用户名: 密码: 验证码:
基于Volterra级数的射频功率放大器非线性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:A Volterra-Series-Based Nonlinear Analysis of Radio Frequency Power Amplifier
  • 作者:张晓东
  • 论文级别:博士
  • 学科专业名称:声学
  • 学位年度:2013
  • 导师:程建春
  • 学科代码:070206
  • 学位授予单位:南京大学
  • 论文提交日期:2013-01-08
摘要
随着无线技术的发展,通讯速率越来越快,无线通信系统对射频功率放大器的线性度要求也越来越高。设计高效率的线性功率放大器已经成为无线发射系统中的一项关键技术。
     传统的通过功率回退提高功率放大器线性度的方法,大大牺牲了功率放大器的功率附加效率。而目前新型的线性化技术都需要通过额外的电路来改善功率放大器的线性,增加了系统的复杂性。本论文针对常用的AB类射频功率放大器,研究如何在不增加系统复杂性的前提下,提升功放的线性度。
     Volterra级数法是一种有效的非线性分析方法。Volterra核函数具有鲜明的物理意义,可以进行频域分析,非常切合工程技术领域的实际。本文以Volterra级数为理论基础,根据功率放大器的特点,针对功放中的非线性元件,总结出一套完整的分析技术。利用该分析技术,获得放大器电路的系统行为模型。根据系统的行为模型,在不增加额外电路和系统复杂度的情况下,研究功率放大器的匹配电路、补偿网络和偏置电路对线性度的影响,提出改善线性度的设计方法,从而改善功率放大器自身的线性度。
     实验结果验证了本文提出的设计方法的有效性:1、在共射结构放大器中,通过匹配电路的设计,优化谐波负载阻抗,使得放大器3阶互调IM3改善了6dB以上。2、在Cascode结构放大器中,通过补偿网络的设计,将放大器3阶互调截止点OIP3提高了3dB。3、通过研究偏置电路与放大器调幅-调幅(AM-AM)性能的关系,得到了最优偏置电路的解析式,从而简化了放大器的设计和调测过程,缩短了设计周期。
With the development of wireless communication, the communication speed becomes faster than before. Based on the high speed transmission scheme of the communication system, a strict requirement for the power amplifier is linearity. The wireless transmission system increasing pushes the demands for the linearity of RF power amplifier. To design a linear power amplifier with high efficiency has become a key technology.
     Traditional power back-off method is able to improve the power amplifier's linearity, but it brings an obvious sacrifice on power added efficiency. The novel methods enhance the linearity, however, add complexity by additional circuits. Based on the widely used class AB amplifier, this thesis studies the technique to improve the linearity avoid adding system complexity.
     Volterra series theory is an effective method to analyze nonlinear behavior. Volterra kernel functions have a definite physical meaning in both time-domain and frequency-domain. Therefore Volterra series method is a suitable option for engineering application. Based on the power amplifier's characteristics, this thesis sums up a completed set of analysis technique using Volterra Series theory. And this analysis technique is used to develop the system behavior model of the amplifier circuits. The matching circuits, compensation network and bias circuits are then studied by this mean.
     Experimental results verified the effectiveness of this design method.
     1. In the research of the common emitter amplifier, IM3(3rd order Intermodulation) is suppressed by more than6dB with the design in harmonic load impedance of output matching network.
     2. In the research of the cascode amplifier, OIP3(Output3rd Order Intercept Point) is improved by3dB with the design of RLC compensation network.
     3. In Class AB power amplifier design, the best bias circuit for the balance between efficiency and linearity can be calculated by using the Volterra technique. An analytic expression between the bias circuit and AM-AM is achieved in design stage, so the period of power amplifier's design and experiment can be shortened.
引文
[1]S.C.Cripps. RF Power Amplifiers for Wireless Communication [M]. Artech House Microwave Library,1999
    [2]S.C.Cripps. Advanced Techniques in RF Power Amplifier Design [M]. Artech House Microwave Library,2002
    [3]H.S.Black. Translating System. U.S. Patent 1686792, Oct 1928
    [4]H.S.Black. Wave Translation System U.S. Patent 2102671, Dec 1937
    [5]E.Ballesteros, F.Perez, J.Perez. Analysis and Design of Microwave Linearized Amplifiers Using Active Feedback. IEEE Transactions on Microwave Theory and Techniques [J], Mar 1988, 36(3):499-504
    [6]V.Petrovic. Reduction of Spurious Emission from Radio Transmitters by Means of Modulating Feedback. IEE Conference on Radio Spectrum Conservation Techniques Proceedings [C], Sep 1983,44-49
    [7]M.Boloorian, J.P.McGeehan. The Frequency-Hopped Cartesian Feedback Linear Transmitter. IEEE Transactions on Vehicular Technology [J], Nov 1996,45(4):688-706
    [8]A.A.Abidi. General Relations Between IP2, IP3, and Offsets in Differential Circuits and the Effects of Feedback. IEEE Transactions on Microwave Theory and Techniques [J], May 2003, 51(5):1610-1612
    [9]艾渤,杨知行,潘长勇等.高功率放大器线性化技术研究.微波学报[J],Feb 2007,23(1):62-70
    [10]Y.K.G.Hau, V.Postoyalko, J.R.Richardson. Sensitivity of Distortion Cancellation in Feedforward Amplifiers to Loops Imbalances. IEEE MTT-S International Microwave Symposium Digest [C], Jun 1997,3:1695-1698
    [11]Y.K.GHau, V.Postoyalko, J.R.Richardson. Effects of Impedance Mismatch and Imperfect Isolation on Distortion Cancellation in Feedforward Amplifiers. IEE Proceedings on Circuits, Devices and Systems [J], Feb 1998,145(1):35-39
    [12]S.Kang, I.Lee, K.Yoo. Analysis and Design of Feedforward Power Amplifiers. IEEE MTT-S International Microwave Symposium Digest [C], Jun 1997,3:1519-1522
    [13]E.E.Eid, F.M.Ghannouchi, F.Beauregard. Optimal Feedforward Linearization System Design. Microwave Journal [J], Nov 1995,38(11):78-86
    [14]Y.Xiang, G.Wang. Doherty Power Amplifier with Feedforward Linearization. Microwave Conference [C], Dec 2009,1621-1624
    [15]M.Faulkner, M.Johansson. Adaptive Linearization Using Predistortion Experimental Results. IEEE Transactions on Vehicular Technology [J], May 1994,43(2):323-332
    [16]M.Ghaderi, S.Kumar. Power Amplifier Adaptive Linearization Using Predistortion with Polynomial Functions. Microwave Conference [C], Sep 1992,2:1125-1130
    [17]L. Sundstrom, M. Faulkner, M. Johansson. Quantization Analysis and Design of a Digital Predistortion Linearizer for RF Power Amplifiers, IEEE Transactions on Vehicular Technology [J],Nov.1996,45(4):707-719
    [18]J.K.Cavers. The Effect of Quadrature Modulator and Demodulator Error on Adaptive Digital Predistorters for Amplifier Linearization. IEEE Transactions on Vehicular Technology [J], May 1997,46(2):456-466
    [19]A.N.D'Andrea, V.Lottici, R.Reggiannini. RF Power Amplifier Linearization through Amplitude and Phase Predistortion. IEEE Transactions on Communications [C], Nov 1996, 44(11):1476-1484
    [20]M.Faulkner. Amplifier Linearization Using RF Feedback and Feedforward Techniques. IEEE Transactions on Vehicular Technology [J], Feb 1998,47(1):209-215
    [21]T.Sowlati, D.Rozenblit, R.Pullela, M. Damgaard, E.McCarthy, D.Koh, D.Ripley, F. Balteanu, I. Gheorghe. Quad-Band GSM/GPRS/EDGE Polar Loop Transmitter. IEEE Journal of Solid-State Circuits [J], Dec 2004,39(12):2179-2189
    [22]M.A.Briffa, M.Faulkner. Stability Analysis of Cartesian Feedback Linearisation for Amplifiers with Weak Nonlinearities. IEE Proceedings Communications [J], Aug 1996,143(4): 212-218
    [23]S.Pipilos, Y.Papananos, N.Naskas, M.Zervakis, J.Jongsma, T.Gschier, N.Wilson, J.Gibbins, B.Carter, G.Dann. A Transmitter IC for TETRA Systems Based on a Cartesian Feedback Loop Linearization Technique. IEEE Journal of Solid-State Circuits [J], Mar 2005,40(3):707-718
    [24]S.G.Kang, I.K.Lee, K.S.Yoo. Analysis and Design of Feedforward Power Amplifier, IEEE MTT-S International Microwave Symposium Digest [C], Jun 1997,3:1519-1522
    [25]L.Sundstrom, M.Faulkner, M.Johansson. Quantization Analysis and Design of a Digital Predistortion Linearizer for RF Power Amplifiers. IEEE Transactions on Vehicular Technology[J], Nov 1996,45(4):707-719
    [26]W.H.Doherty. A New High Efficiency Power Amplifier for Modulated Waves. Proceedings of the Institute of Radio Engineers [J], Sep 1936,24(9):1163-1182
    [27]N. Srirattana, A. Raghavan, D. Heo, P. E. Allen, J. Laskar. Analysis and Design of a High-Efficiency Multistage Doherty Power Amplifier for Wireless Communications. IEEE Transactions on Microwave Theory and Techniques [J],2005,53(3):852-860
    [28]M.Nick, A.Mortazawi. Adaptive Input-Power Distribution in Doherty Power Amplifiers for Linearity and Efficiency Enhancement. IEEE Transactions on Microwave Theory and Techniques [J], Nov 2010,58(11):2761-2771
    [29]J.Kim, B.Fehri, S.Boumaiza, J.Wood. Power Efficiency and Linearity Enhancement Using Optimized Asymmetrical Doherty Power Amplifiers. IEEE Transactions on Microwave Theory and Techniques [J], Feb 2011,59(2):425-434
    [30]C.Chen, K.Qin. The Research of Defected Ground Structure Application in Doherty Power Amplifier. International Conference on Microwave and Millimeter Wave Technology [C]. May 2010:467-469
    [31]L.R.Kahn. Single-Sideband Transmission by Envelope Elimination and Restoration. Proceedings of the IRE [J], Jul 1952,40(7):803-806
    [32]M.Vasic, O.Garcia, J.A.Oliver, P.Alou, D.Diaz, J.A.Cobos, A.Gimeno, J.M.Pardo, C.Benavente, F.J.Ortega. Efficient and Linear Power Amplifier Based on Envelope Elimination and Restoration. IEEE Transactions on Power Electronics [J], Jan 2012,27(1):5-9
    [33]K. Chen, K.A. Morris and M.A. Beach. Combining Envelope Elimination and Restoration and Predistortion Techniques for Use in IEEE802.11g Systems. IET Microwaves, Antennas & Propagation [J], Aug 2007, 1(4):832-838
    [34]P.Fedorenko, J.S.Kenney. Analysis and Suppression of Memory Effects in Envelope Elimination and Restoration (EER) Power Amplifiers. IEEE/MTT-S International Microwave Symposium [C], Jun 2007:1453-1456
    [35]D.C.Cox. Linear Amplification with Nonlinear Components. IEEE Transactions on Communications [J], Dec 1974,22(12):1942-1945
    [36]D.C.Cox, R.P.Leck. Component Signal Separation and Recombination for Linear Amplification with Nonlinear Components. IEEE Transactions on Communications [J], Nov 1975,23(11):1281-1287
    [37]B.Stengel, W.R.Eisenstadt. LINC Power Amplifier Combiner Method Efficiency Optimization. IEEE Transactions on Vehicular Technology [J], Jan 2000,49(1):229-234
    [38]L.Sundstrom. Spectral Sensitivity of LINC Transmitters to Quadrature Modulator Misalignments. IEEE Transactions on Vehicular Technology [J], Jul 2000,49(4):1474-1487
    [39]K.Takahashi, S.Yamanouchi, T.Hirayama, K.Kunihiro. An Envelope Tracking Power Amplifier Using an Adaptive Biased Envelope Amplifier for WCDMA Handsets. Radio Frequency Integrated Circuits Symposium [C], Apr 2008:405-408
    [40]H.Harju, T.Rautio, S.Hietakangas, T.Rahkonen. Envelope Tracking Power Amplifier with Static Predistortion Linearization. European Conference on Circuit Theory and Design [C], Aug 2007:388-391
    [41]D.Kim, D.Kang, J.Choi, J.Kim, Y.Cho, B.Kim. Optimization for Envelope Shaped Operation of Envelope Tracking Power Amplifier. IEEE Transactions on Microwave Theory and Techniques [J], Jul 2011,59(7):1787-1795
    [42]M.Hassan, L.E.Larson, V.W.Leung, D.F.Kimball, P.M.Asbeck. A Wideband CMOS/GaAs HBT Envelope Tracking Power Amplifier for 4G LTE Mobile Terminal Applications. IEEE Transactions on Microwave Theory and Techniques [J], May 2012,60(5):1321-1330
    [43]M.Hassan, L.E.Larson, V.W.Leung, P.M.Asbeck. A Combined Series-Parallel Hybrid Envelope Amplifier for Envelope Tracking Mobile Terminal RF Power Amplifier Applications. IEEE Journal of Solid-State Circuits [J], May 2012,47(5):1185-1198
    [44]M.Hassan, M.Kwak, V.W.Leung, C.Hsia, J.J.Yan, D.F.Kimball, L.E.Larson, P.M.Asbeck. High Efficiency Envelope Tracking Power Amplifier with Very Low Quiescent Power for 20 MHz LTE. Radio Frequency Integrated Circuits Symposium [C], Jun 2011:1-4
    [45]X.Zhang, L.E.Larson, P.M.Asbeck, P.Nanawa. Gain/Phase Imbalance Minimization Techniques for LINC Transmitters. IEEE Transactions on Microwave Theory and Techniques [J], Dec 2001,49(12):2507-2516
    [46]F.Wang, D.F.Kimball, J.D.Popp, A.H.Yang, D.Y.Lie, P.M. Asbeck, L.E.Larson, An Improved Power-Added Efficiency 19-dBm Hybrid Envelope Elimination and Restoration Power Amplifier for 802.11 g WLAN Applications. IEEE Transactions on Microwave Theory and Techniques [J], Dec 2006,54(12):4086-4099
    [47]W.T.Thornton, L.E.Larson. Improved Design Techniques for the Realization of Linear Power Amplifiers for Wireless Transmitters. Southwest Symposium on Mixed-Signal Design [C], 1999:151-155
    [48]M.Helaoui, F.M.Ghannouchi. Linearization of Power Amplifiers Using the Reverse MM-LINC Technique. IEEE Transactions on Circuits and Systems [J], Jan 2010,57(1):6-10
    [49]S.Bensmida, O.Hammi, F.M.Ghannouchi. High Efficiency Digitally Linearized GaN Based Power Amplifier for 3G Applications. IEEE Radio and Wireless Conference [C], Jan 2008:419-422
    [50]S.Jung, O.Hammi, F.M.Ghannouchi. Design Optimization and DPD Linearization of GaN-Based Unsymmetrical Doherty Power Amplifiers for 3G Multicarrier Applications. IEEE Transactions on Microwave Theory and Techniques [J], Sep 2009,57(9):2105-2113
    [51]O.Hammi, S.Boumaiza, F.M. Ghannouchi. On the Robustness of the Predistortion Function Synthesis for Highly Nonlinear RF Power Amplifiers Linearization. European Microwave Conference [C], Sep 2006:145-148
    [52]W.Chen, S.A.Bassam, X.Li, Y.Liu, K.Rawat, M.Helaoui, F.M.Ghannouchi, Z.Feng. Design and Linearization of Concurrent Dual-Band Doherty Power Amplifier with Frequency-Dependent Power Ranges. IEEE Transactions on Microwave Theory and Techniques [J], Oct 2011,59(10):2537-2546
    [53]I.Kim, Y.Y.Woo, J.Kim, J.Moon, J.Kim, B.Kim. High-Efficiency Hybrid EER Transmitter Using Optimized Power Amplifier. IEEE Transactions on Microwave Theory and Techniques [J], Nov 2008,56(11):2582-2593
    [54]B.Shin, J.Cha, J.Kim, Y.Y. Woo, Jaehyok Yi, and Bumman Kim. Linear Power Amplifier Based on 3-Way Doherty Amplifier with Predistorter. International Microwave Symposium Digest [C], Jun 2004,3:2027-2030
    [55]J.Kim, J.Cha, I.Kim, B.Kim. Optimum Operation of Asymmetrical Cells Based Linear Doherty Power Amplifiers-Uneven Power Drive and Power Matching. IEEE Transactions on Microwave Theory and Techniques [J], May 2005,53(5):1802-1809
    [56]B.Kim, D.Kang, J.Moon, D.Kim. Digitally Enhanced Linear Power Amplifiers. Asia-Pacific Microwave Conference [C], Dec 2010:948-953
    [57]D.Yu, Y.Kim, K.Han, J.Shin, B.Kim. Fully Integrated Doherty Power Amplifiers for 5 GHz Wireless-LANs. IEEE Radio Frequency Integrated Circuits Symposium [C], Jun 2006,
    [58]B.Kim, Y.Y.Woo, Y.Yang, J.Yi, J.Nam, J.Cha. A New Adaptive Feedforward Amplifier Using Imperfect Signal Cancellation. International Conference on Microwave and Millimeter Wave Technology [C], Aug 2002:928-931
    [59]牛旭,滑育楠,胡善文,张晓东,高怀,孙晓红.一款新型基于推挽式结构的射频功率放大器.电子器件[J],Dec 2010,33(6):696-699
    [60]J.Kang, K.Lee, J.Yoon, Y.Chung, S.Hwang, B.Kim. Differential CMOS Linear Power Amplifier with 2nd Harmonic Termination at Common Source Node. IEEE Radio Frequency Integrated Circuits Symposium [C], Jun 2005:443-446
    [61]J.F.Sevie. Analysis of GaAs MESFET Spectrum Regeneration Driven by a n/4-DQPSK Modulated Source. IEEE MTT-S International Microwave Symposium [C], May 1995:1375-1378
    [62]S.Narayanan. Application of Volterra Series to Intermodulation Distortion Analysis of Transistor Feedback Amplifiers. IEEE Transactions on Circuit Theory [J], Nov 1970,17(4): 518-527
    [63]H.Zhang, X.Fan, E.S.Sinecio. A Low-power, Linearized, Ultra-wideband LNA Design Technique. IEEE Journal of Solid-State Circuits [J], Feb 2009,44(2):320-330
    [64]S.M.Sze. Physics of Semiconductors Devices [M]. Second Edition. New York:John Wiley &Sons,1981.
    [65]M.Finetti, A.Scorzoni, GSoncini. Lateral Current Crowding Effects on Contact Resistance Measurement in Four Terminal Resistor Test Patterns. IEEE on Electron Devices Letters [J], Dec 1984,5(12):524-526
    [66]E.P.Vandamme, L.K.J.Vandamme. Current Crowding and Its Effect on 1/f Noise and Third Harmonic Distortion-a Case Study for Quality Assessment of Resistors. Microelectronics Reliability [J], Nov 2000,40(11):1847-1853
    [67]C.McAndrew, J.Seitchik, D.Bowers, M.Dunn, M.Foisy, I.Getreu, M.McSwain, S.Moinian, J.Parker, P.Wijnen, L.Wagner. VBIC95:An Improved Vertical, IC Bipolar Transistor Model. Bipolar/BiCMOS Circuits and Technology Meeting [C], Oct 1995:170-177
    [68]C.MacAndrew, L.W.Nagel. Early Effect Modeling in SPICE. IEEE Journal on Solid-State Circuits [J], Jan 1996,31(1):136-138.
    [69]N. Rinaldi. Small-Signal Operation of Semiconductor Devices Including Self-Heating, with Application to Thermal Characterization and Instability Analysis. IEEE Transactions on Electron Devices [J], Feb 2001,48(2):9223-9331
    [70]Z.M.Mao, X.Luo, S.Liu. Compact Thermal Model for Microchannel Substrate with High Temperature Uniformity Subjected to Multiple Heat Sources. IEEE Electronic Components and Technology Conference [C], May 2011:1662-1672
    [71]N.L.Wang, W.J.Ho, J.A.Higgins. AlGaAs/GaAs HBT Linearity Characteristics. IEEE Transactions on Microwave Theory and Techniques [J], Oct 1994,42(10):1845-1850
    [72]H. Kroemer, Heterostructure Bipolar Transistors and Integrated Circuits. Proceedings of the IEEE [J]. Jan 1982,70(1):13-25
    [73]M.Rudolph. Introduction to Modeling HBTs [M], Artech House,2006
    [74]J.Rogers, C.Plett. Radio Frequency Integrated Circuit Design [M], Artech House,2003
    [75]陈星弼,张庆中.晶体管原理与设计[M],电子工业出版社,第二版,2006
    [76]A.Leke, J.S.Kenney. Behavioral Modeling of Narrowband Microwave Power Amplifiers with Applications in Simulating Spectral Regrowth. IEEE MTT-S International Microwave Symposium Digest [C]. Jun 1996,3:1385-1388
    [77]S.W.Chen, W.Panton, R.Glimore. Effects of Nonlinear Distortion on CDMA Communication Systems. IEEE Transactions on Microwave Theory and Techniques [J], Dec 1996,44(12):2743-2750
    [78]S.Tenbrink, J.Speidel, R.H.Han. Iterative Demapping for QPSK Modulation. Electronics Letters [J], Jul 1998,34(15):1459-1460
    [79]W.T.Webb, R. Steel. Variable Rate QAM for Mobile Radio. IEEE Transactions on Communications [J], Jul 1995,43(7):2223-2230
    [80]J.Tuthill, A.Cantoni. Optimum Precompensation Filters for IQ Modulation Systems. IEEE Transactions on Communications [J], Oct 1999,47(10):1466-1468
    [81]K.A.Remley. Multisine Excitation for ACPR Measurements. IEEE MTT-S International Microwave Symposium Digest [C], Jun 2003,3:2141-2144
    [82]E.E.Khaled. The Theory and Practical of Software Process Improvement and Capability Determination [M], IEEE Computer Society Press, Oct 1997
    [83]V.Volterra. Theory of Functionals and of Intergral and Integro-Differential Equations [M], Dover,1959
    [84]焦李成.非线性传递函数理论与应用[M],西安电子科技大学出版社,1991
    [85]D.D.Wiener, J.F.Spina. Sinusoidal Analysis and Modeling of Weakly Nonlinear Circuits [M], Van Nostrand Reinhold,1980
    [86]D.M.Snider. A Theoretical Analysis and Experimental Confirmation of the Optimally Loaded and Overdrive RF Power Amplifier. IEEE Transactions on Electron Devices [J], Dec 1967,14(12):851-857
    [87]W.S.Kopp, S.D.Pritchette. High Efficiency Power Amplification for Microwave and Millimeter Frequencies. IEEE MTT-S International Microwave Symposium Digest [C], Jun 1989, 3:857-858
    [88]N.B.Carvalho, J.C.Pedro. Large-and Small-signal IMD Behavior of Microwave Power Amplifiers. IEEE Transactions on Microwave Theory and Techniques [J], Dec 1999,47(12): 2364-2374
    [89]M.Vaidyanathan, M.Iwamoto, L.E.Larson, P.S.Gudem, P.M.Asbeck, A Theory of High-Frequency Distortion in Bipolar Transistors. IEEE Transactions on Microwave Theory and Techniques [J], Feb 2003,51(2):448-461
    [90]W.Kim, S.Kang, K.Lee, M.Chung, J.Kang, B.Kim. Analysis of Nonlinear Behavior of Power HBTs. IEEE Transactions on Microwave Theory and Techniques [J], Jul 2002,50(7): 1714-1722
    [91]YJeon, H.Kim, M.Kim, Y.Ahn, J.Kim, J.Choi, D.Jung, J.Shin. Improved HBT Linearity With a "Post-Distortion"-Type Collector Linearizer. IEEE on Microwave and Wireless Components Letters [J]. Mar 2003,13(3):102-104
    [92]H.Zhang, H.Gao, GP.Li. Broad-Band Power Amplifier with a Novel Tunable Output Matching Network. IEEE Transactions on Microwave Theory and Techniques [J], Nov 2005, 53(11):3606-3614
    [93]J.Deng, P.S.Gudem, L.E.Larson. Linearity Analysis of SiGe HBT Amplifiers Using a Power Dependent Coefficient Volterra Technique. IEEE Radio and Wireless Conference [C], Sep 2004:479-482
    [94]K.Yamamoto, T. Shimura, T.Asada, T.Okuda, K.Mori, K.Choumei, S.Suzuki, T.Miura, S.Fujimoto, R.Hattori, H.Nakano, K.Hosogi, J.Otsuji, A.Inoue, K.Yajima, T.Ogata, Y.Miyazaki, M.Yamanouchi. A 3.2-V Operation Single-chip AlGaAs/GaAs HBT MMIC Power Amplifier for GSM900/1800 Dual-band Applications. IEEE MTT-S International Microwave Symposium Digest [C],1999,4:1397-1400
    [95]S.Zhang, P.Bretchko, J.Mokoro, R.Shumovich, R.McMorrow. A Novel Power Amplifier Module for Quad-Band Wireless Handset Applications. IEEE Transactions on Microwave Theory and Techniques [J], Nov 2003,51(11):2203-2210
    [96]R.Wang, H.Gao, A.Chatchaikarn, G. P. Li. Hetero Junction Bipolar Transistor Based Cascode Amplifier with High-freqiency Loss Compensation Network. Microwave and Optical Technology Letters [J], Oct 2009,51(10):2410-2413
    [97]M.Schetzen. Nonlinear System Modeling Based on the Wiener Theory. Proceedings of the IEEE [J], Dec 1981,69(12):1557-1573
    [98]R.Ishikawa, J.Kimura, K.Honjo. Analytic Parameter Determination for Thermal Memory Effect Compensation Circuit in Microwave InGaP/GaAs HBT Power Amplifiers. Asia-Pacific Microwave Conference Proceedings [C], Dec 2011:315-318

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700