X., and Shen, P. (2001). Escherichia coli absorbing external-DNA under condition of lower Ca2+concentration. J. Wuhan Univ 2,247-250.
    101. Huang, R., and Reusch, R.N. (1995). Genetic competence in Escherichia coli requires poly-beta-hydroxybutyrate/calcium polyphosphate membrane complexes and certain divalent cations. JBacteriol177,486-490.
    102. Xie, Z., Liu, Y., Chen, X., Shen, P., and Qu, S. (2000). Thermochemical Studies on the Competence Development of Escherichia coli HB101. Acta Chimica Sinica 58,153-156.
    103. Tsen, S.D., Fang, S.S., Chen, M.J., Chien, J.Y., Lee, C.C., and Tsen, D.H. (2002). Natural plasmid transformation in Escherichia coli. J Biomed Sci 9,246-252.
    104. Maeda, S., Sawamura, A., and Matsuda, A. (2004). Transformation of colonial Escherichia coli on solid media. FEMS Microbiol Lett 236,61-64.
    105. Maeda, S., Ito, M., Ando, T., Ishimoto, Y., Fujisawa, Y., Takahashi, H., Matsuda, A., Sawamura, A., and Kato, S. (2006). Horizontal transfer of nonconjugative plasmids in a colony biofilm of Escherichia coli. FEMS Microbiol Lett 255,115-120.
    106. Sun, D., Zhang, Y, Mei, Y., Jiang, H., Xie, Z., Liu, H., Chen, X., and Shen, P. (2006). Escherichia coli is naturally transformable in a novel transformation system. FEMS Microbiol Lett 265,249-255.
    107. Zhang, Y., Shi, C., Yu, J., Ren, J., and Sun, D. (2012). RpoS regulates a novel type of plasmid DNA transfer in Escherichia coli. PLoS One 7, e33514.
    108. Hengge-Aronis, R. (2002). Recent insights into the general stress response regulatory network in Escherichia coli. J Mol Microbiol Biotechnol 4,341-346.
    109. Hengge-Aronis, R. (1993). Survival of hunger and stress:the role of rpoS in early stationary phase gene regulation in E. coli. Cell 72,165-168.
    110. Hengge-Aronis, R. (1996). Back to log phase:σs as a global regulator in the osmotic control of gene expression in Escherichia coli. Mol Microbiol 21,887-893.
    111. Loewen, P.C., Hu, B., Strutinsky, J., and Sparling, R. (1998). Regulation in the rpoS regulon of Escherichia coli. Can J Microbiol 44,707-717.
    112. Weber, H., Polen, T., Heuveling, J., Wendisch, V.F., and Hengge, R. (2005). Genome-wide analysis of the general stress response network in Escherichia coliσs-dependent genes, promoters, and sigma factor selectivity. J Bacteriol 187,1591-1603.
    113. Lange, R., and Hengge-Aronis, R. (1991). Identification of a central regulator of stationary-phase gene expression in Escherichia coli. Mol Microbiol 5,49-59.
    114. Lange, R., and Hengge-Aronis, R. (1994). The cellular concentration of the σs subunit of RNA polymerase in Escherichia coli is controlled at the levels of transcription, translation, and protein stability. Genes Dev 8,1600-1612.
    115. McCann, M.P., Kidwell, J.P., and Matin, A. (1991). The putative sigma factor KatF has a central role in development of starvation-mediated general resistance in Escherichia coli. J Bacteriol 173,4188-4194.
    116. Hengge-Aronis, R. (2002). Signal transduction and regulatory mechanisms involved in control of the σs (RpoS) subunit of RNA polymerase. Microbiol Mol Biol Rev 66,373-395.
    117. Mukhopadhyay, S., Audia, J.P., Roy, R.N., and Schellhorn, H.E. (2000). Transcriptional induction of the conserved alternative sigma factor RpoS in Escherichia coli is dependent on BarA, a probable two-component regulator. Mol Microbiol 37,371-381.
    118. Durfee, T., Hansen, A.M., Zhi, H., Blattner, F.R., and Jin, D.J. (2008). Transcription profiling of the stringent response in Escherichia coli. J Bacteriol 190,1084-1096.
    119. Traxler, M.F., Chang, D.E., and Conway, T. (2006). Guanosine 3',5'-bispyrophosphate coordinates global gene expression during glucose-lactose diauxie in Escherichia coli. Proc Natl Acad Sci U S A 103,2374-2379.
    120. Traxler, M.F., Summers, S.M., Nguyen, H.T., Zacharia, V.M., Hightower, G.A., Smith, J.T., and Conway, T. (2008). The global, ppGpp-mediated stringent response to amino acid starvation in Escherichia coli. Mol Microbiol 68,1128-1148.
    121. Hirsch, M., and Elliott, T. (2002). Role of ppGpp in rpoS stationary-phase regulation in Escherichia coli.J Bacteriol 184,5077-5087.
    122. Lange, R., Fischer, D., and Hengge-Aronis, R. (1995). Identification of transcriptional start sites and the role of ppGpp in the expression of rpoS, the structural gene for the σs subunit of RNApolymerase in Escherichia coli. J Bacteriol 177,4676-4680.
    123. Shiba, T., Tsutsumi, K., Yano, H., lhara, Y., Kameda, A., Tanaka, K., Takahashi, H., Munekata, M., Rao, N.N., and Kornberg, A. (1997). Inorganic polyphosphate and the induction of rpoS expression. Proc Natl Acad Sci U S A 94,11210-11215.
    124. Brown, L., and Elliott, T. (1997). Mutations that increase expression of the rpoS gene and decrease its dependence on hfq function in Salmonella typhimurium. J Bacteriol 179,656-662.
    125. Cunning, C., Brown, L., and Elliott, T. (1998). Promoter substitution and deletion analysis of upstream region required for rpoS translational regulation. J Bacteriol 180,4564-4570.
    126. Muffler, A., Fischer, D., and Hengge-Aronis, R. (1996). The RNA-binding protein HF-I, known as a host factor for phage Qβ RNA replication, is essential for rpoS translation in Escherichia coli. Genes Dev 10,1143-1151.
    127. Brennan, R.G., and Link, T.M. (2007). Hfq structure, function and ligand binding. Curr Opin Microbiol 10,125-133.
    128. Muffler, A., Traulsen, D.D., Fischer, D., Lange, R., and Hengge-Aronis, R. (1997). The RN A-binding protein HF-I plays a global regulatory role which is largely, but not exclusively, due to its role in expression of the σs subunit of RNA polymerase in Escherichia coli.1 Bacteriol 179, 297-300.
    129. Majdalani, N., Cunning, C., Sledjeski, D., Elliott, T., and Gottesman, S. (1998). DsrA RNA regulates translation of RpoS message by an anti-antisense mechanism, independent of its action as an antisilencer of transcription. Proe Natl Acad Sci U S A 95,12462-12467.
    130. Majdalani, N., Hernandez, D., and Gottesman, S. (2002). Regulation and mode of action of the second small RNA activator of RpoS translation, RprA. Mol Microbiol 46,813-826.
    131. Mandin, P., and Gottesman, S. (2010). Integrating anaerobic/aerobic sensing and the general stress response through the ArcZ small RNA. EMBO J 29,3094-3107.
    132. McCullen, C.A., Benhammou, J.N., Majdalani, N., and Gottesman, S. (2010). Mechanism of positive regulation by DsrA and RprA small noncoding RNAs:pairing increases translation and protects rpoS mRNA from degradation. J Bacteriol 192,5559-5571.
    133. Hussein, R., and Lim, H.N. (2011). Disruption of small RNA signaling caused by competition for Hfq. Proc Natl Acad Sci U S A 108,1110-1115.
    134. Zhang, A., Altuvia, S., Tiwari, A., Argaman, L., Hengge-Aronis, R., and Storz, G. (1998). The OxyS regulatory RNA represses rpoS translation and binds the Hfq (HF-I) protein. EMBO J 17, 6061-6068.
    135. Jin, Y., Watt, R.M., Danchin, A., and Huang, J.D. (2009). Small noncoding RNA GcvB is a novel regulator of acid resistance in Escherichia coli. BMC Genomics 10,165.
    136. Cohen-Or, I., Shenhar, Y., Biran, D., and Ron, E.Z. (2010). CspC regulates rpoS transcript levels and complements hfq deletions. Res Microbiol 161,694-700.
    137. Phadtare, S., and Inouye, M. (2001). Role of CspC and CspE in regulation of expression of RpoS and UspA, the stress response proteins in Escherichia coli. J Bacteriol 183,1205-1214.
    138. Mandel, M.J., and Silhavy, T.J. (2005). Starvation for different nutrients in Escherichia coli results in differential modulation of RpoS levels and stability. J Bacteriol 187,434-442.
    139. Schweder, T., Lee, K.H., Lomovskaya, O., and Matin, A. (1996). Regulation of Escherichia coli starvation sigma factor (σs) by ClpXP protease. J Bacteriol 178,470-476.
    140. Klauck, E., Lingnau, M., and Hengge-Aronis, R. (2001). Role of the response regulator RssB in sigma recognition and initiation of sigma proteolysis in Escherichia coli. Mol Microbiol 40, 1381-1390.
    141. Muffler, A., Fischer, D., Altuvia, S., Storz, G., and Hengge-Aronis, R. (1996). The response regulator RssB controls stability of the σs subunit of RNA polymerase in Escherichia coli. EMBOJ 15,1333-1339.
    142. Pratt, L.A., and Silhavy, T.J. (1996). The response regulator SprE controls the stability of RpoS. Proc Natl Acad Sci U S A 93,2488-2492.
    143. Zhou, Y., Gottesman, S., Hoskins, J.R., Maurizi, M.R., and Wickner, S. (2001). The RssB response regulator directly targets σs for degradation by ClpXP. Genes Dev 15,627-637.
    144. Bearson, S.M., Benjamin, W.H., Jr., Swords, W.E., and Foster, J.W. (1996). Acid shock induction of RpoS is mediated by the mouse virulence gene mviA of Salmonella typhimurium. J Bacteriol 178,2572-2579.
    145. Andersson, R.A., Palva, E.T., and Pirhonen, M. (1999). The response regulator expM is essential for the virulence of Erwinia carotovora subsp. carotovora and acts negatively on the sigma factor RpoS (σs). Mol Plant Microbe Interact 12,575-584.
    146. Becker, G., Klauck, E., and Hengge-Aronis, R. (2000). The response regulator RssB, a recognition factor for σs proteolysis in Escherichia coli, can act like an anti-σs factor. Mol Microbiol 35,657-666.
    147. Zhou, Y., and Gottesman, S. (1998). Regulation of proteolysis of the stationary-phase sigma factor RpoS. J Bacteriol 180,1154-1158.
    148. Cameron, A.D., and Redfield, R.J. (2006). Non-canonical CRP sites control competence regulons in Escherichia coli and many other gamma-proteobacteria. Nucleic Acids Res 34, 6001-6014.
    149. Hendrickx, L., Hausner, M., and Wuertz, S. (2003). Natural genetic transformation in monoculture Acinetobacter sp. strain BD413 bio films. Appl Environ Microbiol 69,1721-1727.
    150. Meibom, K.L., Blokesch, M., Dolganov, N.A., Wu, C.Y., and Schoolnik, G.K. (2005). Chitin induces natural competence in Vibrio cholerae. Science 310,1824-1827.
    151. Maeda, S., Kakihara, N., and Koishi, Y. (2003). Competency development of Escherichia coli in foodstuffs. Microb Environ 18,100-103.
    152. Sobue, R., Kurono, N., Etchuya, R., and Maeda, S. (2011). Identification of a novel DNA clement that promotes cell-to-cell transformation in Escherichia coli. FEBS Lett 585,2223-2228.
    153. Etchuuya, R., Ito, M., Kitano, S., Shigi,F., Sobue, R., and Maeda, S. (2011). Cell-to-cell transformation in Escherichia coli:a novel type of natural transformation involving cell-derived DNA and a putative promoting pheromone. PLoS One 6, e16355.
    154. Adams, J.L., and McLean, R.J. (1999). Impact of rpoS deletion on Escherichia coli bio films. Appl Environ Microbiol 65,4285-4287.
    155. Sun, D., Zhang, X., Wang, L., Prudhomme, M., Xie, Z., Martin, B.. and Claverys, J.P. (2009). Transforming DNA uptake gene orthologs do not mediate spontaneous plasmid transformation in Escherichia coli. J Bacteriol 191,713-719.
    156. Finkel, S.E., and Kolter, R. (2001). DNA as a nutrient:novel role for bacterial competence gene homologs. J Bacteriol 183,6288-6293.
    157. Wang, L., Hashimoto, Y., Tsao, C.Y., Valdes, J.J., and Bentley, W.E. (2005). Cyclic AMP (cAMP) and cAMP receptor protein influence both synthesis and uptake of extracellular autoinducer 2 in Escherichia coli. J Bacteriol 187,2066-2076.
    158. Baba, T., Ara, T., Hasegawa, M., Takai, Y., Okumura, Y., Baba, M., Datsenko, K.A., Tomita, M., Wanner, B.L., and Mori, H. (2006). Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants:the Keio collection. Mol Syst Biol 2,2006 0008.
    159. Tolker-Nielsen, T., Brinch, U.C., Ragas, P.C., Andersen, J.B., Jacobsen, C.S., and Molin, S. (2000). Development and dynamics of Pseudomonas sp. biofilms. J Bacteriol 182,6482-6489.
    160. Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989). Molecular cloning:a laboratory manual,2nd ed,2nd ed Edition, (Cold Spring Harbor Laboratory Press).
    161. Chen, X., Guo, P., Xie, Z., and Shen, P. (2001). A convenient and rapid method for genetic transformation of E. coli with plasmids. Antonie Van Leeuwenhoek 80,297-300.
    162. McCann, M.P., Fraley, C.D., and Matin, A. (1993). The putative sigma factor KatF is regulated posttranscriptionally during carbon starvation. J Bacteriol 175,2143-2149.
    163. Peterson, C.N., Ruiz, N., and Silhavy, T.J. (2004). RpoS proteolysis is regulated by a mechanism that does not require the SprE (RssB) response regulator phosphorylation site. J Bacteriol 186,7403-7410.
    164. Saint-Ruf, C., Taddei, F., and Matic, I. (2004). Stress and survival of aging Escherichia coli rpoS colonies. Genetics 168,541-546.
    165. Guernec, A., Robichaud-Rincon, P., and Saucier, L. (2012). Physiological adaptation of Escherichia coli after transfer onto refrigerated ground meat and other solid matrices:a molecular approach. Food Microbiol 32,63-71.
    166. Bartolome, B., Jubete, Y., Martinez, E., and de la Cruz, F. (1991). Construction and properties of a family of pACYC184-derived cloning vectors compatible with pBR322 and its
    167. Jaakkola, S.T., Penttinen, R.K., Vilen, S.T., Jalasvuori, M., Ronnholm, G., Bamford, J.K., Bamford, D.H., and Oksanen, H.M. (2012). Closely related archaeal Haloarcula hispanica icosahedral viruses HHIV-2 and SH1 have nonhomologous genes encoding host recognition functions. J Virol 86,4734-4742.
    168. Groat, R.G., Schultz, J.E., Zychlinsky, E., Bockman, A., and Matin, A. (1986). Starvation proteins in Escherichia coli:kinetics of synthesis and role in starvation survival. J Bacteriol 168, 486-493.
    169. Touati, E., Dassa, E., and Boquet, P.L. (1986). Pleiotropic mutations in appR reduce pH 2.5 acid phosphatase expression and restore succinate utilisation in CRP-deficient strains of Escherichia coli. Mol Gen Genet 202,257-264.
    170. Hengge-Aronis, R., Lange, R., Henneberg, N., and Fischer, D. (1993). Osmotic regulation of rpoS-dependent genes in Escherichia coli. J Bacteriol 175,259-265.
    171. Sun, D. (2009). The study on natural transformation in Escherichia coli. In College of Life Sciences, Volume doctor. (Wuhan:Wuhan University), pp.67-68.
    172. Hanahan, D. (1983). Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166,557-580.
    173. Li, W., Xie, H., Xie, Z., Lu, Z., Ou, J., Chen, X., and Shen, P. (2004). Exploring the mechanism of competence development in Escherichia coli using quantum dots as fluorescent probes. J Biochem Biophys Methods 58,59-66.
    174. Wenhua, L., Haiyan, X., Zhixiong, X., Jianhong, O., Xiangdong, C., and Ping, S. (2004). Exploring permeability of Escherichia coli competence using quantum dots as fluorescent probes. J Biochem Biophys Methods 61,265-270.
    175. Bukau, B., Brass, J.M., and Boos, W. (1985). Ca2+-induced permeabilization of the Escherichia coli outer membrane:comparison of transformation and reconstitution of binding-protein-dependent transport. J Bacteriol 163,61-68.
    176. Fischer, E. (1989). Osmolability of Escherichia coli and modification of [1251] ampicillin-binding by competence induction for uptake of transforming DNA. Arch Microbiol 153, 43-46.
    177. Panja, S., Saha, S., Jana, B., and Basu, T. (2006). Role of membrane potential on artificial transformation of E. coli with plasmid DNA. J Biotechnol 127,14-20.
    178. Swartz, K.J. (2008). Sensing voltage across lipid membranes. Nature 456,891-897.
    179. Zheng, H., Liu, W., Anderson, L.Y., and Jiang, Q.X. (2011). Lipid-dependent gating of a voltage-gated potassium channel. Nat Commun 2,250.
    180. Redfield, R.J. (1993). Genes for breakfast:the have-your-cake-and-eat-it-too of bacterial transformation. J Hered 84,400-404.
    181. Palchevskiy, V., and Finkel, S.E. (2006). Escherichia coli competence gene homologs are essential for competitive fitness and the use of DNA as a nutrient. J Bacteriol 188,3902-3910.
    182. Watanabe, K., Tomioka, S., Tanimura, K., Oku, H., and Isoi, K. (2011). Uptake of AMP, ADP, and ATP in Escherichia coli W. Biosci Biotechnol Biochem 75,7-12.
    183. Wang, Z., Xiang, L., Shao, J., and Wegrzyn, G. (2007). Adenosine monophosphate-induced amplification of ColEl plasmid DNA in Escherichia coli. Plasmid 57, 265-274.
    184. MacFadyen, L.P., Chen, D., Vo, H.C., Liao, D., Sinotte, R., and Redfield, R.J. (2001). Competence development by Haemophilus influenzae is regulated by the availability of nucleic acid precursors. Mol Microbiol 40,700-707.
    185. Lin, Z., Liu, C., Wang, H., and He, H. (2009). The effects of soil microbe and soil enzyme activity after treated bv diferent concentration pretilachlor. Academic Periodical of Farm Products Processing 9,10-15.
    186. Li, H., Gao, Y., Jiang, L., Zheng, F., and Wang, M. (2010). Impacts of petroleum pollutants on rape biomass, microbial population and the petroleum pollutants residue in soil. Chinese Agricultural Science Bulleti 26,382-385.
    187. Yagil, E., and Beacham, I.R. (1975). Uptake of adenosine 5'-monophosphate by Escherichia coli. J Bacteriol 121,401-405.
    188. Morrison, B.A., and Shain, D.H. (2008). An AMP nucleosidase gene knockout in Escherichia coli elevates intracellular ATP levels and increases cold tolerance. Biol Lett 4,53-56.
    189. Atkinson, D.E., and Walton, G.M. (1967). Adenosine triphosphate conservation in metabolic regulation. Rat liver citrate cleavage enzyme. J Biol Chem 242,3239-3241.
    190. Franzen, J.S., and Binkley, S.B. (1961). Comparison of the acid-soluble nucleotides in Escherichia coll at different growth rates. J Biol Chem 236,515-519.
    191. Hochstadt-Ozer, J. (1972). The regulation of purine utilization in bacteria. IV. Roles of membrane-localized and pericytoplasmic enzymes in the mechanism of purine nucleoside transport across isolated Escherichia coll membranes. J Biol Chem 247, 2419-2426.
    192. Xi, H., Schneider, B.L., and Reitzer, L. (2000). Purine catabolism in Escherichia coli and function of xanthine dehydrogenase in purine salvage. J Bacteriol 182,5332-5341.
    193. Chapman, A.G., Fall, L., and Atkinson, D.E. (1971). Adenylate energy charge in Escherichia coli during growth and starvation. J Bacteriol 108,1072-1086.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700