用户名: 密码: 验证码:
从骨形态发生蛋白及其转导通路探讨补肾活血法治疗强直性脊柱炎的抗骨化作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
强直性脊柱炎(ankylosingspondylitis, AS)是一种慢性炎症性自身免疫性疾病,其病变最终会引起脊柱及外周关节(尤其是髋关节)的骨化强直,导致患者活动功能丧失,严重影响生活质量。病理性成骨是AS患者致残的主要原因,抑制或延缓骨化是AS治疗的关键。骨形态发生蛋白(bone morphogenetic proteins, BMPs)作为骨生长的启动因子,具有促进成骨细胞分化,诱导未分化间充质细胞向骨系细胞不可逆分化的能力,其中BMP-2是活性最强且能单独诱导成骨的,众多研究表明BMPs及其信号的转导在AS骨化过程中发挥着重要的作用,是探索延缓AS骨化药物和方法的重要切入点。
     强直性脊柱炎属中医学“骨痹”、“腰痛”等范畴,中医药治疗AS具有疗效好、副作用小的优势,在控制AS病情及延缓AS骨化发生方面具有一定的潜能。导师冯兴华教授是我国著名的风湿病专家,在AS治疗方面有其独到之处。本论文以总结导师处方用药经验为基础,并在其补肾活血法治疗AS学术思想的指导下,首先对补肾活血法治疗AS的疗效进行综合评价并观察其对AS患者血清中BMP-2的干预作用;而后以体外培养的AS髋关节囊成纤维细胞作为研究对象,采用中药血清药理学方法及现代分子生物学技术,观察补肾活血方药对BMP信号转导通路的影响,从临床和实验两个不同层面探讨补肾活血法治疗AS、发挥抗AS骨化作用的可能机制,进而揭示导师治疗AS临床经验的科学内涵。
     一、导师治疗AS经验总结
     通过收集、整理导师门诊治疗AS患者的病例资料,利用频数分析、聚类分析、关联规则分析的方法对导师治疗AS的用药规律进行数据挖掘,对其经验中最核心的方-证、药-证、药-症关系进行梳理归纳,总结其治疗AS的特色包括:辨病与辨证论治相结合为核心,以补肾活血法作为本病的基本治疗大法,补肾强脊汤作为治疗本病的核心处方;辨症论治为辅,体现个体化治疗思路;重视活血化瘀药的应用。
     二、临床研究
     通过前瞻性的临床研究,首先选取活动期肾虚血瘀证AS患者60例,并以健康成年人、缓解期肾虚血瘀证AS患者各30例作为对照,检测各组血清中BMP-2的浓度,记录AS患者的各项病情评价指标,通过分析各组BMP-2的浓度差异,以及BMP-2与其它实验室指标、AS病情评价指标的相关性,探讨AS患者血清中BMP-2的临床意义。
     研究结果显示:AS活动期及缓解期患者血清中BMP-2均显著高于正常组,BMP-2与实验室指标CRP、CD62P成显著正相关,BMP-2与BASDAI、 BASFI、 BASMI等AS病情评价指标呈显著正相关,与腰椎前屈、腰椎侧弯及踝间距等测量指标呈显著负相关,提示AS患者血清中BMP-2与疾病的活动度相关,且BMP-2作为促进骨形成的重要细胞因子,其在AS患者血清中的浓度增加,可能与AS患者病理性成骨,造成脊柱及外周关节骨化强直,活动功能受限有关。
     随后我们对纳入的60例活动期肾虚血瘀证AS患者进行治疗,以补肾活血立法,予口服补肾强脊汤加减作为基础治疗,并佐以穴位贴敷疗法,以4周、8周、12周作为评价点,应用国际ASAS20评价标准、BASDAI50评价标准、中医证候疗效评价等多维疗效评价体系,评价补肾活血法治疗AS的临床疗效及安全性,并观察其对血清中BMP-2的干预作用。
     研究结果显示:以补肾活血为法治疗AS的疗效确切,治疗12周后,ASAS20的达标率为85.00%,BASDAI50达标率为68.33%,中医证候疗效总有效率为91.67%;补肾活血中药对AS患者的BASDAI、 BASFI、 BASMK、病人总体评价、夜间痛、肌腱端压痛等有明显的改善作用,能够很好的降低患者的疾病活动度,并能明显改善患者的功能状况;对AS患者中轴关节、髋关节以及其它外周关节的疼痛和功能均有一定的改善作用;对AS患者的CRP、PLT、 CD62P有改善作用,体现了很好的抗炎作用;对AS患者血清中BMP-2有明显的干预作用,提示其可能通过抑制BMP-2的成骨作用从而延缓AS骨化进展;研究所采用的补肾活血综合治疗方案安全性好。
     临床研究结果验证了补肾活血法治疗AS的确切疗效,证明以补肾活血立法处方的补肾强脊汤有很好的抗炎作用以及抗AS骨化的潜能,具有广泛的推广价值,并为AS综合治疗方案的制定和优化提供良好的依据。
     三、实验研究
     实验研究以国家自然科学基金为依托,将体外培养的AS髋关节囊成纤维细胞系作为研究对象,采用中药血清药理学方法,借助Western blotting、实时定量PCR等现代分子生物学技术,以调控成骨分化的BMP/Smads信号转导通路为切入点,通过检测BMP/Smads信号分子在AS成纤维细胞中的表达情况及rhBMP-2诱导后的通路表达情况,观察补肾活血立法处方的补肾强脊颗粒含药血清对AS成纤维细胞BMP/Smads信号转导通路及rhBMP-2诱导后通路的影响,从分子信号转导层面探讨补肾活血法治疗AS、发挥抗骨化作用的可能机制。
     实验研究结果表明:AS成纤维细胞中成骨标志基因Cbfal表达明显高于正常,且存在大量的BMP特异性结合受体,Smad4呈高表达,Smadl及Smad5的磷酸化程度明显高于正常对照组,Smad6的表达量显著低于正常对照组;而外源性rhBMP-2可以促进成纤维细胞增殖,引起成骨标志基因Cbfal、 Smad4表达上调,Smadl及Smad5的磷酸化程度进一步提高。结果提示BMP/Smads信号转导通路高度活化以及通路调控机制发生紊乱,引起成骨标志基因Cbfal大量表达可能是AS成纤维细胞向成骨型分化,导致AS骨化发生的重要分子机制之一,且BMP-2可能是诱导这一通路活化,引起病理性成骨的重要细胞因子。
     实验研究结果亦表明:补肾强脊颗粒含药血清可以显著抑制AS成纤维细胞BMPRII和Smad4表达,提高Smad6表达,降低Smadl及Smad5磷酸化程度,从而减少BMP信号的下传,抑制Cbfal的表达;补肾强脊颗粒含药血清亦通过调节BMPRII、 Smad4、 Smad6的表达,以及Smadl.5的磷酸化程度,从而降低Cbfal的表达,抑制rhBMP-2对成纤维细胞向成骨型分化的诱导作用。结果提示以补肾活血立法处方的补肾强脊颗粒能够通过对BMP/Smads信号转导通路多个环节的调节抑制成纤维细胞向成骨型分化,且能明显抑制BMP-2对成纤维细胞向成骨型分化的诱导,这可能是补肾强脊颗粒发挥抗AS骨化作用,延缓AS骨化进展的重要分子机制之一
     实验研究结果从分子水平阐释了以补肾活血法立法处方的补肾强脊颗粒治疗AS的作用靶点与作用机制,从微观角度证明了补肾活血法是治疗AS的重要且有效之法。
Ankylosing spondylitis (AS) is a chronic inflammatory autoimmune disease.The disease may cause progressive ankylosis of spine and peripheral joints, leading to movement disorder or even permanent loss of activity ability, and seriously affect the patients'quality of life. The pathological osteogenesis is the main reason of cripple in AS patients, and to research drugs which can effectively delay AS ossification is an urgent need. As the start factor of bone growth, bone morphogenetic proteins (BMPs) have the functions of promoting osteoblast differentiation and inducing undifferentiated mesenchymal cells irreversibly differentiate into the bone lineage. Among BMPs, BMP-2is considered to have the strongest osteogenic capacity and can induce osteogenic differentiation alone. Many studies show that BMP signal transduction plays an important role in AS ossification which may be the breakthrough point to explore drugs preventing and treating AS ossification.
     Ankylosing spondylitis belongs to'Gubi'category of TCM.The traditional Chinese medicine is an important and effective method for the treatment of AS, which maybe has huge potential in controlling and delaying AS ossification. My tutor professor Feng Xinghua has unique features in treating AS, and this thesis based on summarizing his experiences of using prescritions for treating AS. Under the guidance of tutor's academic thinking of using the therapeutic principle of invigorating kidney and promoting blood circulation in treating AS, we firstly assessed the clinical effect of Bushenhuoxue Decoction in treating AS and observed its intervention to BMP-2in AS patients'serum. And then we established the finite fibroblast line derived from hip joint capsule of AS patients in vitro, and observed the effect of Bushenhuoxue Decoction to BMP signal transduction in fibriblasts using TCM serum pharmacology method and modern molecular biology techniques. The thesis investigated the possible mechanisms of Bushenhuoxue Decoction treanting AS and anti-ossification from clinical and experimental level, in order to reveal the scientific connotation of tutor's clinical experiments in treating AS.
     l Summary of tuor's experiences in treating AS
     To summarize professor Feng Xinghua's thinking of syndrome differentiation of treating AS by collecting the data of AS patients and analyzing his using drugs regularity using the methods of frequency analysis, association rules analysis and cluster analysis. The results of this study objectively reflected professor Feng's characteristics in treating AS as follows: Firstly, disease differentiation and syndrome differentiation combined as the core, invigorating kidney and promoting blood circulation as the basic treatment principle, and Bu-Shen-Qiang-Ji (BSQJ) Decoction as the core prescription of treating AS; Secondly, symptom differentiation as the supplement, reflected his idea of individual treatment; Thirdly, emphasis on the application of promoting blood circulation herbs.
     2Clinical Researches
     Firstly, we investigated the clinical significance of BMP-2in the serum of AS patients.60kidney deficiency with blood stasis syndrome AS patients in active period were adopted, and30healthy adults and30AS patients in disease-free period were as control. All people's BMP-2was detected and the indexes which reflect the disease activity of AS patients were recorded. And then, BMP-2concentration difference of each group, the correlation between BMP-2and other laboratory parameters, the correlation between BMP-2and the indexes which reflect the disease activity were analyzed.
     The study results showed that:The serum BMP-2of AS patients in active period and disease-free period were both significantly higher than the normal group; BMP-2was positive correlated with CRP, CD62P and the condition evaluation indexes of AS such as BASDAI, BASFI, BASMI; BMP-2was significantly negative correlated with lumbar flexion, lumbar scoliosis and ankle pitch. The results suggested that the serum BMP-2of AS patients could reflect disease activity. In addition, as the important cytokine promoting bone formation, abnormal increase of BMP-2in the serum of AS patients may be associated with pathological osteogenesis which resulting in the rigidity of spinal and peripheral joints and the limit of activity function.
     Secondly,60kidney deficiency with blood stasis syndrome AS patients in active period were treated. The patients were given Bu-Shen-Qiang-Ji Decoction and acupoint sticking therapy as adjuvant therapy, and12weeks as a course. After treatment, the effect of BSQJ decoction was evaluated by using ASAS20standard, BASDAI50standard and TCM efficacy evaluation standard, and the intervention of BSQJ decoction to BMP-2was also vobserved.The study results showed that:Invigorating kidney and promoting blood flow method treating AS was of definite clinical effect; After12weeks'treatment, ASAS20responsive ratio was85.00%, BASDAI50responsive ratio was68.33%, and the total efficiency of TCM syndrome curative effect was91.67%; Chinese medicine could significantly improve AS patients'BASDAI, BASFI, BASMI, PGA, night pain and so on, and could reduce the disease activity of AS patients, and improve their functional status; Chinese medicine could effectively reduce the pain and improve the functions of axial joints, hip joints and other peripheral joints; patients'CRP, PLT, CD62p was also improved, reflecting a good anti-inflammatory effects of Chinese medicine; Chinese medicine had significant intervention effect to serum BMP-2of AS patients, suggesting that it may delay AS ossification progress through inhibiting BMP-2's function of osteogenesis; the comprehensive treatment program used in study had good security.
     The results of clinical studies verified the exact effect of invigorating kidney and promoting blood flow method for treating AS, provied anti-inflammatory effect and anti-ossification potential of BSQJ decoction, and provided a good basis for developing and optimizing AS comprehensive treatment program.
     3Experimental Researches
     With the support from National Natural Science Foundation of China, the experimental study using AS fibroblasts cultured in vitro as the object, using TCM serum pharmacology method and techniques of western blotting and real-time PCR, taking BMP/Smads signal transduction pathway as the breakthrough point, aimed to exploring the possible mechanisms of BSQJ treanting AS and anti-ossification and revealing the scientific connotation of invigorating kidney and promoting blood flow method for treating AS, by detecting expression of BMP/Smads pathway signaling molecules in AS fibroblasts before and after rhBMP-2's inducement and observing the effect of serum containing BSQJ on BMP/Smads signal pathway of AS fibroblasts with and without rhBMP-2's inducement.
     The experimental results showed that:Expression of Cbfal in AS fibroblasts was significantly higher than that in normal fibroblasts; compared with the normal fibroblasts, there's more BMP-specific binding receptors, Smad4and less Smad6in AS fibroblasts, and the phosphorylation level of Smadl,5was higher; exogenous rhBMP-S coule promote the proliferation of fibroblasts, increasing the expression of cbfal and Smad4and enhancing the phosphorylation degree of Smadl,5. The results suggested that the high activation and regulating mechanism disorder of BMP/Smads pathway which can cause abundant expression of Cbfal and result in fibroblasts differentiate into osteoblasts maybe one of the important molecular mechanisms of AS ossification, and BMP-2was an important cytokine causing pathological osteogenesis.
     The experimental results also showed that:BSQJ-medicated serum could restrain the expression of BMPRII, Smad4, increase the expression of Smad6and decrease the phosphorylation degree of Smadl,5, affecting the transduction of BMP signal and the expression of cbfal; BSQJ-medicated serum could also decrease the expression of cbfal and inhibite rhBMP-2's inducement to fibroblasts by regulating the expression of BMPRII, Smad4,6and the phosphorylation degree of Smadl,5. The results suggested that BSQJ could suppress fibroblasts differentiate into osteoblasts by regulating BMP/Smads pathway from multiple aspects, and could significantly inhibit BMP-2's inducement to fibroblasts, which maybe one of the important anti-ossification molecular mechanisms of BSQJ.
     The experimental results explored the target and mechanism of BSQJ treating AS from the molecular level and also proved that invigorating kidney and promoting blood flow method was an important and effective methods for treating AS from microscopic view.
引文
[1]蒋明,David Yu,林孝义,等.中华风湿病学.北京:华夏出版社,2004:1010-1025.
    [2]李维,吴强HLA-B27亚型及其与强直性脊柱炎关系的研究进展.免疫学杂志,2002,18(3):S191.
    [3]胡永红,赖先阳,杨芙蓉,等.强直性脊柱炎血液流变性和甲皱微循环检测分析.微循环学杂志,2002,12(4):61-62.
    [4]许德英,常永超,程国平,等.强直性脊柱炎患者血液流变学指标分析.医药论坛杂志,2009,30(16):20-21.
    [5]王峰,汪年松,晏春根,等.强直性脊柱炎患者的血小板活化功能研究.中国实验诊断学,2007,11(7):911-913.
    [6]焦树德.“大偻”刍议.中国中医药信息杂志,2000,7(6):1-3.
    [7]焦树德.大偻(强直性脊柱炎)病因病机及辨证论治探讨(上).江苏中医药,2003,24(1):1-3.
    [8]王北.王为兰教授治疗强直性脊柱炎的临床经验.北京中医药大学学报,2008,15(5):23.
    [9]蒋怡,顾冬梅,朱婉华.朱良春教授治疗风湿病学术思想和诊疗技术简介.新中医,2011,43(6):150-151.
    [10]梁慧英,冯兴华.冯兴华教授对强直性脊柱炎病因病机认识的探析.中华中医药杂志,2011,26(9):2012-2014.
    [11]焦树德.大偻(强直性脊柱炎)病因病机及辨证论治探讨(下).江苏中医药,2003,24(2):1.
    [12]张大宁,多秀瀛,张勉之,等.肾阳虚与血瘀关系的实验研究.中国中医药信息杂志,2006,13(1):26-27.
    [13]张廷伟,齐达春.补肾活血法为主治疗强直性脊椎炎32例.广西中医药,2004,27(1):35.
    [14]邱联群,魏东,莫伟.补肾活血法治疗强直性脊柱炎50例临床观察.中医药导报,2006,12(8):43-44.
    [15]许敬春.补肾活血通络法治疗强直性脊柱炎疗效观察.中国实用医药,2012,7(7):164-165.
    [16]毛继凯,赵恒立,张景波,等.通督补肾活血方治疗强直性脊柱炎51例.中医正骨,2010,22(3):66-67.
    [17]周定华,周正球.益肾蠲痹方治疗强直性脊柱炎32例疗效观察.中国中医药信息杂志,2008,15(1):60.
    [18]刘宏潇,冯兴华,何夏秀.补肾强脊颗粒治疗强直性脊柱炎疗效与安全性评价.中国中西医结合杂志,2006,26(5):403-406.
    [19]郝亮.补肾强脊汤治疗强直性脊柱炎的临床研究.山东:山东中医药大学,2009.
    [20]张英泽,阎小萍.补肾强督方治疗强直性脊柱炎肾虚督寒血瘀证的临床研究.北京中医药大学学报,2007,30(12):857-860.
    [21]路平,阎小萍,陶庆文,等.补肾强督法治疗强直性脊柱炎37例临床研究.西南国防医药,2008,18(3):372-373.
    [22]王建明.补肾强督方治疗强直性脊柱炎患者259例临床研究.中医杂志,2006,47(6):433-434.
    [23]侯旭东.益督丸加味对强直性脊柱炎的临床疗效观察.山东:山东中医药大学,2009.
    [24]雷桂平.通督补肾活血方联合鹿瓜多肽注射液治疗强直性脊柱炎32例.中医药导报,2011,11(17):96-97.
    [25]崔祺,王遵来.针罐结合治疗强直性脊柱炎42例.中国城乡企业卫生,2010,(1):112.
    [26]王建明,阎小萍,周童亮.壮督方对强直性脊柱炎患者T辅助细胞亚群的影响.中国医药学报,2004,19(6):349-351.
    [27]张英泽.补肾强督方对强直性脊柱炎(大偻)患者骨破坏相关因子影响的研究.北京:北京中医药大学,2006.
    [28]赵克明.祛痹通络膏治疗佐剂关节炎大鼠的实验研究.辽宁:辽宁中医学院,2003.
    [29]王海隆.补肾强脊颗粒对强直性脊柱炎患者临床及外周血CD4+T细胞AICD影响的实验研究.北京:中国中医科学院,2007.
    [30]刘宏潇.补肾活血法治疗强直性脊柱炎临床研究及抗骨化作用实验探讨.北京:中国中医科学院,2005.
    [31]卞华,冯兴华,胡久略,等.补肾活血方对强直性脊柱炎患者RANKL/OPG表达的影响.新中医,2012,44(1):55-57.
    [32]Urist MR. Bone:formation by autoinduction.1965. Clin Orthop Relat Res,2002, (395):4-10.
    [33]Kessler E, Takahara K, Biniaminov L, et al. Bone morphogenetic protein-1:the type I procollagen C-proteinase. Science,1996,271(5247):360-362.
    [34]Vukicevic S, Luyten FP, Reddi AH. Stimulation of the expression of osteogenic and chondrogenic phenotypes in vitro by osteogenin. Proc NatlAcad Sci U S A,1989, 86(22):8793-8797.
    [35]Cunningham NS, Paralkar V, Reddi AH. Osteogenin and recombinant bone morphogenetic protein 2B are chemotactic for human monocytes and stimulate transforming growth factor beta 1 mRNA expression. Proc Natl Acad Sci U S A,1992, 89(24):11740-11744.
    [36]Paralkar VM, Weeks BS, Yu YM, et al. Recombinant human bone morphogenetic protein 2B stimulates PC 12 cell differentiation:potentiation and binding to type IV collagen.J Cell Biol,1992,119(6):1721-1728.
    [37]Perides G, Safran RM, Downing LA, et al. Regulation of neural cell adhesion molecule and L1 by the transforming growth factor-beta superfamily. Selective effects of the bone morphogenetic proteins. J Biol Chem,1994,269(1):765-70.
    [38]Xiao YT, Xiang LX, Shao JZ. Bone morphogenetic protein. Biochem Biophys Res Commun,2007,362(3):550-553.
    [39]Miyazawa K, Shinoazki M, Hara T, et al. Two major Smad pathways in TGF-beta superfamily signalling. Genes Cells,2002,7(12):1191-1204.
    [40]Oh SP, Seki T, Goss KA, et al. Activin receptor-like kinase l modulates transforming growth factor-beta 1 signaling in the regulation of angiogenesis. Proc Natl Acad Sci USA, 2000,97(6):2626-2631.
    [41]Sakou T. Bone morphogenetic proteins:from basic studies to clinical approaches. Bone, 1998,22(6):591-603.
    [42]Kretzschmar M, Liu F, Hata A, et al. The TGF-beta family mediator Smadl is phosphorylated directly and activated functionally by the BMP receptor kinase. Gene Dev, 1997, 11(8):984-995.
    [43]Baker JC, Harland RM. A novel mesoderm inducer, Madr2, functions in the activin signal transduction pathway. Genes Dev,1996,10(15):1880-1889.
    [44]Moustakas A, Souchelnytskyi S, Heldin CH. Smad regulation in TGF-beta signal transduction. J Cell Sci,2001,114(Pt 24):4359-4369.
    [45]Yan X, Liu Z, Chen Y. Regulation of TGF-beta signaling by Smad7. Acta Biochim Biophys Sin (Shanghai),2009,41(4):263-272.
    [46]Zimmerman LB, De Jesus-Escobar JM, Harland RM. The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell,1996,86(4):599-606.
    [47]Li W, LoTurco JJ. Noggin is a negative regulator of neuronal differentiation in developing neocortex. Dev Neurosci,2000,22(1-2):68-73.
    [48]Gazzerro E, Gangji V, Canallis E. Bone morphogenetic proteins induce the expression of noggin, which limits their activity in cultured rat osteoblasts. J Clin Invest,1998, 102(12):2106-2114.
    [49]Abe E, Yamamoto M, Taguchi Y, et al. Essential requirement of BMPs-2/4 for both osteoblast and osteoclast formation in murine bone marrow cultures from adult mice: antagonism by noggin. J Bone Miner Res.2000,15(4):663-673.
    [50]Piccolo S, Sasai Y, Lu B, et al. Dorsoventral patterning in Xenopus:inhibition of ventral signals by direct binding of chordin to BMP-4. Cell,1996,86(4):589-598.
    [51]Jasuja R, Allen BL, Pappano WN, et al. Cell-surface heparan sulfate proteoglycans potentiate chordin antagonism of bone morphogenetic protein signaling and are necessary for cellular uptake of chordin. J Biol Chem,2004,279(49):51289-51297.
    [52]Zhang D, Ferguson CM,O'Keefe RJ, et al. A role for the BMP antagonist chordin in endochondral ossification. J Bone Miner Res,2002,17(2):293-300.
    [53]Hsu DR, Economides AN, Wang X, et al. The Xenopus dorsalizing factor Gremlin identifies a novel family of secreted proteins that antagonize BMP activities. Mol Cell,1998, 1(5):673-683.
    [54]Pereira RC, Economides AN, Canalis E. Bone morphogenetic proteins induce gremlin, a protein that limits their activity in osteoblasts. Endocrinology,2000,141(12):4558-4563.
    [55]Gazzerro E, Pereira RC, Jorgetti V, et al. Skeletal overexpression of gremlin impairs bone formation and causes osteopenia. Endocrinology,2005,146(2):655-665.
    [56]Kalajzic I, Staal A, Yang WP, et al. Expression profile of osteoblast lineage at defined stages of differentiation. J Biol Chem,2005,280(26):24618-24626.
    [57]Ishisaki A, Yamato K, Hashimoto S, et al. Differential inhibition of Smad6 and Smad7 on bone morphogenetic protein- and activin-mediated growth arrest and apoptosis in B cells. J Biol Chem,1999,274(19):13637-13642.
    [58]Miyazono K, Maeda S, Imamura T. BMP receptor signaling:transcriptional targets, regulation of signals, and signaling cross-talk. Cytokine Growth Factor Rev,2005, 16(3):251-263.
    [59]Bai S, Shi X, Yang X, et al. Smad6 as a transcriptional corepressor. J Biol Chem,2000, 275(12):8267-8270.
    [60]Kimura N, Matsuo R, Shibuya H, et al. BMP2-induced apoptosis is mediated by activation of the TAKl-p38 kinase pathway that is negatively regulated by Smad6. J Biol Chem,2000,275(23):17647-17652.
    [61]Sangadala S, Metpally RP, Reddy BV. Molecular interaction between Smurfl WW2 domain and PPXY motifs of Smadl, Smad5, and Smad6--modeling and analysis.J Biomol Struct Dyn,2007,25(1):11-23.
    [62]Zhao M, Qiao M, Oyajobi BO, et al. E3 ubiquitin ligase Smurfl mediates core-binding factor alpha 1/Runx2 degradation and plays a specific role in osteoblast differentiation. J Biol Chem,2003,278(30):27939-27944.
    [63]Ying SX, Hussain ZJ, Zhang YE. Smurfl facilitates myogenic differentiation and antagonizes the bone morphogenetic protein-2-induced osteoblast conversion by targeting Smad5 for degradation. J Biol Chem,2003,278(40):39029-39036.
    [64]Chan MC, Nguyen PH, Davis BN, et al. A novel regulatory mechanism of the bone morphogenetic protein (BMP) signaling pathway involving the carboxyl-terminal tail domain of BMP type Ⅱ receptor. Mol Cell Biol,2007,27(16):5776-5789.
    [65]Murakami G, Watabe T, Takaoka K, et al. Cooperative inhibition of bone morphogenetic protein signaling by Smurfl and inhibitory Smads. Mol Biol Cell,2003,14(7):2809-2817.
    [66]Zhao M, Qiao M, Oyajobi BO, et al. E3 ubiquitin ligase Smurfl mediates core-binding factor alphal/Runx2 degradation and plays a specific role in osteoblast differentiation. J Biol Chem,2003,278(30):27939-27944.
    [67]Koinuma D, Shinozaki M, Komuro A, et al. Arkadia amplifies TGF-beta superfamily signalling through degradation of Smad7. EMBO J,2003,22(24):6458-6470.
    [68]Chen HA, Chen CH, Lin YJ, et al. Association of bone morphogenetic proteins with spinal fusion in ankylosing spondylitis. J Rheumatol,2010,37(10):2126-2132.
    [69]文利.成骨细胞调节因子BMP-2. IL-11、PDGF在男性强直性脊柱炎中表达及其意义.河北:河北医科大学,2010.
    [70]Park MC, Park YB, Lee SK. Relationship of bone morphogenetic proteins to disease activity and radiographic damage in patients with ankylosing spondylitis. Scand J Rheumatol, 2008,37(3):200-204.
    [71]Lories RJ, Derese I, Luyten FP. Modulation of bone morphogenetic protein signaling inhibits the onset and progression of ankylosing enthesitis. J Clin Invest,2005, 115(6):1571-1579.
    [72]李建明.强直性脊柱炎病理性成骨的分子机制研究.重庆:中国人民解放军第三军医大学,2009.
    [73]Lories RJ, Derese I, De Bari C, et al. Evidence for uncoupling of inflammation and joint remodeling in a mouse model of spondyloarthritis. Arthritis Rheum,2007,56(2):489-497.
    [74]刘尚建,王停,荆鲁,等.论临床中药运用的多元性.中医杂志,2005,46(6):412-413.
    [75]蒋明,David Yu,林孝义,等.中华风湿病学.北京:华夏出版社,2004:1018-1019.
    [76]张兴会,王志英,唐志忠,等.数据仓库与数据挖掘技术.北京:清华大学出版社,2011:94-95.
    [77]刘仁权,史周华,李国春,等.SPSS统计软件.北京:中国中医药出版社,2007:146.
    [78]张兴会,王志英,唐志忠,等.数据仓库与数据挖掘技术.北京:清华大学出版社,2011:2.
    [79]谭定英,老膺荣,古求知,等.面向循证传承的名老中医个人医案数据挖掘研究思路初探.新中医,2011,43(8):162-164.
    [80]梁慧英,冯兴华.古代医家对强直性脊柱炎的认识.吉林中医药,2009,31(6):594-596.
    [81]刘宏潇.冯兴华治疗强直性脊柱炎经验.中医杂志,2004,45(7):495-496.
    [82]吴东海,王国春,马丽,等.临床风湿病学.北京:人民卫生出版社,2008:271.
    [83]王国英,鞠宝兆.从藏象谈肝与目.吉林中医药,2009,29(4):359-360.
    [84]Paul P Tak, Joachim R Kalden. Advances in rheumatology:new targeted therapeutics. Arthritis Res Then 2011;13(Suppl 1):S5.
    [85]许凤全.冯兴华辨治强直性脊柱炎经验集要.辽宁中医杂志,2008,35(10).1478-1479.
    [86]王海隆,周雍明,冯兴华.补肾强脊颗粒治疗强直性脊柱炎52例.中医杂志,2006,47(9).
    [87]Murphy MG, Mailhot J, Borke J, et al. The effects of rhBMP-2 on human osteosarcoma cells and human gingival fibroblasts in vitro. J Oral Implantol,2001,27(1):16-24.
    [88]余晓栋.体外冲击波联合血小板衍生生长因子对成骨细胞增殖的影响.山西:山西医科大学,2010.684-685.
    [89]Chen L, Lu X, Li S, et al. Sustained delivery of BMP-2 and platelet-rich pl-asma-relea sed growth factors contributes to osteogenesis ofhuman adipose-derived stem cells. Orthoped ics,2012,35(9):e1402-9.
    [90]Simman R, Hoffmann A, Bohinc RJ, et al. Role of platelet-rich plasma in acc-eleratio n of bone fracture healing. Ann Plast Surg,2008,61(3):337-44.
    [91]Lee KB, Taghavi CE, Song KJ, et al. Inflammatory characteristics of rhBMP-2 in vitro and in an in vivo rodent model. Spine (Phila Pa 1976),2011,36(3):E149-54.
    [92]Lee KB, Taghavi CE, Murray SS, et al. BMP induced inflammation:a comparison of rhBMP-7 and rhBMP-2. J Orthop Res,2012,30(12):1985-94.
    [93]潘景业,金可可,陈雷,等.选择素在急性炎症反应中的作用.实用医学杂志,2003,19(11):1279-1281.
    [94]王俊勤,胡有谷.淫羊藿甙对体外培养成骨细胞增殖和分化的影响.中国临床康复,2002,6(9):1307-1308.
    [95]刘铁汉,王本祥.淫羊藿苷及其肠菌代产物对THP-1细胞分泌的影响.药学学报,2000,35(4):245-248.
    [96]范曾丽,权秋梅.淫羊藿的药理研究进展.安徽农业科学,2012,40(17):9264-9266.
    [97]陈瑶,刘忠良,赵勇.骨碎补化学成分和药理作用研究进展.解放军药学学报,2012,28(5):454-457.
    [98]凌婷,杨勇健.怀牛膝的药理作用及其未来应用展望.临床医药实践,2009,(20):1879-1880.
    [99]李欣,刘严,朱文学,等.杜仲的化学成分及药理作用研究进展.食品工业科技,2012,(10):378-382.
    [100]刘二伟,吴帅,樊官伟.川续断化学成分及药理作用研究进展.中华中医药学刊,2010,28(7):1421-1423.
    [101]朱燕飞.枸杞子药理作用概述.浙江中西医结合杂志,2005,15(5):322-323.
    [102]王焕江,赵金娟,刘金贤,等.菟丝子的药理作用及其开发前景.中医药学报,2012,40(6):123-125.
    [103]浦锡娟,徐凯琳.丹参的药理作用研究进展.临床医学工程,2009,16(8):154-155.
    [104]王雪梅,李应东.当归有效成分及其药理作用的研究进展.甘肃中医,2009,22(11):50-51.
    [105]裴艳霞.川芎的药理作用及临床应用.中国医药指南,2011,9(34):197-198.
    [106]冀兰鑫,黄浩,李长志,等.赤芍药理作用的研究进展.药物评价研究,2010,33(3):233-236.
    [107]钟锋,顾健,张亮亮,等.莪术药理作用的现代研究进展.中国民族民间医药,2010,40(6):67-68.
    [108]李珍娟,黄红英.羌活的药理作用及临床新用概述.实用中医药杂志,2004,20(2):108-109.
    [109]梁学清,李丹丹.细辛药理作用研究进展.河南中医药大学学报(医学版),2011,29(4):318-320.
    [110]张艳宏.穴位贴敷疗法的理论基础及目前应用现状.甘肃中医,2007,20(2):1-3.
    [111]肖东伟,高明利.穴位贴敷理论基础浅探.辽宁中医药大学学报,2008,10(5):127.
    [112]胥云,庄桂霞.中药现代经皮给药制剂的临床应用与发展前景穴位贴敷理论基础浅探.中医外治杂志,2005,14(2):6-7.
    [113]宰炎冰,刘丹丹,吴巍,等.中医药外治古今考.中医学报,2012,31(1):17-19.
    [114]梁慧英.补肾活血法治疗强直性脊柱炎临床研究及抗骨化分子机制的探讨.北京:中国中医科学院,2011.
    [115]Zochling J, Braun J. Assessment of ankylosing spondylitis. Clin Exp Rheumatol, 2005,23:S133-S141.
    [116]Zochling J, van der Heijde D, Burgosvargas R, et al. ASAS/EULAR recommendations for the management of ankylosing spondylitis. Ann Rheum Dis,2005,65(4):1136-1137.
    [117]Zochling J, van der Heijde D, Dougados M, et al. Current evidence for the management of ankylosing spondylitis:a systematic literature review for the ASAS/EULAR management recommendations in ankylosing spondylitis. Ann Rheum Dis,2005,65(4):423-432.
    [118]Calin A, Garrett S, Whitelock H, et al. A new approach to defining functional ability in ankylosing spondylitis:the development of the Bath Ankylosing Spondylitis Functional Index. J Rheumatol,1994,21(12):2281-2285.
    [119]Garrett S, Jenkinson T, Kennedy LG, et al. A new approach to defining disease status in ankylosing spondylitis:the Bath Ankylosing Spondylitis Disease Activity Index. J Rheumatol, 1994,21(12):2286-2291.
    [120]Claudepierre P, Sibila J, Goupille P, et al. Evaluation of a French version of the Bath ankylosing spondylitis disease activity index in patients with spondylarthropathy. J Rheumatol, 1997,24(10):1954-1958.
    [121]Keikkila S, Vitanen JV, Kautiainen H, et al. Functional long term changes in patients with spondyloarthropathy. Clin Rheumatol,2002,21(2):119-122.
    [122]D'Agostino MA, Said-Nahal R, Hacquard-Bouder C, et al. Assessment of peripheral enthesitis in the spondylarthropathies by ultrasonography combined with power Doppler:a cross-sectional study. Arthritis Rheum,2003,48(2):523-533.
    [123]Van Der Heijde D, Kivitz A, Schiff MH, et al. Efficacy and safety of adalimumab in patients with ankylosing spondylitis:results of a multicenter, randomized,double-blind, placebo-controlled trial. Arthritis Rheum,2006,54(7):2136-2146.
    [124]CHEN Xiao-yun, ZHANG Li-yun, LI Xiao-feng. Relationship between the severity of enthesis and clinical and laboratory parameters in patients with ankylosing spondylitis. Chin J Allergy Clin Immunol,2008,2(4):100-103.
    [125]Balint PV, Kane D, Wilson H, et al. Ultrasonography of entheseal insertions in the lower limb in spondyloarthropathy. Arthritis Rheum,2002,61(10):905-910.
    [126]Ruof J, Stucki G Validity aspects of erythrocyte sedimentation rate and C-reactive protein in ankylosing spondylitis:a literature review. J Rheumatol,1999,26(4):966-970.
    [127]Yildirim K, Erdal A, Karatay S, et al. Relationship between some acute phase reactants and the Bath Ankylosing Spondylitis Disease Activity Index in patients with ankylosing spondylitis. South Med J,2004,97(4):350-353.
    [128]Spoorenberg A, Van Der Heijde D, DE Klerk E, et al. Relative value of erythrocyte sedimentation rate and C-reactive protein in assessment of disease activity in ankylosing spondylitis. J Rheumtol,1999,26(4):980-984.
    [129]Munoz-Villanueva MC, Munoz-Gomariz E, Escudero-Contreras A, et al.Biological and clinical markers of disease activity in ankylosing spondylitis. J Rheumatol,2003,30(12): 2729-2732.
    [130]姜楠,冯兴华,何松蔚,等.强直性脊柱炎患者血小板计数变化及中药干预作用的临床研究.吉林中医药,2012,32(7):692-695.
    [131]杨壮立,古洁若,李天旺.强直性脊柱炎患者血小板升高的临床意义.海南医学,2008,19(6):58-60.
    [132]许蓓,林进,徐立勤,等.血小板参数在强直性脊柱炎治疗效果评价中的作用研究.中医学报,2011,6(6):8-11.
    [133]Pompeu JE, Romano RS, Pompeu SM, Lima SM. Static and dynamic balance in subjects with ankylosing spondylitis:literature review. Rev Bras Reumatol.2012,52 (3):409-416.
    [134]Dodwell ER, Latorre JG, Parisini E, et al. NSAID exposure and risk of nonunion:a meta-analysis of case-control and cohort studies. Calcif Tissue Int.2010,87:193-202.
    [135]Lories RJ, Derese I, Luyten FP. Inhibition of osteoclasts does not prevent joint ankylosis in a mouse model of spondyloarthritis. Rheumatology (Oxford).2008,47:605-608.
    [136]Schett G, Rudwaleit M. Can we stop progression of ankylosing spondylitis? Best Pract Res Clin Rheumatol.2010,24:363-371.
    [137]Ogawa M, LaRue AC. Origin of fibroblast colony-forming units. Exp Hematol,2007, 35(9):1319-132O.
    [138]Ducy P, Schinke T, Karsenty G. The osteoblast:a sophisticated fibroblast under central surveillance. Science,2000,289(5484):1501-1504.
    [139]Ikegame M, Ishihashi O, Yoshizawa T, et al. Tensile stress induces bone morphogenetic protein 4 in preosteoblastic and fihroblastic cells, which later differentiate into osteoblasts leading to osteogenesis in the mouse calvariae in organ culture. J Bone Miner Res, 2001, 16(l):24-32.
    [140]Rutherford RB, Moalli M, Franceschi RT, et al. Bone morphogenetic protein-transduced human fibroblasts convert to osteoblasts and form bone in vivo. Tissue Eng, 2002,8(3): 441-452.
    [141]Ripamonti U. Soluble osteogenic molecular signals and the induction of bone formation. Biomaterials,2006,27(6):807-822.
    [142]Yoon BS, Lyons KM. Multiple functions of BMPs in chondrogenesis. J Cell Biochem, 2004,93(1):93-103.
    [143]Huang Z, Ren PG, Ma T, et al. Modulating osteogenesis of mesenchymal stem cells by modifying growth factor availability. Cytokine,2010,51(3):305-310.
    [144]Noel D, Gazit D, Bouquet C, et al. Short-term BMP-2 expression is sufficient for in vivo osteochondral differentiation of mesenchymal stem cells. Stem Cells,2004,22(1):74-85.
    [145]Nishimura R, Hata K, Matsubara T, et al. Regulation of bone and cartilage development by net work between BMP signaling and transcription factors. J Biochem,2012, 151(3):247-254.
    [146]Kang M, Bok J, Deocaris CC, et al. Hoxc8 represses BMP-induced expression of Smad6. Mol Cells,2010,29:29-33.
    [147]Hongxiao L. Dr. Feng Xinghua's experience in treating ankylosing spondylitis. J Tradit Chin Med.2006,26(3):207-209.
    [148]Chalmers J, Gray DH, Rush J. Observations on the induction of bone in soft tissues. J Bone Joint Surg Br,1975,57(1):36-45.
    [149]Kaplan FS, Glaser DL, Hebela N, et al. Heterotopic ossification. J Am Acad Orthop Surg, 2004,12(2):116-125.
    [150]Christopher DB, Darrel P, Janet ML, et al. Fibroblasts regulate the switch from acute resolving to chronic persistent inflammation. Trends Immunol,2001,22(4):199-204.
    [151]邓廉夫,柴本甫,齐进.损伤性和骨关节炎性滑膜细胞成骨作用的体外研究.中华骨科杂志,1997;17(11):693-695.
    [152]邓廉夫,汤雪明,柴本甫,等.肿瘤坏死因子α和骨形成发生蛋白2诱导成纤维细胞成骨 表型表达的体外研究.中国修复重建外科杂志,1998,12(4):236-239.
    [153]颜廷宾,王修文,张佐伦,等.后纵韧带骨化患者脊柱韧带细胞表型分析.中国公共卫生,2009;25(9):1098-1110.
    [154]卢旭华.颈椎间盘纤维环成纤维细胞成骨潜能的研究.上海:中国人民解放军第二军医大学,2004.
    [155]Inanc B, Elcin AE, Elcin YM. Osteogenic induction of human periodontal ligament fibroblasts under two-and three-dimensional culture conditions. Tissue Eng,2006, 12(2):257-266.
    [156]Ozec Y, Ozturk M, Kylyc E, et al. Effect of recombinant human bone morphogenetic protein-2 on mandibular distraction osteogenesis. J Cranio fac Surg,2006,17(1):80-83.
    [157]Krug HE. Fibroblasts from mice with progressive ankylosis proliferate excessively in response to transforming growth factor-beta 1. J Investig Med,1998,46(4):134-139.
    [158]高根德,刘耀升.强直性脊柱炎棘上棘间韧带成纤维细胞在体外培养中的成骨作用.中华风湿病学杂志,1998,2(4):196-199.
    [159]王萧枫,高根德.强直性脊柱炎成纤维细胞分泌骨钙素的实验研究.中国矫形外科杂志,2002,9(4):367-369.
    [160]高根德,刘耀升,童培建.强直性脊柱炎棘上棘间韧带的扫描电镜与成纤维细胞培养研究.中国骨伤,2001,14(6):338-340.
    [161]高根德,刘耀升,胡军祥,等.强直性脊柱炎髋关节软组织的扫描电镜和X线能谱观察及其临床意义.中国中医骨伤科杂志,1998,6(6):16-20.
    [162]刘宏潇,冯兴华,李丽,等.强直性脊柱炎成纤维细胞增殖、周期及凋亡的初步研究.中华风湿病学杂志,2005,9(12):758-761.
    [163]Thirunavukkarasu K, Halladay DL, Miles RR, et al. The osteoblast-specific transcription factor Cbfal contributes to the expression of osteoprotegerin, a potent inhibitor of osteoclast differentiation and function. J Biol Chem,2000,275(33):25163-25172.
    [164]Banerjee C, Hiebert SW, Stein JL, et al. An AML-1 consensus sequence binds an osteoblast-specific complex and transcriptionally activates the osteocalcin gene. Proc Natl Acad Sci U S A,1996,93(10):4968-4973.
    [165]Harada H, Tagashira S, Fujiwara M, et al. Cbfal isoforms exert functional differences in osteoblast differentiation. J Biol Chem,1999,274(11):6972-6978.
    [166]Kern B, Shen J, Starbuck M, et al. Cbfal contributes to the osteoblast-specific expression of type I collagen genes. J Biol Chem,2001,276(10):7101-7107.
    [167]Ripamonti U. Soluble osteogenic molecular signals and the induction of bone formation. Biomaterials,2006,27(6):807-822.
    [168]郭国宁Cbfal基因转移对成纤维细胞的调节作用及在脊柱融合中的作用.重庆:中 国人民解放局第三军医大学,2005.
    [169]Franceschi RT,Xiao G. Regulation of the osteoblast-specific transcription factor, Runx2: responsiveness to multiple signal transduction pathways. J Cell Biochem,2003,88(3):446-454.
    [170]孙莉娜,孟静岩,孙晓霞.中药血清药理学方法相关问题的思考.西部中医药,2012,25(11):36-37.
    [171]王丽梅,金向群.中药血清化学在中药及中药复方研究中的应用.中国实验方剂学杂志,2009,15(1):77-80.
    [172]张群豪,陈可冀.血清药理学在中药及复方研究中应用的评价.中国中西医结合杂志,2000,14(3):51-53.
    [173]兰静,李秋根.实时荧光定量PCR技术理论研究及其在医学方面的应用.南昌大学学报(医学版),2011,51(10):97-100.
    [174]朱捷,杨成君,王军.荧光定量PCR技术及其在科研中的应用.生物技术通报,2009,2:73-76.
    [175]Schmittgen TD. Real-time quantitative PCR.Methods,2001,25(4):383-385.
    [176]Schmittgen TD, Zakrajsek BA, Mills AG, et al. Quantitative reverse transcription-polymerase chain reaction to study mRNA decay:comparison of endpoint and real-time methods. Anal Biochem,2000,285(2):194-204.
    [177]Livak K.J, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) Method. Methods,2001,25(4):402-408.
    [178]Lee EJ, Schmittgen TD. Comparison of RNA assay methods usedto normalize cDNA for quantitative real-time PCR. Anal Biochem,2006,357(2):299-301.
    [179]Ryoo HM, Lee MH, Kim YJ. Critical molecular switches involved in BMP-2-induced osteogenic differentiation of mesenchymal cells. Gene,2006,366(1):51-57.
    [180]周传利,陈晓亮.骨形态发生蛋白2表达异常与脊柱的融合.中国组织工程研究与临床康复,2007,11(36):7231-7235.
    [181]西永明,贾连顺,赵鹏,等Smad蛋白在BMP-2诱导成骨分化过程中的作用.青岛大学医学院学报,2007,43(6):273.
    [182]Yazaki Y, Matsunaga S, Onishi T, et al. Immunohistochemical localization of bone morphogenetic proteins and the receptors in epiphyseal growth plate. Anticancer Res,1998, 18(4A):2339-44.
    [183]Wozney JM. Overview of bone morphogenetic proteins. Spine,2002,27(16 Suppl 1): S2-S8.
    [184]Kawaguchi H, Kurokawa T, Hoshino Y, et al. Immubohistochemical demonstration of bone morphogenetic protein-2 and transforming growth factor-beta in the ossification of the posterior longitudinal ligament of the cervical spine. Spine,1992,17(Suppl.3):S33-S36.
    [185]Saito A, Suzuki Y, Ogata S, et al. Activation of osteoprogenitor Cel ls by a novel synthetic peptide derived from the bone morphogenetic protein-2 knuckle epitope. Biochim BiophysActa,2003,1651(1-2):60-67.
    [186]Hayashi K, Ishidou Y, Yonemori K, et al. Expression and localization of bone morphogenetic proteins (BMPs) and BMP receptors in ossification of the ligamentum flavum. Bone,1997,21(1):23-30.
    [187]Yonemori K, Imamura T, Ishidou Y, et al. Bone morphogenetic protein receptors and activin receptors are highly expressed in ossified ligament tissues of patients with ossification of the posterior longitudinal ligament. Am J Pathol,1997,150(4):1335-1347.
    [188]Tanaka H, Nagai E, Murata H, et al. Involvement of bone morphogenetic protein-2 (BMP-2) in the pathological ossification process of the spinal ligament. Rheumatol,2001, 40(10):1163-1168.
    [189]Hoshi K, Amizuka N, Sakou T, et al. Fibroblasts of spinal ligaments pathologically differentiate into chondrocytes induced by recombinant human bone morphogenetic protein-2: morphological examinations for ossification of spinal ligaments. Bone,1997,21(2):155-162.
    [190]Kon T, Yamzaki M, Tagawa M, et al. Bone morphogenetic protein-2 stimulates differentiation of cultured spinal ligament cells from patients with ossification of the posterior longitudinal ligament. Calcif Tissue Int,1997,60(3):291-296.
    [191]Wang J. Spatial orientation of the microscopic elements of cortical repair bone. Clin Orthop,2000,374:265-277.
    [192]吴水生,施红,张小如.中药复方药效学研究中应重视多靶点作用的现实意义.中国中西医结合杂志,2001,21(7):545-546.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700