用户名: 密码: 验证码:
弱通信条件下多AUV编队控制及协作机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自主式水下机器人可以代替人类在海洋环境中执行复杂危险的工作,在海底探测、水下作业、海上作战等方面具有广泛的应用前景。鉴于多水下机器人在各方面的优势和相关技术的发展,多水下机器人协同作业成为水下机器人新的应用形式。与陆上自主移动机器人相比,水下特殊的工作环境给多水下机器人系统的研究和设计带来更多困难。水声通信产生的不可忽略的信息延迟、通信失效以及高误码率等不利因素给多水下机器人的协调与协作带来很大的挑战。本文以多水下机器人系统在弱通信环境中普遍存在的协同问题为核心,分别研究通信时延及通信失效对编队系统及其稳定性的影响和基于局部感知和有限通信范围的协调与协作机制。本文的主要研究工作概括如下:
     (1)研究了一类具有双积分动态的群体编队系统的稳定性,针对水声通信容易产生较大的信息延迟问题,为了使编队收敛至指定速度,采用时延依赖的分布式控制律产生控制输入,然后利用拉普拉斯矩阵的性质对系统进行线性变换,根据奈奎斯特稳定判据分析系统达到稳定的条件以及收敛性,研究时延上限与控制参数和通信拓扑结构的变化关系,并表明在控制律中加入时延相关的预测项的必要性;针对水声通信失效或偶然中断问题,将该编队系统看作一个具有马尔可夫性质的切换拓扑结构,在一致性算法的基础上,利用不可分解且非周期随机矩阵的性质,分析群体收敛至稳定的期望编队的条件。实验结果表明,所采用的控制律和得到的稳定结论是正确的,有效地解决了通信时延和通信失效情况下的群体编队问题,对于多水下机器人在弱通信环境中的编队问题具有一定的实用价值。
     (2)在前面研究的基础上,结合水下机器人的动力学特性,研究了通信时延和通信失效影响的多水下机器人编队系统稳定性问题。以某型全驱动水下机器人为例,通过变换将其动态模型表示为双积分形式,并以双积分群体编队控制律和稳定性结论为基础,分别设计水下机器人在通信时延和通信失效情况下的控制输入,证明在一定条件下,所采用的方法能够使多个水下机器人逐渐地收敛至指定编队。对于通信失效问题,还分析采用DR算法对收敛过程的影响。实验结果表明,所提出的策略和得到的结论是有效的。
     (3)研究了多水下机器人协同目标搜索机制,将任务完成过程分为目标线索搜索、追踪目标线索和准确定位目标三个阶段。以海底热液探测为例,水下机器人在开始阶段以编队运动方式在较大海域内进行全局范围的目标线索搜索,然后在局部范围内完成目标线索跟踪和目标定位任务。针对水声通信的通信范围小、通信质量差等限制,利用交哺式通信在水下机器人群体内部涌现出“虚拟食物”的梯度方向,模拟鱼群行为实现目标线索跟踪。实验结果表明,群体内部的拥挤因子和“虚拟食物”阈值对系统性能有影响,引入鱼群行为和增加拥挤因子有利于提高完成任务的效率。
     (4)以海洋矿物标本或海底硫化物的采集作业为应用背景,研究了生物交哺行为在多水下机器人协作搜集任务中的应用。给每个水下机器人定义一个内部变量衡量其自身的工作状态,并通过比较不同水下机器人的内部状态变量来判断交哺的可能性和方向性,进一步用状态转换图表示不同工作状态之间的关系。利用微分方程从宏观角度描述了系统中水下机器人在各状态的分布随时间变化情况,研究了各参数和状态转移概率等因素对系统性能的影响。将提出的方法与其他相关的协作方法进行了比较,实验结果表明了引入交哺行为对提高系统性能的有效性。
The autonomous underwater vehicle (AUV) can perform complex, arduous and evendangerous tasks in marine environments instead of human beings, such as the seabedexploration, underwater operation, and offshore battle. Due to the advantages of multipleAUVs and the development of underwater vehicles, multiple AUV cooperation becomes anew application style. Compared to the autonomous mobile robots on land, the severeunderwater environments bring in more difficulties to the research and design of multipleautonomous underwater vehicle system (MAUVS). The drawbacks of underwater acousticcommunication, such as the unelectable communication delays, communication failures andhigh bit error rate, are great challenges to the coordination and cooperation of MAUVS. Thecore of the dissertation is the cooperation control of MAUVS under conditions of limitedcommunication, respectively, focusing on the formation and its stability with communicationdelays and communication failures, the coordination and cooperation mechanism based on thelocal sensing and limited communication range. This main research work is as follows:
     Firstly, the stability of the group formation system with a double integral dynamics isstudied. For the large delayed information exchange through underwater acousticcommunication, a delay-dependent distributed control law is adopted to generate the controlinput in order to enable the formation converge to the specified speed. Then the properties ofthe Laplacian matrix are used to take transformations on the system. The stability conditionsand convergence are investigated according to the Nyquist stability criterion with thefrequency domain analysis method. The relationship between the upper-bound delay andcontrol parameters, the communication topology is also obtained. The analysis results verifythe necessary of prediction item in the control law. For the problem of underwater acousticcommunication failure or accidental interruption, the formation system is taken as a switchingtopology with Markov chain nature. The properties of the irreducible and aperiodic stochasticmatrix are used to analyze the conditions that ensure the group with consensus algorithm canconverge to the stable specified formation. Experimental results show the correctness of thecontrol law and the stability conclusions which solve the group formation problem withcommunication delays and communication failures. The work is of practical value for MAUVS under conditions of limited communication.
     Secondly, combining with the dynamics of AUV, the stability of multiple AUV formationsystem is studied on the basis of the above research with communication delays andcommunication failures. Taking a type of actuated underwater vehicle as example, thedynamic model of the underwater vehicle is expressed as a double integrator by feedbacklinearization. Then the formation control law and the stability conclusion derived by thedouble integrator can be used to produce the control input for underwater vehicles in case ofcommunication delays and communication failures. The control laws are justified to enablemultiple AUVs converge to the specified formation under certain conditions. For the problemof communication failures, the effect of DR algorithm to convergence process is analyzed.The experimental results show the validity of formation control strategy and the conclusions.
     Thirdly, the coordination and cooperation mechanism is studied with the target searchtask. The task process is divided into three stages: searching for target clues, tracking thetarget clues and locating the accurate position of the target. Taking seafloor hydrothermaldetection for example, multiple AUVs move in formation pattern in the global range to searchfor clues within larger water area at the beginning stages, and then track clues in local rangeuntil they find the accurate position of the target. For the restrictions of limitedcommunication range and poor communication quality of underwater acousticcommunication, trophallaxis communication is introduced to emerge the direction of thegradient of the "virtual food" within the AUV group. The swarming behaviors of fish areimitated to track clues for AUVs. The experimental results show that crowding factor withinthe group and the threshold of the "virtual food" impact on the system performance. Also, theintroduction of fish behaviors and the increase of crowding factor help to improve theefficiency of the system.
     Finally, the application of biological trophallaxis behavior for multiple AUV cooperativecollection task is considered with the application background of marine mineral specimen orseabed sulfide sample collection mission. An internal variable is defined for each AUV tomeasure its own working state. The possibility and the direction of trophallaxis are judged bycomparing internal variables of different AUVs. The finite state machine is proposed todescribe the switching process of AUVs between different states. Differential equations arealso used to describe the distribution of AUVs on each state over time from a macro perspective. The effect of parameters, state transition probability, and other factors on systemperformance is analyzed on the basis of mathematical model built as above. Comparing theproposed method with other approaches, experimental results show the introduction oftrophallaxis behavior improves system performance effectively.
引文
[1]许真珍,封锡盛.多UUV协作系统的研究现状与发展.机器人.2007,29(2):186-192页
    [2]孟宪松.多水下机器人系统合作与协调技术研究.哈尔滨工程大学博士学位论文,2006:6-8页
    [3]由光鑫.多水下机器人分布式智能控制技术研究.哈尔滨工程大学博士学位论文,2006:4-6页
    [4]马伟锋,胡震.AUV的研究现状与发展趋势.火力与指挥控制,2008,3(6):10-13页
    [5] Fiorelli E, Leonard N E, Bhatta P, et al. Multi-AUV control and adaptive sampling inMonterey Bay. IEEE Journal of Oceanic Engineering,2006,31(4):935-948P
    [6] http://www.princeton.edu/~dcsl/asap/
    [7] http://mainesail.umcs.maine.edu/MaineSAIL/projects/CoDA/
    [8] New Robot Sub Surveys the Deep off the Pacific Northwest. http://www. whoi. edu/page.do? pid=7545&tid=282&cid=47407&ct=162,王金平译,科学研究动态监测快报,中国科学院国家科学图书馆,2008,17,10-11页
    [9] Schulz B, Hobson B, Kemp M. Field results of multi-UUV missions using rangermicro-UUVs. OCEANS2003IEEE Conference Proceedings.2003,2:956-961P
    [10] Das A K, Fierro R, Kumar V, Ostrowski J P, Splezer J, Taylor C J. A vision-basedformation control framework. IEEE Transactions on Robotics and Automation,2002,18(5):813-825P
    [11] Girard A R, Hedrick J K. Formation control of multiple vehicles using dynamic surfacecontrol and hybrid systems. International Journal of Control,2003,76(9-10):913-923P
    [12]程磊,王永骥,朱全民.基于通信的多移动机器人编队控制系统.华中科技大学学报(自然科学版),2005,33(11):67-70页
    [13]朱法强,尹怡欣.一种引入通信的多移动机器人编队方法.计算机应用研究,2007,24,(10):59-60,67页
    [14]焦立男,唐振民.机器人编队技术.高技术通讯,2007,17(3):325-330页
    [15] Desai J P, Ostrowski J P, Kumar V. Controlling formation of multiple mobile robots.Procof IEEE International Conference on Robotics&Automation.Leuven, Belgium,1998:2864-2869P
    [16]孟宪松,徐宏根,张铭钧,刘建华.基于分解策略的多机器人编队控制方法.哈尔滨工程大学学报,2006,27(2):276-280页
    [17] Leonard N E, Fiorelli E. Virtual leaders, artificial potentials and coordinated control ofgroups. Proc. The40th IEEE Conf. Decision and Control,2001(3):2968-2973P
    [18] Edwards D B, Bean T A, Odell D L, Anderson M J. A Leader-Follower algorithm formultiple AUV formations. Autonomous Underwater Vehicles,2004IEEE/OES, Sebasco,Maine, USA,2004:40-46P
    [19] Brooks R. A robust layered contr system for a mobile robot. IEEE Transaction on Roboticsand Automation,1986,2(l): l4-23P
    [20] Balch T, Arkin R C. Behavior-based formation control for multirobot teams. IEEETransactions on Robotics and Automation,1998,14(6):926-939P
    [21] Na Y K, Oh. S Y. Hyrid control autonomous mobile robot navigation using neural networkbased behavior modules and environrnent classification. Autonomous Robots,2003,15(2):193-206P
    [22] Kang X D, Xu H L, Feng X S. Fuzzy logic based behavior fusion for multi-AUV formationkeeping in uncertain ocean environment. Oceans2009, MTS/IEEE Biloxi-MarineTechnology for Our Future: Global and Local Challenges, Biloxi, MS,2009:1-7P
    [23] Jia Q L, Li G W. Formation control and obstacle avoidance algorithm of multipleautonomous underwater vehicles (AUVs) based on potential function and behavior rules.Proceedings of the IEEE International Conference on Automation and Logistics, Jinan,China,2007:569-573P
    [24] Bhatta P, Fiorelli E, Lekien F, et al.Coordination of an underwater glider fleet for adaptivesampling. Proceeding of International Workshop on Underwater Robotics, Int. AdvancedRobotics Programmed (IARP), Genoa, Italy,2005:61-69P
    [25]吴小平,冯正平,朱继懋.多AUV队形控制的新方法.舰船科学技术,2008,30(2):128-134页
    [26]严浙平,李锋,黄宇峰.多智能体Q学习在多AUV协调中的应用研究.应用科技,2008,35(1):57-60页
    [27]俞辉,王永骥,程磊.稳定的有领航者的多移动智能体群集运动控制.华中科技大学学报(自然科学版),2005,33(8):56-58页
    [28]程磊,俞辉,吴怀宇,王永骥.一类有序化多移动机器人群集运动控制系统,控制理论与应用,2008,25(6):1117-1121页
    [29] Olfati-Saber R, Murray R.M. Consensus problems in networks of agents with switchingtopology and time-delays. IEEE Transactions on Automatic Control,2004,49(9):1520–1533P
    [30] Ren W. Consensus based formation control strategies for multi-vehicle systems.Proceedings of the2006American Control Conference Minneapolis, Minnesota, USA,2006:4237-4242P
    [31] Ghabcheloo R, Aguiar A P, Pascoal A, et al. Coordinated path-following control of multipleAUVs in the presence of communication failures and time delays.7th IFAC Conference onManeuvering and Control of Marine Craft (MCMC’2006), Lisbon, Portugal,2006
    [32] Ghabcheloo R, Aguiar A P, Pascoal A, et al. Coordinated path-following in the presence ofcommunication losses and time delays. SIAM-Journal on Control and Optimization,2009,48(1):234-265P
    [33] D G Roberson, D J Stilwell. Control of an autonomous underwater vehicle platoon with aswitched communication network.2005American Control Conference, Portland, OR, USA,2005:4333-4338P
    [34]吴正平,关治洪,吴先用.基于一致性理论的多机器人系统队形控制.控制与决策,2007,22(11):1241-1244页
    [35] Sepulchre R, Paley D A, Leonard N E. Stabilization of planar collective motion: all-to-allcommunication. IEEE Trans. Automat. Control,2007,52(5):811–824P
    [36] Sepulchre R, Paley D A, Leonard N E. Stabilization of planar collective motion with limitedcommunication. IEEE Transactions on Automatic Control,2008,53(3):706-719P
    [37] Arranz L B, Seuret A, de Wit C C. Translation control of a fleet circular formation of AUVsunder finite communication range. Joint48th IEEE Conference on Decision and Controland28th Chinese Control Conference, Shanghai, China,2009:8345-8350P
    [38] Cheng L, Wang Y J,Fault tolerance for communication-based multirobot formation.Proceedings of the Third International Conference on Machine Learning and Cybernetics,Shanghai, China,2004:127-132P
    [39] Rajala A G, Edwards D B, O’Rourke M. Collaborative behavior for vehicle replacement inAUV formations. Proceedings of the2005ASME International Mechanical EngineeringCongress and Exposition, Orlando, Florida,2005:1-9P
    [40]向先波.二阶非完整性水下机器人的路径跟踪与协调协作控制研究.华中科技大学博士学位论文,2010:9页
    [41] Olfati-Saber R, Murray R M. Consensus protocols for networks of dynamic agents.Proceedings of the2003American Control Conference,2003, Volume:2, Page(s):951-956P
    [42] Olfati-Saber R. Flocking for multi-agent dynamic systems: algorithms and theory. IEEETransactions on Automatic Control,2006,51(3):401-420P
    [43] Ren W, Beard R W. Consensus seeking in multiagent systems under dynamically changinginteraction topologies. IEEE Transactions on Automatic Control,2005,50(5):655-661P
    [44] Ketema Y. Stability of formations with delays in information exchange. Proceedings of the44th IEEE Conference on Decision and Control, and the European Control Conference2005Seville, Spain,2005:7072-7077P
    [45] Liu ChengLin, Tian YuPing. Formation control of second-order dynamic agents withheterogeneous communication delays. Proceedings of the27th Chinese Control Conference,Kunming, Yunnan, China,2008:536-540P
    [46] Ghabcheloo R, Aguiar A P, Pascoal A, Silvestre C. Synchronization in multi-agent systemswith switching topologies and non-homogeneous communication delays. Proceedings of the46th IEEE Conference on Decision and Control, New Orleans, LA, USA,2007:12-14P
    [47] Lin P, Jia Y M, Du J P, Yu F. Distributed leadless coordination for networks ofsecond-order agents with time-delay on switching topology.2008American ControlConference, Westin Seattle Hotel, Seattle, Washington, USA,2008:1564-1569P
    [48] Sun Y G, Wang L. Consensus of multi-agent systems in directed networks with nonuniformtime-varying delays. IEEE Transaction on Automatic Control,2009,54(7):1607-1613P
    [49] Münz U, Papachristodoulou A, Allg wer F. Nonlinear multi-agent system consensus withtime-varying delays. Proceedings of the17th World Congress, The International Federationof Automatic Control, Seoul, Korea,2008:1522-1527P
    [50] Münz U, Papachristodoulou A, Allgower F. Delay-dependent rendezvous and flocking oflarge scale multi-agent systems with communication delays. Proceedings of the47th IEEEConference on Decision and Control. Piscataway: IEEE Press,2008:2038-2043P
    [51] Wachter L M, Ray L E. Stability of potential function formation control withcommunication and processing delay.2009American Control Conference, Hyatt RegencyRiverfront, St. Louis, MO, USA,2009:2997-3004P
    [52] Secchi C, Fantuzzi C. Formation control over delayed communication networks.2008IEEEInternational Conference on Robotics and Automation, Pasadena, CA, USA,2008:563-568P
    [53] Zhihua Qu, Jing Wang, Richard A. Hull, et al. Cooperative control design and stabilityanalysis for multi-agent systems with communication delays. Proceedings of the2006IEEEInternational Conference on Robotics and Automation, Orlando, Florida,2006:970-975P
    [54] Turner R M, Turner E H. Self-organization and reorganization of multi-AUV systems:CoDA project overview. In IEEE/OES Autonomous Underwater Vehicles2004(AUV'04),1-12P
    [55] Albus J S, Lumia R, Fiala J, Wavering A. NASREM The NASA/NBS standard referencemodel for telerobot control system architecture. Gaithersburg, MD: National Bureau ofStandards,1987
    [56] Haraksim R, Brignone L, Opderbecke J. Multiple AUV control in an operational context: aleader-follower approach. OCEANS2009-EUROPE,2009, Bremen2009:1–6P
    [57] Sotzing C C, Evans J, Lane D M. A multi-agent architecture to increase coordinationefficiency in multi-AUV operations. OCEANS2007-EUROPE, Aberdeen,2007:1-6P
    [58]常文君,由光鑫,庞永杰.基于混合体系结构的多水下机器人协调控制体系.中国海洋平台,2002,17(3):12-16页
    [59]黎章,王晨,邵金燕,范瑞峰,谢广明,王龙.一种多水下机器人协作控制系统.北京大学,2009,专利
    [60] Arrichiello F, Das J, Heidarsson H, et al. Multi-robot collaboration with range-limitedcommunication: experiments with two underactuated ASVs. Field and Service Robotics.Howard A, Iagnemma K, Kelly A (Eds.), Springer Tracts in Advanced Robotics,Springer-Verlag,2010,60:443-453P
    [61] Dias M B, Zlot R M, Kalra N, Stentz A. Market-based multi-robot coordination: A surveyand analysis. Carnegie Mellon University, Robotics Institute, Tech Report,CMU-RI-TR-05-13,2005
    [62] Bonabeau E, Dorigo M, Theraulaz G. Swarm intelligence: From natural to artificial systems.Oxford: Oxford University Press,1999
    [63] Owen H, Melhuish C. Stigmergy, self-organization, and sorting in collective robotics.Artificial Life,1999,5(2):173-202P
    [64] Ding Y Y, He Y, Jiang J P. Multi-robot cooperation method based on the ant algorithm.Proceedings of the2003IEEE Swarm Intelligence Symposium,2003:14–18P
    [65] Zhang D D, Xie G M, Yu J Z, Wang L. Adaptive task assignment for multiple mobilerobots via swarm intelligence approach. Robotics and Autonomous Systems,2007,55(7):572–588P
    [66] Miller D, Dasgupta P, Judkins T.Distributed task selection in multi-agent based swarmusing heuristic strategies. The2nd International Workshop on Swarm Robotics, SAB2006.Rome: Springer-Verlag,2007:158-172P
    [67] Trianni V, Dorigo M. Mergent collective decisions in a swarm of robots. In Proceedings ofthe2005IEEE Swarm Intelligence Symposium (SIS2005),2005:241-248P
    [68] Trianni V. Emergent collective decisions through self-organisation. Evolutionary SwarmRobotics, Springer Berlin/Heidelberg,2008,108:137-145P
    [69]黎萍,杨宜民.多机器人系统任务分配的研究进展.计算机工程与应用,2008,44(17):201-205,227页
    [70] Smith R. The contract net protocol: High level communication and control in a distributedproblem solver. IEEE Transactions on Systems, Man, and Cybernetics,1980,12:1104-1113P
    [71] Lemarie T, Alami R, Lacroix S. A distributed task allocation scheme in multi-UAV context.IEEE Intl. Conf. on Robotics and Automation,2004
    [72]肖坤,由光鑫,姜大鹏,庞永杰.多AUVS协作分布式控制.哈尔滨工程大学学报,2007,28(5):491-495页
    [73] Sariel S, Balch T, Stack J. Empirical evaluation of auction-based coordination of AUVs ina realistic simulated mine countermeasure task. Distributed Autonomous Robotic Systems7,Springer Japan,2006:197-206P
    [74] Sariel S, Balch T, Erdogan N. Naval mine countermeasure missions-a distributed,incremental multirobot task selection scheme. Robotics&Automation Magazine, IEEE,2008,15(1):45-52P
    [75] Parker L. The effect of action recognition and robot awareness in cooperative robotic teams.In: Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS), Los Alamitos, CA,1995,1:212-219P
    [76] Pearce J L, Rybski P E, Stoeter S A, Papanikolopoulos N. Dispersion behaviors for a teamof multiple miniature robots. In: Proc. of the IEEE Intl. Conf. on Robotics and Automation(ICRA), Taipei,2003
    [77] Howard A, Mataric M J, Sukhatme G S. Mobile sensor network deployment using potentialfields: A distributed, scalable solution to the area coverage problem. Distrib. Auton. Robot.Syst.2002,5:299-308P
    [78] Isaacs M., Anderson M, Ashworth S, Blackburn-Lynch J, Bynum B, Pearce J, Pemberton C.Breaking up is hard to do-dispersion: from design to implementation. In: Proc. of the IEEEIntl. Conf. on Robotics and Automation (ICRA), Orlando, FL,2006
    [79] Evans J, Sotzing C C, Patrón P, Lane D. Cooperative planning architectures formulti-vehicle autonomous operations. In Proceedings of the1st SEAS DTC TechnicalConference.2006:1-6P
    [80] Anderson M, Papanikolopoulos N. Implicit cooperation strategies for multi-robot search ofunknown areas. J Intell Robot Syst,2008,53:381–397P
    [81] Meng Y, Nickerson J V, Gan J. Multi-robot aggregation strategies with limitedcommunication. Proceedings of the2006IEEE/RSJ International Conference on IntelligentRobots and Systems, Beijing, China,2006:2691-2696P
    [82] Smith S L, Bullo F. Target assignment for robotic networks: asymptotic performance underlimited communication. In American Control Conference, New York, NY,2007:1155-1160P
    [83] Rongier P, Liegeois A. Analysis and prediction of the behavior of one class of multipleforaging robots with the help of stochastic Petri nets. In Proc. IEEE Int. Conf. on Systems,Man, and Cybernetics (SMC’99),1999, Tokyo, Japan,1999,5:143-148P
    [84] Sheng W H, Yang Q Y. Peer-to-peer multi-robot coordination algorithms: Petri net basedanalysis and design. Proceedings of the2005IEEE/ASME International Conference onAdvanced Intelligent Mechatronics, Monterey, California, USA,2005:1407-1412P
    [85]康小东,李一平.基于时延Petri网的多UUV系统的任务分配策略.2007年首届仪表、自动化与先进集成技术大会,2007年首届仪表、自动化与先进集成技术大会论文汇编,2007:614-617页
    [86] Leonard N E, Robinson A. Adaptive sampling and forecasting plan, AOSN-Ⅱ MB’03Project,2003
    [87] Sotzing C C, Lane D M. Improving the coordination efficiency of multiple AUV operationsusing prediction of intent.3rd SEAS DTC Technical Conference-Edinburgh2008
    [88] Smith R N, Chao Y, Jones B H, et al. Trajectory design for autonomous underwatervehicles based on ocean model predictions for feature tracking. The7th InternationalConference on Field and Service Robots (FSR2009), MIT Campus, Cambridge,Massachusetts, USA,2009:1-10P
    [89]张铭钧,段群杰.基于神经网络的水下机器人运动预测控制方法.中国造船,2001,42(3):43-51页
    [90]严浙平,陈涛,秦政,周佳加.灰色动态预测在AUV传感器故障诊断中的应用.传感技术学报,2008,21(6):1002-1006页
    [91]洪晔,边信黔.基于部分可观马氏决策的AUV全局路径规划.计算机仿真,2007,24(6):146-149页
    [92]徐建安,任立国,杨立平,张铭钧.水下机器人广义预测控制算法及能耗问题研究.控制理论与应用,2009,26(10):1148-1150页
    [93] Lafferriere G, Williams A, Caughman J, Veerman J J P. Decentralized control of vehicleformations. System&Control Letters,2005,54(9):899-910P
    [94]郑军,颜文俊.一类分布式队形控制及其稳定性分析.自动化学报,2008,34(9):1107-1112页
    [95] Diamrogonasa D V, Johansson K H. Stability analysis for multi-agent systems using theincidence matrix: quantized communication and formation control. Automatica,2010,46(4):695-700P
    [96] Yang B, Fang H J. Forced consensus in networks of double integrator systems with delayedinput. Automatica,2010,46(3):629-632P
    [97] Seuret A, Dimarogonas D V, Johansson K H. Consensus of double integratormulti-agents under communication delay.8th IFAC Workshop on Time Delay Systems,Sinaia, Romania,2009
    [98]刘成林,田玉平.具有不同通信时延的多个体系统的一致性.东南大学学报(自然科学版),2008,38(1):170-174页
    [99] Lin Peng, Jia Yingmin. Consensus of second-order discrete-time multi-agent systems withnonuniform time-delays and dynamically changing topologies. Automatica,2009,45(9):2154-2158.
    [100] Lin Z Y, Broucke M, Francis B. Local control strategies for groups of mobile autonomousagents. IEEE Transactions on Automatic Control,2004,49(4):622-629P
    [101] Jadbabaie A, Lin J, Morse A. Coordination of groups of mobile autonomous agents usingnearest neighbor rules. IEEE Transactions. On Automatic Control,2003,48:988-1001P
    [102]金久才,张杰,王岩峰,官晟.自主水下航行器离散反馈避碰设计及仿真.海洋技术,2009,28(3):1-4页
    [103]杨波,方华京.具有通信约束的分布式水下航行器群编队控制.华中科技大学学报:自然科学版,2009,37(2):57-60页
    [104]周绥平,陈宗基.自适应DR算法研究.航空学报,1996,17(4):498-502页
    [105]何小贤,朱云龙,王玫.群体智能中的知识涌现与复杂适应性问题综述研究.信息与控制,2005,4(5):560-566页
    [106] Steels L. Cooperation between distributed agents through self-organisation. In Demazeau Y.and Müller J P, editors, Decentralized Artificial Intelligence,1990:175–196P
    [107] Bjerknes J D, Winfield A F, Melhuish C, Lane C. An analysis of emergent taxis in awireless connected swarm of mobile robots. Proceedings of the2007IEEE SwarmIntelligence Symposium (SIS2007), Hawaii,2007:45-52P
    [108] Pugh J, Martinoli A. Distributed adaptation in multi-robot search using particle swarmoptimization. The10th International Conference on the Simulation of Adaptive Behavior.Osaka, Japan,2008:393-402P
    [109] Dorigo M, Tuci E. The SWARM-BOTS projectA. Proceedings of the First InternationalWorkshop on Swarm Robotics at SAB2004. Springer Verlag, Berlin, Germany,2004:26-40P
    [110] Payton D, Daily M. Pheromone robotics. Autonomous Robots,2001,11:319-324P
    [111] Seyfried J, Szymanski M, Bender N, et al. The Ⅰ-Swarm project: intelligence small worldautonomous robots for micromanipulation. Proceedings of the SAB Workshop on SwarmRobotics. Santa Monica, USA,2005:70-83P
    [112] Labella T H. Division of labour in groups of robots:[dissertation]. Bruxelles: UniversiteLibre de Bruxelles,2006-2007
    [113] Jones C, Mataric M J. Adaptive division of labor in large-scale minimalist multi-robotsystems. Proceedings of the2003IEEE/RSJ International Conference on IntelligentBruxelles Robots and Systems, Las Vegas, Nevada,2003,1969-1974P
    [114] D de Oliveira, P R Ferreira, Ana L C Bazzan. A swarm based approach for task allocationin dynamic agents organizations. Proceedings of the Third International Joint Conference onAutonomous Agents and Multiagent Systems,2004:1252-1253P
    [115] Borzello E, Merkle L D. Multi-agent cooperation using the ant algorithm with variablepheromone placement. The2005IEEE Congress on Evolutionary Computation,2005,2:1232-1237P
    [116] Schmickl T, Crailsheim K. Trophallaxis within a robotic swarm: bio-inspiredcommunication among robots in a swarm. Autonomous Robot.2008,25:171–188P
    [117] Viscidoa S V, Parrish J K, Grunbaum D. The effect of population size and number ofinfluential neighbors on the emergent properties of fish schools, Ecological Modeling,2005:347-363P
    [118]班晓娟,宁淑荣,涂序彦.人工鱼群高级自组织行为研究.自动化学报,2008,34(10):1327-1332页
    [119]赵建.鱼群集群行为的建模与仿真.太原科技大学硕士学位论文,2008:12-21页
    [120]石凯,田宇,俞建成,刘健.基于栅格地图的多化学羽流源定位.仪器仪表学报(supl.),2008,29(4):390-394页
    [121]张健华,王文龙,李文健,庄天勇,陈丽玲.家白蚁(Coptotermes f ormosanus Shiraki)交哺行为的分析.华中师范大学学报(自然科学版),2003,37(1):90-92,98页
    [122] Kubo M, Melhuish C. Robot trophallaxis: managing energy autonomy in multiple robots.Proceedings of Towards Autonomous Robotic Systems. Cochester, United Kingdom,2004:1-8P
    [123] Ngo T D, Schi ler H. Randomized robot trophallaxis: from concept to implementation.IEEE International Conference on Systems, Man and Cybernetics.2007:208-213P
    [124]姜健,闫继宏,臧希喆,赵杰.基于交哺行为的多机器人任务一致性保持.计算机工程与应用,2008,44(26):1-4页
    [125]陈卫东,李振海,席裕庚.分布式多自主机器人系统冲突及其消解策略的实例研究.系统仿真学报,2002,14(10):1288-1293页
    [126] Liu W G, Winfield A, Jin S, et al. Strategies for energy optimisation in a swarm of foragingrobots. Swarm Robotics, Rome, Italy,2007:14-26P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700